

ENSC 835-3: NETWORK PROTOCOLS AND PERFORMANCE
CMPT 885-3: SPECIAL TOPICS: HIGH-PERFORMANCE NETWORKS

Smart Queuing: An Adaptive Approach

Spring 2002

FINAL PROJECT

Tedi Susanto (tsusanto@cs.sfu.ca)
Jason Sze (jszea@cs.sfu.ca)
www.sfu.ca/~tsusanto/885

www.sfu.ca/~jszea/885

 1

Abstract

Congestion control and Quality of Service (QoS) provision are important issues in
today’s high-speed networks. Packet scheduling can provide users with different QoS as
well as ensure that the network is running efficiently. There are many packet scheduling
or queuing algorithms, each has its own advantages and disadvantages. We investigated
the performance of several different queuing mechanisms (FIFO, PQ, WFQ, CQ) using
OPNET network simulation tool. A simple set of traffic parameters is used to determine
which mechanism will optimize the network performance in terms of delay. From this
characterization, we introduced a smart queuing mechanism, one that adapts to the
current traffic situation by dynamically changing between the different algorithms.

1 Introduction

The explosive growth of the Internet has caused increasing demand on the packet-
switched networks. Among many of the issues that have to be addressed, congestion
control is of primary importance. An optimal congestion control mechanism would
ensure that the network is running at its fullest capacity, efficiently regulate the flow of
traffic, as well as provide the promised Quality of Service (QoS) to its users. This is not
an easy task, especially given the constantly changing and chaotic [6] nature of the
Internet. The existence of multiple users with different QoS and access rates, who are
running different applications, such as email, file transfer, and video conferencing, leads
to one dynamic and complex system. There are three ways to provide QoS and
congestion control [1]:

• end-to-end mechanisms, such as call acceptance control, that operate at the two
ends of a connection,

• edge mechanisms, such as shaping and policing, that operate at user-network
interface, and

• core mechanisms, such as buffering, queue management, and scheduling, that
operate at network switching nodes like routers and switches.

In this project, we investigated several packet scheduling/queuing algorithms that are
widely used in network switching nodes to provide QoS. In addition, these algorithms
also allow for statistically multiplexing packets from various traffic streams, and provide
protection between streams. The three main functions of packet scheduling are to
determine: (1) which packets get transmitted, (2) when these packets get transmitted, and
(3) which packet get discarded in case of buffer overflow [1]. The performance of these
algorithms can be measured using QoS parameters such as throughput, delay, delay jitter,
and loss rate.

The OPNET model library provides several queuing mechanisms that are commonly used
in network routers and switches. These include First In First Out (FIFO), Priority
Queuing (PQ), Weighted Fair Queuing (WFQ), and Custom Queuing (CQ). These
algorithms attempt to strike a balance between complexity and fairness, and there is no

 2

one single standard as to which one is the most optimal. Some manufacturers implement
more than one mechanism [3] to allow network operators to select one that is most
appropriate. However, sometimes selecting which one to use may not be that simple.
Each one has its own benefits and limitations, and the best one can be highly dependent
on the current traffic flow and network condition.

Our project is to simulate a smart queuing algorithm in OPNET. This mechanism will
constantly sample a set of parameters relating to the current traffic condition and switch
to the best algorithm depending on the situation. This adaptive approach ensures that the
routers operate at the optimal point even when the network condition changes.

This report is organized as follow. Section 2 provides background information on the
different queuing algorithms. Section 3 describes the simulation design, and section 4
gives the results and discussion. Conclusion is provided in Section 5.

2 Background

There are many different queuing mechanisms used in IP routers. Some of the most
common types of queuing mechanisms employed are:

i) First-in-first-out (FIFO)
ii) Priority queuing (PQ)
iii) Weighted fair queuing (WFQ)
iv) Custom queuing (CQ)

First-in-first-out (FIFO) is the most simplistic type of queuing and is synonymous to
first-come-first-serve (FCFS). All incoming packets are placed in a single queue and are
served in the same order as they were received. This type of queuing requires very little
computation and its behaviour is very predictable (i.e. packet delay is a direct function of
the size of the FIFO queue). However, due to its simplistic nature, there are many
undesirable properties related to this queuing method. Since all packets are inserted into
the same queue, it is impossible to offer different services for different packet classes.
Also, if an incoming flow suddenly becomes bursty, then it is possible for the entire
buffer space to be filled by this single flow and other flows will not be serviced until the
buffer is emptied. Figure 1 illustrates this mechanism.

