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Abstract 
 
Congestion control and Quality of Service (QoS) provision are important issues in 
today’s high-speed networks.  Packet scheduling can provide users with different QoS as 
well as ensure that the network is running efficiently.  There are many packet scheduling 
or queuing algorithms, each has its own advantages and disadvantages.  We investigated 
the performance of several different queuing mechanisms (FIFO, PQ, WFQ, CQ) using 
OPNET network simulation tool.  A simple set of traffic parameters is used to determine 
which mechanism will optimize the network performance in terms of delay.  From this 
characterization, we introduced a smart queuing mechanism, one that adapts to the 
current traffic situation by dynamically changing between the different algorithms. 
 

1 Introduction 
 
The explosive growth of the Internet has caused increasing demand on the packet-
switched networks.  Among many of the issues that have to be addressed, congestion 
control is of primary importance.  An optimal congestion control mechanism would 
ensure that the network is running at its fullest capacity, efficiently regulate the flow of 
traffic, as well as provide the promised Quality of Service (QoS) to its users.  This is not 
an easy task, especially given the constantly changing and chaotic [6] nature of the 
Internet.  The existence of multiple users with different QoS and access rates, who are 
running different applications, such as email, file transfer, and video conferencing, leads 
to one dynamic and complex system.  There are three ways to provide QoS and 
congestion control [1]: 

• end-to-end mechanisms, such as call acceptance control, that operate at the two 
ends of a connection, 

• edge mechanisms, such as shaping and policing, that operate at user-network 
interface, and 

• core mechanisms, such as buffering, queue management, and scheduling, that 
operate at network switching nodes like routers and switches. 

 
In this project, we investigated several packet scheduling/queuing algorithms that are 
widely used in network switching nodes to provide QoS.  In addition, these algorithms 
also allow for statistically multiplexing packets from various traffic streams, and provide 
protection between streams.  The three main functions of packet scheduling are to 
determine: (1) which packets get transmitted, (2) when these packets get transmitted, and 
(3) which packet get discarded in case of buffer overflow [1].  The performance of these 
algorithms can be measured using QoS parameters such as throughput, delay, delay jitter, 
and loss rate. 
 
The OPNET model library provides several queuing mechanisms that are commonly used 
in network routers and switches.  These include First In First Out (FIFO), Priority 
Queuing (PQ), Weighted Fair Queuing (WFQ), and Custom Queuing (CQ).  These 
algorithms attempt to strike a balance between complexity and fairness, and there is no 
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one single standard as to which one is the most optimal.  Some manufacturers implement 
more than one mechanism [3] to allow network operators to select one that is most 
appropriate.  However, sometimes selecting which one to use may not be that simple.  
Each one has its own benefits and limitations, and the best one can be highly dependent 
on the current traffic flow and network condition. 
 
Our project is to simulate a smart queuing algorithm in OPNET.  This mechanism will 
constantly sample a set of parameters relating to the current traffic condition and switch 
to the best algorithm depending on the situation.  This adaptive approach ensures that the 
routers operate at the optimal point even when the network condition changes. 
 
This report is organized as follow.  Section 2 provides background information on the 
different queuing algorithms.  Section 3 describes the simulation design, and section 4 
gives the results and discussion.  Conclusion is provided in Section 5. 
 

2 Background 
 
There are many different queuing mechanisms used in IP routers.  Some of the most 
common types of queuing mechanisms employed are: 
 

i) First-in-first-out (FIFO) 
ii) Priority queuing (PQ) 
iii) Weighted fair queuing (WFQ) 
iv) Custom queuing (CQ) 

 
First-in-first-out (FIFO) is the most simplistic type of queuing and is synonymous to 
first-come-first-serve (FCFS).  All incoming packets are placed in a single queue and are 
served in the same order as they were received.  This type of queuing requires very little 
computation and its behaviour is very predictable (i.e. packet delay is a direct function of 
the size of the FIFO queue).  However, due to its simplistic nature, there are many 
undesirable properties related to this queuing method.  Since all packets are inserted into 
the same queue, it is impossible to offer different services for different packet classes.  
Also, if an incoming flow suddenly becomes bursty, then it is possible for the entire 
buffer space to be filled by this single flow and other flows will not be serviced until the 
buffer is emptied.  Figure 1 illustrates this mechanism. 

 



 3

 
Figure 1. FIFO queue [3] 

 
Priority queuing (PQ), as shown in Figure 2, provides a simple way of offering different 
services to different classes of packets.  Its operation involves classifying each incoming 
packet into different priorities and placing them into separate queues accordingly.  
Packets of higher priority are transmitted on the output port before lower ones.  This is a 
great way of providing differentiated service, but it has some shortcomings.  An example 
is if there is a large continuous flow of high priority traffic into the queue, then low 
priority packets will experience excessive delay, and perhaps even to the extent of service 
starvation. 

 

 
Figure 2. Priority queuing [3] 

 
Fair queuing (FQ) is a class of queuing mechanism with the purpose of allowing fair 
access for each incoming flow and to prevent a bursty flow from consuming all of the 
output bandwidth.  FQ contains a queue for each distinct flow and packets from each 
flow are inserted into its respective queue.  The system then services each queue one 
packet at a time in a round-robin fashion.  Weighted fair queuing (WFQ) is a variation of 
Fair Queuing (FQ) in that it supports flows with different bandwidth requirements.  It 
does this by assigning each queue with different weights that corresponds to the 
proportion of the allocated output bandwidth.  In WFQ, as described in [3], each 
incoming packet is time stamped with a finish time in addition to being placed into its 
corresponding flow queue .  Unlike FQ, selection of which packet to be serviced is now 
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based on this time stamp on each packet.  Packets are serviced by examining their finish 
times and ones with earlier finish times are transmitted before later ones.  It is possible 
for a later packet to have a finish time stamp that is smaller than an earlier packet.  
Currently, WFQ is only implemented in the software level, so application in high-speed 
routers is limited.  In addition, depending on the implementation platform, WFQ has been 
shown to perform unfairly [5].  Figure 3 illustrates the WFQ mechanism. 

 

 
Figure 3. WFQ [3] 

 
Lastly, Custom Queuing (CQ) (a.k.a. Class-based Queuing) is designed to address the 
limitations present in PQ and WFQ.  In CQ, as described in [3], each packet is classified 
as belonging to a particular service class and is placed in the queue for that class.  Each 
service class is assigned a weight that corresponds to the percentage of the output 
bandwidth allocated to it.  Packets from each queue are transmitted based on the weight 
assigned to their queues.  One benefit of CQ is that it can be implemented in hardware.  It 
provides differentiated service, as well as guaranteed output bandwidth for each service 
class (even for low-priority traffic).  This method is shown in Figure 4. 
 

 
Figure 4. Custom queuing [3] 
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3 Simulation Design 
 

3.1 Smart Queuing 
 
The idea behind smart queuing is to take advantage of all the benefits offered by different 
queuing mechanisms but at the same time to avoid their limitations.  There are cases 
where one queuing schemes perform better than others and vice versa.  And as the traffic 
condition changes, the mechanism that was originally optimal may no longer be the best.  
Smart queuing addresses this change in traffic by dynamically switching to the best 
queuing at that time.  Of course the best could be highly subjective, dependent on the 
network operator’s policies and preferences.  However, in our project we have adopted 
best in terms of network performance such as fairness in accessing the network resources 
given that users have different QoS and packet delay. 
 
In this project, the set of parameters that we maintained to characterize the current traffic 
pattern are the number of users (source addresses), the Type of Service (ToS) associated 
with each packet, and the transfer rates.  In our simulation, we have assumed that each 
user has only one connection with one ToS and are sending packets at a constant rate.  
We use this information together with a set of simple rules to determine which queuing is 
the best, in terms of fairness and delay.  It should also be noted that the advantages of 
smart queuing can only be fully realized when all the routers in the packet path 
implement this mechanism. 
 