 3

Figure 1. FIFO queue [3]

Priority queuing (PQ), as shown in Figure 2, provides a simple way of offering different
services to different classes of packets. Its operation involves classifying each incoming
packet into different priorities and placing them into separate queues accordingly.
Packets of higher priority are transmitted on the output port before lower ones. This is a
great way of providing differentiated service, but it has some shortcomings. An example
is if there is a large continuous flow of high priority traffic into the queue, then low
priority packets will experience excessive delay, and perhaps even to the extent of service
starvation.

Figure 2. Priority queuing [3]

Fair queuing (FQ) is a class of queuing mechanism with the purpose of allowing fair
access for each incoming flow and to prevent a bursty flow from consuming all of the
output bandwidth. FQ contains a queue for each distinct flow and packets from each
flow are inserted into its respective queue. The system then services each queue one
packet at a time in a round-robin fashion. Weighted fair queuing (WFQ) is a variation of
Fair Queuing (FQ) in that it supports flows with different bandwidth requirements. It
does this by assigning each queue with different weights that corresponds to the
proportion of the allocated output bandwidth. In WFQ, as described in [3], each
incoming packet is time stamped with a finish time in addition to being placed into its
corresponding flow queue . Unlike FQ, selection of which packet to be serviced is now

 4

based on this time stamp on each packet. Packets are serviced by examining their finish
times and ones with earlier finish times are transmitted before later ones. It is possible
for a later packet to have a finish time stamp that is smaller than an earlier packet.
Currently, WFQ is only implemented in the software level, so application in high-speed
routers is limited. In addition, depending on the implementation platform, WFQ has been
shown to perform unfairly [5]. Figure 3 illustrates the WFQ mechanism.

Figure 3. WFQ [3]

Lastly, Custom Queuing (CQ) (a.k.a. Class-based Queuing) is designed to address the
limitations present in PQ and WFQ. In CQ, as described in [3], each packet is classified
as belonging to a particular service class and is placed in the queue for that class. Each
service class is assigned a weight that corresponds to the percentage of the output
bandwidth allocated to it. Packets from each queue are transmitted based on the weight
assigned to their queues. One benefit of CQ is that it can be implemented in hardware. It
provides differentiated service, as well as guaranteed output bandwidth for each service
class (even for low-priority traffic). This method is shown in Figure 4.

Figure 4. Custom queuing [3]

 5

3 Simulation Design

3.1 Smart Queuing

The idea behind smart queuing is to take advantage of all the benefits offered by different
queuing mechanisms but at the same time to avoid their limitations. There are cases
where one queuing schemes perform better than others and vice versa. And as the traffic
condition changes, the mechanism that was originally optimal may no longer be the best.
Smart queuing addresses this change in traffic by dynamically switching to the best
queuing at that time. Of course the best could be highly subjective, dependent on the
network operator’s policies and preferences. However, in our project we have adopted
best in terms of network performance such as fairness in accessing the network resources
given that users have different QoS and packet delay.

In this project, the set of parameters that we maintained to characterize the current traffic
pattern are the number of users (source addresses), the Type of Service (ToS) associated
with each packet, and the transfer rates. In our simulation, we have assumed that each
user has only one connection with one ToS and are sending packets at a constant rate.
We use this information together with a set of simple rules to determine which queuing is
the best, in terms of fairness and delay. It should also be noted that the advantages of
smart queuing can only be fully realized when all the routers in the packet path
implement this mechanism.

3.2 Smart Router Implementation

The OPNET model library provides standard router model which can be configured to
use FIFO, PQ, WFQ, and CQ. Within this router is an ip node representing the IP layer
which implements the ip_dispatch process model. This process model implements IP
routing functions, and fragmentation and reassembly. It routes IP packets arriving on any
interface to the appropriate output interface based on their destination address, using
either dynamic routing protocol such as RIP or OSPF, or static routing tables [7]. If the
router is configured to use a queuing scheme, this process spawns a child process
ip_output_iface for each interface that uses a queuing scheme. Note that a router may
use different queuing schemes for different interfaces/ports. The ip_output_iface process
creates a specific queue management structure qm_info which enqueue and dequeue
packets according the queuing mechanism selected by the user. This process also
generates statistics for the interface during simulation. Figure 5 summarizes this
hierarchy as implemented in OPNET.