3.2 Smart Router Implementation 
 
The OPNET model library provides standard router model which can be configured to 
use FIFO, PQ, WFQ, and CQ.  Within this router is an ip node representing the IP layer 
which implements the ip_dispatch process model.  This process model implements IP 
routing functions, and fragmentation and reassembly.  It routes IP packets arriving on any 
interface to the appropriate output interface based on their destination address, using 
either dynamic routing protocol such as RIP or OSPF, or static routing tables [7].  If the 
router is configured to use a queuing scheme, this process spawns a child process 
ip_output_iface for each interface that uses a queuing scheme.  Note that a router may 
use different queuing schemes for different interfaces/ports.  The ip_output_iface process 
creates a specific queue management structure qm_info which enqueue and dequeue 
packets according the queuing mechanism selected by the user.  This process also 
generates statistics for the interface during simulation.  Figure 5 summarizes this 
hierarchy as implemented in OPNET. 
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Figure 5. Supporting QoS in OPNET 
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In a typical simulation, packets are routed from any input interface to the output interface 
by the ip_dispatch process.  The ip_output_iface is aware of the outgoing link capacity 
and will perform queuing accordingly.  For smart queuing, we modified the 
ip_output_iface process to include multiple queuing management (qm) structures; that is, 
all four schemes are available to be used.  In addition, the process also performs the 
following functions: 

• collecting incoming packet stream statistics, 
• performing switching decision, 
• buffering packets during transistion of queuing schemes, and 
• passing packets to the appropriate queue management structure. 

 
Figure 6 shows a diagram describing this process. 
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Figure 6. Smart queuing process flow 

 
The different qm structures are independent and they are not aware of each other.  Hence, 
a synchronization method is required during switching so that the next queuing method 
waits until the current method is finished with packets in its queues, before transmitting 
any packets.  Thus, a packet counter is associated with each qm to keep track of the 
number of packets within the qm.  New packets are kept in the transistion buffer until the 
current qm is finished; and once this occurs, the contents of the buffer is flushed to the 
next qm.  As of the writing of this report, we were still unable to correctly implement the 
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transistion buffer.  Instead, in our simulation, we dropped the new incoming packets until 
the current qm is completed. 
 

 
Figure 7. Smart queuing state transistion diagram 

 
Figure 7 shows the resulting state transition diagram of the modified ip_output_iface 
process model.  In the allocate_buffers(), the 4 qm structures are initialized and 
statistic handles are registered.  Whenever a RECEIVE_PACKET interrupt is received 
(from ip_dispatch), the do_stat() procedure is called, where the swithing module 
collects the traffic information and records it to a table (see Table 1). 
 

source_address ToS last_pkt_time allow_rate active misbehave 
192.0.0.1 2 30.15 sec 25.0 pkt/s yes no 
192.0.0.2 0 12.50 sec 20.0 pkt/s no no 

…      
Table 1. Sample traffic parameters 

 
If the packet source_address is not in the table, an entry is added.  The last_pkt_time is 
set to the current simulation time, the allow_rate is fixed according to the ToS, and the 
user status is set to active.  If the packet source_address is in the table, the transfer rate is 
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calculated according to 
timepktlasttimesimcurrent ____

1
−

.  If this value is greater than 

allow_rate, the status is set to misbehave and last_pkt_time is updated, otherwise only 
the last_pkt_time is updated.  Two user-configureable parameters are used to specify the 
behaviour of the switching module.  The first is activity_timeout, which specify the 
duration that must elapse before a user is considered inactive.  Thus, for each user, if the 
value (current_sim_time–last_pkt_time) is greater that activity_timeout, that user is set to 
be inactive.  The second parameter is switching_sensitivity, which will be described next. 
 
From the above table, the swithing module then determine which queuing to use by 
considering all active users and according to the following rules: 

• If there is a misbehaving user, use WFQ 
• Else if there is more than one ToS, use CQ 
• Else use FIFO 

These rules were selected primarily for validating our model.  Within OPNET, WFQ and 
CQ implementation are very similar [7], both provide differentiated service using weights 
and byte count respectively.  Therefore, these rules essentially dictates that if there is no 
need for differentiated service, use FIFO to take advantage of lower queuing overhead 
and faster processing time. 
 
If the current queuing is different from what is recommended according to the rules, we 
have to switch.  In order not to switch whenever there is a slight change in traffic 
condition, the switching_sensitivity packet counter is used.  As an example, say we are 
currently using FIFO because there are two well-behaving users at ToS 2.  Then a routing 
information packet is sent to neighbouring routers using ToS 0 periodically.  This will 
trigger a switch that is unnecessary.  The switching_sensitivity is used to avoid this by 
resisting the switch for a certain number of packets.  For example, if it is set to 20, then 
there must be a total of 20 incoming packets that continuously cause a switch 
recommendation before actual switching is carried out.  This value is related to 
activity_timeout, since the total time taken to process this number of packets should be 
greater than activity_timeout, to prevent switching caused by periodic packets. 
 