 6

Figure 5. Supporting QoS in OPNET

 7

In a typical simulation, packets are routed from any input interface to the output interface
by the ip_dispatch process. The ip_output_iface is aware of the outgoing link capacity
and will perform queuing accordingly. For smart queuing, we modified the
ip_output_iface process to include multiple queuing management (qm) structures; that is,
all four schemes are available to be used. In addition, the process also performs the
following functions:

• collecting incoming packet stream statistics,
• performing switching decision,
• buffering packets during transistion of queuing schemes, and
• passing packets to the appropriate queue management structure.

Figure 6 shows a diagram describing this process.

Q0

Qn

Q1
Classifier Scheduler

ip_dispatch

ip_output_iface

qm(selected)
qm(selected)

transmission link

ip_dispatch

qm(FIFO)
qm(FIFO)

transmission link

qm(PQ)
qm(PQ)

qm(WFQ)
qm(WFQ)

qm(CQ)
qm(CQ)

swithing
module

transition
buffer

new ip_output_iface

Figure 6. Smart queuing process flow

The different qm structures are independent and they are not aware of each other. Hence,
a synchronization method is required during switching so that the next queuing method
waits until the current method is finished with packets in its queues, before transmitting
any packets. Thus, a packet counter is associated with each qm to keep track of the
number of packets within the qm. New packets are kept in the transistion buffer until the
current qm is finished; and once this occurs, the contents of the buffer is flushed to the
next qm. As of the writing of this report, we were still unable to correctly implement the

 8

transistion buffer. Instead, in our simulation, we dropped the new incoming packets until
the current qm is completed.

Figure 7. Smart queuing state transistion diagram

Figure 7 shows the resulting state transition diagram of the modified ip_output_iface
process model. In the allocate_buffers(), the 4 qm structures are initialized and
statistic handles are registered. Whenever a RECEIVE_PACKET interrupt is received
(from ip_dispatch), the do_stat() procedure is called, where the swithing module
collects the traffic information and records it to a table (see Table 1).

source_address ToS last_pkt_time allow_rate active misbehave
192.0.0.1 2 30.15 sec 25.0 pkt/s yes no
192.0.0.2 0 12.50 sec 20.0 pkt/s no no

…
Table 1. Sample traffic parameters

If the packet source_address is not in the table, an entry is added. The last_pkt_time is
set to the current simulation time, the allow_rate is fixed according to the ToS, and the
user status is set to active. If the packet source_address is in the table, the transfer rate is

 9

calculated according to
timepktlasttimesimcurrent ____

1
−

. If this value is greater than

allow_rate, the status is set to misbehave and last_pkt_time is updated, otherwise only
the last_pkt_time is updated. Two user-configureable parameters are used to specify the
behaviour of the switching module. The first is activity_timeout, which specify the
duration that must elapse before a user is considered inactive. Thus, for each user, if the
value (current_sim_time–last_pkt_time) is greater that activity_timeout, that user is set to
be inactive. The second parameter is switching_sensitivity, which will be described next.

From the above table, the swithing module then determine which queuing to use by
considering all active users and according to the following rules:

• If there is a misbehaving user, use WFQ
• Else if there is more than one ToS, use CQ
• Else use FIFO

These rules were selected primarily for validating our model. Within OPNET, WFQ and
CQ implementation are very similar [7], both provide differentiated service using weights
and byte count respectively. Therefore, these rules essentially dictates that if there is no
need for differentiated service, use FIFO to take advantage of lower queuing overhead
and faster processing time.

If the current queuing is different from what is recommended according to the rules, we
have to switch. In order not to switch whenever there is a slight change in traffic
condition, the switching_sensitivity packet counter is used. As an example, say we are
currently using FIFO because there are two well-behaving users at ToS 2. Then a routing
information packet is sent to neighbouring routers using ToS 0 periodically. This will
trigger a switch that is unnecessary. The switching_sensitivity is used to avoid this by
resisting the switch for a certain number of packets. For example, if it is set to 20, then
there must be a total of 20 incoming packets that continuously cause a switch
recommendation before actual switching is carried out. This value is related to
activity_timeout, since the total time taken to process this number of packets should be
greater than activity_timeout, to prevent switching caused by periodic packets.

We have also modified the enqueue_packet() and the extract_and_send()
procedures so that packets are enqueued to and dequeued from the appropriate qm. In
addition, the QoS Configuration Object is updated to include the modified
qos_attribute_definer process model. This allows user to configure the smart queuing
parameters from the project workspace, as shown in Figure 8.

 10

Figure 8. User-configurable parameters for smart queuing

3.3 Network Topology and Simulation Settings

In creating our network for simulation, we used standard OPNET objects from the
Internet Toolbox pallete. Figure 9 shows the topology created for the simulation. Four
Ethernet workstations are the source of our IP traffic. These are connected to a switch,
which is then connected to an IP router via 100baseT connections. The destination of our
traffic are four servers that are connected, via 100baseT, to a different router on the other
side of the network. A bottleneck is created between the two routers using 56 kbps link
in order to simulate congestion.

 11

Figure 9. Network topology

There are two main types of protocol associated with IP networks: TCP (Transmission
Control Protocol) and UDP (User Data Protocol). To simplify our simulation, we have
used constant bit rate (CBR) UDP traffic. These were generated using standard OPNET
video conferencing application. The packet size is selected to be 165 bytes, resulting in
line capacity of approximately 40 pkt/s when using 56 kbps link. In order to simulate
different traffic conditions, the four clients are active at different times. Table 2
summarizes the behaviours of the four clients.

 Traffic Rates (pkt/s) ToS Start Time (sec) Finish Time (sec)
Client_1 25 2 15 120
Client_2 25 2 30 45
Client_3 20 0 60 75
Client_4 30 2 90 105

Table 2. Network clients simulation settings

The classification scheme is set to ToS Based, and we have set the allowable rates for
ToS 0 and 2 to be 22 pkt/s and 27 pkt/s respectively. Thus Client_4 traffic will be

 12

considered to be non-conforming. Figure 10 shows the graph of traffic sent by the four
clients. Using smart queuing and the described switching rules for this scenario, we
expect that FIFO would be used when Client_2 is active, CQ would be used when
Client_3 is active, and WFQ would be used when Client_4 is active. Both the weights
and byte count for WFQ and CQ profiles are set to 20 and 25 for ToS 0 and ToS 2
respectively.

Figure 10. Clients packet send rates

The activity_timeout is set to 0.1 seconds, as this value should be larger than the packet
interarrival time of the slowest sender, ie. larger than 0.05 seconds. The
switching_sensitivity is set to 20 packets. This value can be approximated by calculating
the total number packets received during a timeout period, ie. according to

101.0254_____ =××=×× timeoutactivityratessendaverageusersofnumber packets. As a
comparison, we also run this simulation independently using only FIFO queuing and only
WFQ queuing. However, we will not attempt to provide quantitative comparison
between smart queuing and these methods as the transition buffer is yet to be
implemented.

4 Discussion

4.1 Model Verification

We will begin by showing that our implementation of smart queuing is in working order.
Below is a graph of the “packet send rate” for the 3 queuing mechanisms that smart
queuing used while running the experimental setup as described in section 3.3.

 13

Figure 11. Packet sent rate of the 3 queuing mechanisms (FIFO, CQ, WFQ) smart

queuing used inside router A.

(1) At first, smart queuing starts with WFQ as the method to use. Initially, packets
are sent among the various elements in the network (routers, switches, clients) to
establish connection. These handshaking packets are received by router A and
are handled using WFQ as anticipated.

(2) After handshaking is done, router A begins receiving packets containing actual

data from client 1. Smart queue samples the incoming packets to determine if a
change in queuing method is necessary. WFQ is still used by smart queue even
though it observes that there is only one non-misbehaving client present and FIFO
should be used instead. This is due to the resistance as defined by the
switching_sensitivity parameter, and smart queuing switches to using FIFO only
after 20 packets have gone by.

(3) All incoming packets from client 1 are handled using FIFO. This can be verified

by noticing that the packet sent rate by FIFO plateaus at 25 packets/second, which
is equal to the rate at which packets are generated by client 1.

1

2

3
4 5

6

7

8

9

 14

(4) Client 2 begins sending packets into the network. Since client 2 is of the same
ToS as client 1 and is also non-misbehaving, smart queuing decides that we
should keep using FIFO.

(5) At this point, client 2 stops sending packets, but there are still outstanding packets

left in the buffer, so FIFO is still sending at the maximum rate. Client 3 then
begins sending packets. Client 3 is also non-misbehaving, but has a different ToS
than client 1. Under this condition, smart queuing decides that we should switch
to using CQ. Under CQ, a separate subqueue is created for each distinct ToS.
Therefore, packets belonging to client 1 (higher ToS) are inserted and sent from
subqueue Q2, and packets belonging to client 3 (lower ToS) are inserted and sent
from subqueue Q0.