We have also modified the enqueue_packet() and the extract_and_send() 
procedures so that packets are enqueued to and dequeued from the appropriate qm.  In 
addition, the QoS Configuration Object is updated to include the modified 
qos_attribute_definer process model. This allows user to configure the smart queuing 
parameters from the project workspace, as shown in Figure 8. 
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Figure 8. User-configurable parameters for smart queuing 

 

3.3 Network Topology and Simulation Settings 
 
In creating our network for simulation, we used standard OPNET objects from the 
Internet Toolbox pallete.  Figure 9 shows the topology created for the simulation.  Four 
Ethernet workstations are the source of our IP traffic.  These are connected to a switch, 
which is then connected to an IP router via 100baseT connections.  The destination of our 
traffic are four servers that are connected, via 100baseT, to a different router on the other 
side of the network.  A bottleneck is created between the two routers using 56 kbps link 
in order to simulate congestion. 
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Figure 9. Network topology 

 
There are two main types of protocol associated with IP networks:  TCP (Transmission 
Control Protocol) and UDP (User Data Protocol).  To simplify our simulation, we have 
used constant bit rate (CBR) UDP traffic.  These were generated using standard OPNET 
video conferencing application.  The packet size is selected to be 165 bytes, resulting in 
line capacity of approximately 40 pkt/s when using 56 kbps link.  In order to simulate 
different traffic conditions, the four clients are active at different times.  Table 2 
summarizes the behaviours of the four clients. 
 

 Traffic Rates (pkt/s) ToS Start Time (sec) Finish Time (sec)
Client_1 25 2 15 120 
Client_2 25 2 30 45 
Client_3 20 0 60 75 
Client_4 30 2 90 105 

Table 2. Network clients simulation settings 
 
The classification scheme is set to ToS Based, and we have set the allowable rates for 
ToS 0 and 2 to be 22 pkt/s and 27 pkt/s respectively.  Thus Client_4 traffic will be 
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considered to be non-conforming.  Figure 10 shows the graph of traffic sent by the four 
clients.  Using smart queuing and the described switching rules for this scenario, we 
expect that FIFO would be used when Client_2 is active, CQ would be used when 
Client_3 is active, and WFQ would be used when Client_4 is active.  Both the weights 
and byte count for WFQ and CQ profiles are set to 20 and 25 for ToS 0 and ToS 2 
respectively. 
 

 
Figure 10. Clients packet send rates 

 
The activity_timeout is set to 0.1 seconds, as this value should be larger than the packet 
interarrival time of the slowest sender, ie. larger than 0.05 seconds.  The 
switching_sensitivity is set to 20 packets.  This value can be approximated by calculating 
the total number packets received during a timeout period, ie. according to 

101.0254_____ =××=×× timeoutactivityratessendaverageusersofnumber  packets.  As a 
comparison, we also run this simulation independently using only FIFO queuing and only 
WFQ queuing.  However, we will not attempt to provide quantitative comparison 
between smart queuing and these methods as the transition buffer is yet to be 
implemented. 
 

4 Discussion 
 

4.1 Model Verification 
 
We will begin by showing that our implementation of smart queuing is in working order.  
Below is a graph of the “packet send rate” for the 3 queuing mechanisms that smart 
queuing used while running the experimental setup as described in section 3.3. 
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Figure 11.  Packet sent rate of the 3 queuing mechanisms (FIFO, CQ, WFQ) smart 

queuing used inside router A. 
 

(1) At first, smart queuing starts with WFQ as the method to use.  Initially, packets 
are sent among the various elements in the network (routers, switches, clients) to 
establish connection.  These handshaking packets are received by router A and 
are handled using WFQ as anticipated. 

 
(2) After handshaking is done, router A begins receiving packets containing actual 

data from client 1.  Smart queue samples the incoming packets to determine if a 
change in queuing method is necessary.  WFQ is still used by smart queue even 
though it observes that there is only one non-misbehaving client present and FIFO 
should be used instead.  This is due to the resistance as defined by the 
switching_sensitivity parameter, and smart queuing switches to using FIFO only 
after 20 packets have gone by. 

 
(3) All incoming packets from client 1 are handled using FIFO.  This can be verified 

by noticing that the packet sent rate by FIFO plateaus at 25 packets/second, which 
is equal to the rate at which packets are generated by client 1. 
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(4) Client 2 begins sending packets into the network.  Since client 2 is of the same 
ToS as client 1 and is also non-misbehaving, smart queuing decides that we 
should keep using FIFO. 

 
(5) At this point, client 2 stops sending packets, but there are still outstanding packets 

left in the buffer, so FIFO is still sending at the maximum rate.  Client 3 then 
begins sending packets.  Client 3 is also non-misbehaving, but has a different ToS 
than client 1.  Under this condition, smart queuing decides that we should switch 
to using CQ.  Under CQ, a separate subqueue is created for each distinct ToS.  
Therefore, packets belonging to client 1 (higher ToS) are inserted and sent from 
subqueue Q2, and packets belonging to client 3 (lower ToS) are inserted and sent 
from subqueue Q0. 

 
(6) Client 3 has stopped sending packets and all its outstanding packets have been 

sent.  Under this condition, only client 1 is still active and smart queuing dictates 
that we should change back to FIFO.  Before we can do so however, there are still 
outstanding packets from client 1 under CQ that has not been cleared.  Since there 
are no more client 3 packets that needs to be send, all of the output stream can be 
given to client 1’s packets, so the sent rate of client 1’s subqueue increases, 
causing the peak as shown. 

 
(7) Only client 1 is active, so smart queuing switches back to FIFO. 

 
(8) Client 4 begins sending packets into the network.  Since client 4 is misbehaving, 

smart queue dictates that WFQ should be used.  Both client 1 and client 4 have 
the same ToS, therefore, their packets are handled by the same subqueue. 

 
(9) Client 4 stops sending packets.  Now, only non-misbehaving client 1 remains, and 

smart queuing selects FIFO again.  
 
Due to the fact that we were unable to successfully implement a transition buffer to hold 
incoming packets during switching between different queuing mechanisms, we were 
forced to drop incoming packets.  For all queuing mechanisms that use multiple 
subqueues, all forced packet drop statistics are associated with subqueue Q0.  From the 
graph below (Figure 12), one can see packet drop occurred at the same instance as when 
we switched among various queuing schemes (Figure 11). 
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Figure 12.  Packet dropped rate experienced by various queues during simulation. 
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4.2 Client End-to-End Delay 
 
Figure 13 below is a graph showing the end-to-end delay experienced by client 1 of our 
network. 
 

 
Figure 13.  End-to-end delay experienced by client 1 

 
In the above graph, the curve described by the red dots is the end-to-end delay 
experienced by client 1 while using only WFQ for the entire duration of the simulation.  
The curve described by the blue dots is the end-to-end delay experienced by client 1 
while using our smart/adaptive queuing approach.  The curve described by the green dots 
(overlaid by the blue curve) is the end-to-end delay while using only FIFO. 
 
It is of interest to note that the end-to-end delay experienced by client 1 is identical 
whether router A is using either FIFO only, WFQ only, or smart queuing only, except 
during the time when client 1 and client 3 are active.  The reason for this similarity can 
be explained as follows: 
 
During time period (1), only client 1 is sending packets.  Under smart queuing, router A 
selects FIFO queuing scheme.  So the delay between smart queuing and FIFO should be 
the same (as illustrated in Figure 13).  In terms of WFQ, there is only one client with only 
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one type of ToS active in the network at this particular time. So under ToS based WFQ, 
only one subqueue is initiated and established to handle the queuing of incoming packets.  
This is identical to the FIFO case, so the delay experienced should be the same.  
 
During time period (2), both clients 1 and 2 are sending packets.  Since both clients 1 and 
2 are non-misbehaving and of the same ToS type, smart queuing also selects FIFO as the 
queuing method of choice.  Therefore, the delay between smart queuing and FIFO should 
be the same.  Similarly with WFQ, there are only packets of one ToS type, so packets 
from both client 1 and 2 are inserted into the same subqueue.  Therefore, the delay should 
be identical to FIFO.  The introduction of client 2’s packets now competes with the 
packets of client 1 for bandwidth on the output stream, so the delay experienced by client 
1 increases until client 2 no longer sends packets (3), at which point the delay for client 1 
starts to decrease. 
 