(6) Client 3 has stopped sending packets and all its outstanding packets have been

sent. Under this condition, only client 1 is still active and smart queuing dictates
that we should change back to FIFO. Before we can do so however, there are still
outstanding packets from client 1 under CQ that has not been cleared. Since there
are no more client 3 packets that needs to be send, all of the output stream can be
given to client 1’s packets, so the sent rate of client 1’s subqueue increases,
causing the peak as shown.

(7) Only client 1 is active, so smart queuing switches back to FIFO.

(8) Client 4 begins sending packets into the network. Since client 4 is misbehaving,

smart queue dictates that WFQ should be used. Both client 1 and client 4 have
the same ToS, therefore, their packets are handled by the same subqueue.

(9) Client 4 stops sending packets. Now, only non-misbehaving client 1 remains, and

smart queuing selects FIFO again.

Due to the fact that we were unable to successfully implement a transition buffer to hold
incoming packets during switching between different queuing mechanisms, we were
forced to drop incoming packets. For all queuing mechanisms that use multiple
subqueues, all forced packet drop statistics are associated with subqueue Q0. From the
graph below (Figure 12), one can see packet drop occurred at the same instance as when
we switched among various queuing schemes (Figure 11).

 15

Figure 12. Packet dropped rate experienced by various queues during simulation.

 16

4.2 Client End-to-End Delay

Figure 13 below is a graph showing the end-to-end delay experienced by client 1 of our
network.

Figure 13. End-to-end delay experienced by client 1

In the above graph, the curve described by the red dots is the end-to-end delay
experienced by client 1 while using only WFQ for the entire duration of the simulation.
The curve described by the blue dots is the end-to-end delay experienced by client 1
while using our smart/adaptive queuing approach. The curve described by the green dots
(overlaid by the blue curve) is the end-to-end delay while using only FIFO.

It is of interest to note that the end-to-end delay experienced by client 1 is identical
whether router A is using either FIFO only, WFQ only, or smart queuing only, except
during the time when client 1 and client 3 are active. The reason for this similarity can
be explained as follows:

During time period (1), only client 1 is sending packets. Under smart queuing, router A
selects FIFO queuing scheme. So the delay between smart queuing and FIFO should be
the same (as illustrated in Figure 13). In terms of WFQ, there is only one client with only

1

2

3

4

5

 17

one type of ToS active in the network at this particular time. So under ToS based WFQ,
only one subqueue is initiated and established to handle the queuing of incoming packets.
This is identical to the FIFO case, so the delay experienced should be the same.

During time period (2), both clients 1 and 2 are sending packets. Since both clients 1 and
2 are non-misbehaving and of the same ToS type, smart queuing also selects FIFO as the
queuing method of choice. Therefore, the delay between smart queuing and FIFO should
be the same. Similarly with WFQ, there are only packets of one ToS type, so packets
from both client 1 and 2 are inserted into the same subqueue. Therefore, the delay should
be identical to FIFO. The introduction of client 2’s packets now competes with the
packets of client 1 for bandwidth on the output stream, so the delay experienced by client
1 increases until client 2 no longer sends packets (3), at which point the delay for client 1
starts to decrease.

A difference in delay time can be seen during time period (4) when both clients 1 and 3
are sending packets. At this time, both clients 1 and 3 are non-misbehaving and are of
different ToS types. Under this condition, smart queuing selects CQ as the method to
use. Since CQ and WFQ are both ToS based, two subqueues are allocated and used, one
for each ToS type. This should result in no delay difference between CQ and WFQ.
However, the graph shows that using smart queuing results in a lesser delay when
compared to WFQ. Our explanation to this phenomenon is as follows. Since smart
queuing drops incoming packets while in the transition to a different queuing scheme,
once the new scheme is established, the queue is empty. So subsequent packets do not
need to wait for the backlog of previous packets to be sent first, but can themselves be
sent right away. So the overall packet delay is of the same slope, but is of lesser value.

Another interesting point to note is the smaller delay experienced by client 1 when using
FIFO as compared to WFQ. This can be explained by the fact that WFQ requires more
computational processing than FIFO. With WFQ, two subqueues are allocated and
supported, one for each ToS type. Packets are directed to their appropriate subqueues
depending on their ToS. The decision to select which subqueue to dequeue from depends
on the weights of each subqueues. It is much simpler with FIFO, where only one
subqueue is maintained.