A difference in delay time can be seen during time period (4) when both clients 1 and 3 
are sending packets.  At this time, both clients 1 and 3 are non-misbehaving and are of 
different ToS types.  Under this condition, smart queuing selects CQ as the method to 
use.  Since CQ and WFQ are both ToS based, two subqueues are allocated and used, one 
for each ToS type.  This should result in no delay difference between CQ and WFQ.  
However, the graph shows that using smart queuing results in a lesser delay when 
compared to WFQ.  Our explanation to this phenomenon is as follows.  Since smart 
queuing drops incoming packets while in the transition to a different queuing scheme, 
once the new scheme is established, the queue is empty.  So subsequent packets do not 
need to wait for the backlog of previous packets to be sent first, but can themselves be 
sent right away.  So the overall packet delay is of the same slope, but is of lesser value. 
 
Another interesting point to note is the smaller delay experienced by client 1 when using 
FIFO as compared to WFQ.  This can be explained by the fact that WFQ requires more 
computational processing than FIFO.  With WFQ, two subqueues are allocated and 
supported, one for each ToS type.  Packets are directed to their appropriate subqueues 
depending on their ToS.  The decision to select which subqueue to dequeue from depends 
on the weights of each subqueues.  It is much simpler with FIFO, where only one 
subqueue is maintained. 
 
Lastly, during time period (5), both clients 1 and 4 are sending their packets.  Since client 
4 is a misbehaving user of the same ToS type as client 1, smart queuing selects WFQ as 
the method to use.  This justifies the identical delay between smart queuing and WFQ.  In 
the case of similarity between WFQ and FIFO, since both clients 1 and 4 are of the same 
ToS type, packets from both clients are placed in the same subqueue under WFQ.  This is 
identical to the one subqueue in FIFO, so identical delay is expected. 
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Figure 14.  End-to-end delay experienced by client 2 

 
Client 2 is only active for 15 seconds between simulation time 0:30 to 0:45.  During this 
time, both clients 1 and 2 are sending their packets.  Since clients 1 and 2 are both non-
misbehaving and of the same ToS class, smart queuing selects FIFO as the queuing 
scheme.  Therefore, delay times are identical between smart queuing and FIFO.  The 
identical delay between smart queuing and WFQ can be explained using the same 
explanation as for client 1 during time period (2).  In fact, the delay experienced by 
clients 1 and 2 during time period (2) is identical.   
 

 
Figure 15.  End-to-end delay experienced by client 3 

 
From Figure 15, the delay experienced by client 3 is similar to client 1 during time period 
(4) of client 1 (see Figure 13).  Although they are of different ToS, the assigned weights 
are proportional to their send rates.  This results in similar delay for both clients.  With 
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regards to the difference between smart queuing and FIFO only, the same explanation for 
client 1 can be applied. 
 

 
Figure 16.  End-to-end delay experienced by client 4 

 
The delay experienced by client 4 is identical to client 1 during time period (5), and can 
be rationalized using the exact explanation as for client 1. 
 

5 Conclusion 
 
Current network elements only support fixed queuing schemes.  We believed that the 
option to dynamically change among several queuing schemes would allow for better 
performance in terms of a reduction in end-to-end delay for all clients.  So far, we have 
implemented the ability for changing queuing scheme on the fly and have shown that it 
works in OPNET. 
 
Due to time constraints and the fact that this is our alternate project1, we have not yet 
found a scenario that shows smart queuing provides better performance than fixed 
queuing.  Furthermore, we have made many simplifying assumptions in our project.  
Among many of the outstanding issues that should be further considered are: the effect of 
bursty, variable rate and TCP traffic; the effect of active queue management (RED) [2,4]; 
incorporating other queuing schemes, such as VirtualClock [1]; better traffic 
characterization parameters; and better switching conditions (rules, lookup tables, online 
simulation). 
 

                                                 
1 Our original project focused on UMTS (Universal Mobile Telecommunication System), 
but because we do not have access to the UMTS specialized model in OPNET, we 
selected this project instead. 
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The algorithm for smart queuing is also quite complex, and arguably could be 
computationally as expensive as WFQ.  It requires continuous sampling of traffic 
condition as well as switching and synchronization management between different 
queuing mechanisms.  However, smart queuing is not an actual queuing mechanism, 
rather it is more of a control function.  From this point, we could separate the control 
from the actual queuing, allowing smart queuing to be implemented in software and still 
take advantage of the fast switching hardware. 
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