Lastly, during time period (5), both clients 1 and 4 are sending their packets. Since client
4 is a misbehaving user of the same ToS type as client 1, smart queuing selects WFQ as
the method to use. This justifies the identical delay between smart queuing and WFQ. In
the case of similarity between WFQ and FIFO, since both clients 1 and 4 are of the same
ToS type, packets from both clients are placed in the same subqueue under WFQ. This is
identical to the one subqueue in FIFO, so identical delay is expected.

 18

Figure 14. End-to-end delay experienced by client 2

Client 2 is only active for 15 seconds between simulation time 0:30 to 0:45. During this
time, both clients 1 and 2 are sending their packets. Since clients 1 and 2 are both non-
misbehaving and of the same ToS class, smart queuing selects FIFO as the queuing
scheme. Therefore, delay times are identical between smart queuing and FIFO. The
identical delay between smart queuing and WFQ can be explained using the same
explanation as for client 1 during time period (2). In fact, the delay experienced by
clients 1 and 2 during time period (2) is identical.

Figure 15. End-to-end delay experienced by client 3

From Figure 15, the delay experienced by client 3 is similar to client 1 during time period
(4) of client 1 (see Figure 13). Although they are of different ToS, the assigned weights
are proportional to their send rates. This results in similar delay for both clients. With

 19

regards to the difference between smart queuing and FIFO only, the same explanation for
client 1 can be applied.

Figure 16. End-to-end delay experienced by client 4

The delay experienced by client 4 is identical to client 1 during time period (5), and can
be rationalized using the exact explanation as for client 1.

5 Conclusion

Current network elements only support fixed queuing schemes. We believed that the
option to dynamically change among several queuing schemes would allow for better
performance in terms of a reduction in end-to-end delay for all clients. So far, we have
implemented the ability for changing queuing scheme on the fly and have shown that it
works in OPNET.

Due to time constraints and the fact that this is our alternate project1, we have not yet
found a scenario that shows smart queuing provides better performance than fixed
queuing. Furthermore, we have made many simplifying assumptions in our project.
Among many of the outstanding issues that should be further considered are: the effect of
bursty, variable rate and TCP traffic; the effect of active queue management (RED) [2,4];
incorporating other queuing schemes, such as VirtualClock [1]; better traffic
characterization parameters; and better switching conditions (rules, lookup tables, online
simulation).

1 Our original project focused on UMTS (Universal Mobile Telecommunication System),
but because we do not have access to the UMTS specialized model in OPNET, we
selected this project instead.

 20

The algorithm for smart queuing is also quite complex, and arguably could be
computationally as expensive as WFQ. It requires continuous sampling of traffic
condition as well as switching and synchronization management between different
queuing mechanisms. However, smart queuing is not an actual queuing mechanism,
rather it is more of a control function. From this point, we could separate the control
from the actual queuing, allowing smart queuing to be implemented in software and still
take advantage of the fast switching hardware.

6 References

[1] N. Alborz and L. Trajkovic, “Implementation of VirtualClock Scheduling

Algorithm in OPNET”, Proceedings of OPNETWORK 2001, Washington DC, Aug.
2001.

[2] Chengyu Zhu, Oliver W.W.Yang, James Aweya, Michel Ouellette, and Delfin Y.

Montuno, “A Comparison of Active Queue Management Algorithms Using OPNET
Modeler”, Proceedings of OPNETWORK 2001, Washington DC, Aug. 2001.

[3] Chuck Semeria, “Supporting Differentiated Service Classes: Queue Scheduling

Disciplines”, White Paper, Juniper Networks.
www.juniper.net/techcenter/techpapers/200020.html

[4] Costin Iancu, Anurag Acharya, “A Comparison of Feedback Based and Fair

Queuing Mechanisms for Handling Unresponsive Traffic”, Proceedings of ISCC’
2001 - Sixth IEEE Symposium on Computers and Communications, Hammamet,
Tunisia, July 3-5, 2001.

[5] Goncalo Quadros, Antonio Alves, Edmundo Monteiro, Fernando Boavaida, “How

Unfair Can Weighted Fair Queuing Be?”, Proceedings of ISCC’2000 – Fifth IEEE
Symposium on Computers and Communications, Antibes, France, July 4-6, 2000.

[6] A. Veres and M. Boda, "The chaotic nature of TCP congestion control,"

Proceedings of IEEE INFOCOM, pp. 1715-1723, TelAviv, Israel, 2000.

[7] OPNET Technologies, Inc., Washington DC, OPNET documentation V.8.0.C.

