ENSC 835: HIGH PERFORMANCE NETWORKS CMPT 885: SPECIAL TOPICS: HIGH PERFORMANCE NETWORKS

FINAL PROJECT PRESENTATION SPRING 2006

COMPARATIVE ANALYSIS OF WIRELESS ROUTING PROTOCOLS USING NS-2

> Edward Chen (ekchen@sfu.ca) Colin Ng (cnge@sfu.ca) http://www.sfu.ca/~ekchen

Presentation Overview

- Introduction
 - Motivation
 - **Routing Protocol Overview**
- Project OverviewProcess Flow
- Project Simulation
 Simulation parameters
 Simulation metrics
- Analysis
 - **Comparative Analysis**
 - Individual Analysis
- **Conclusion/Questions**

Introduction

- Traditional Centralized Topology
 - Advantages:
 - Simplistic
 - Secure
 - Disadvantages:
 - Scalability
 - Fault-tolerance

Introduction

Distributed Topology

- Lack of central server for storage/routing
- Each node is both a server and a client
- Messages routed by intermediary nodes

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University – Slide 4/26

Introduction

Routing extremely important

Many types depending on user criteria

- Simplicity, low overhead, minimize dropped packet ... etc
- AODV, DSDV and DSR

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University – Slide 5/26

Protocols Overview - DSDV

Destination-Sequenced Distance Vector Routing

- Extension of Bellman-Ford (shortest path between two points)
- Routing table list all available destinations, hops and sequence numbers
- Seq. # avoids loops
- Node periodically send out routing tables

Protocols Overview - DSR

Dynamic Source Routing

- Complete hop-by-hop route to destination
- Multiple routes for each destination
- Aggressive use of south to node B.
 Does route to node B exist in cache? Ind route caching
- Route-discovery ind route-maintenance
 Initiate route-request packet.
 Send packet via existing route
 Send packet via existing route
 No
 Create error message and propagate to nodes that have used this route previously.
 No
 Has reply been returned from node being requested to?
 YES
 (Insert route into cache.)

Send packet via new route.

Protocols Overview - AODV

Ad-Hoc On-Demand Distance Vector Routing

- Combination of DSR and DS Is existing route's sequence number equal or higher than existing sequence number?
- DSDV → Next-hop routing table
- DSR → On-demand route discovery

Protocols Overview - Summary

	DSDV	AODV	DSR
Node Overhead	Medium	Medium	High
Network Overhead	High	Medium	Low
Route Mechanism	Route Table with next hop	Route Table with next hop	Complete routes cached
Route Discovery	Periodic	On-Demand	On-Demand

Project Overview

Implemented in ns-2

- Simulation of Wireless Distributed System (WDS)
- Wireless package developed by CMU

Variables

- Routing Protocols x 3
- Number of Nodes x 3
- Pause time (mobility) x 3

Initially wanted to simulate larger network \rightarrow > 1000 nodes

- •27 trace files \rightarrow > 1.5 Gb
- •Processed with Pentium IV 2 GHz \rightarrow > 72 hours
- •Memory issue \rightarrow aborted prematurely

Project Overview

State	Purpose of State
Trace-file generation	To generate trace-file
Splitting trace- file	To divide the trace-file into smaller pieces
Processing split trace-file	To process each individual trace- file piece
Combining processed data	To combine the processed data of each trace-file piece
Graphing data	To graph processed data

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University – Slide 11/26

Project Simulation

Variable Parameters

	Number of Nodes	Pause Time (sec)
AODV	20, 60, 100	1, 50, 100
DSDV	20, 60, 100	1, 50, 100
DSR	20, 60, 100	1, 50, 100

Fixed Parameters

General Topology		
X-Boundary	1000 meters	
Y-Boundary	1000 meters	
Simulation Time	150 seconds	
Node Movement		
Maximum Speed	5 m/s	
Traffic Generation		
Traffic Type	Constant Bit Rate (CBR)	
Maximum Connections	¹ / ₂ of number of nodes	
Rate	5 kbps	

Project Simulation - Metrics

Application Load

 The total number of sent messages and forwarded messages (application-related)

Dropped Load

The total number of dropped messages (application-related)

Received Load

The total number of received messages (application-related)

Routing Load

 The total number of sent messages and forwarded messages (routing-related)

Analysis – Application Load

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University – Slide 14/26

Analysis – Dropped Load

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University – Slide 15/26

Analysis – Routing Load

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University – Slide 16/26

Analysis – Received Load

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University – Slide 17/26

Analysis - DSR

Routing Load

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University - Slide 18/26

Analysis - DSDV

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University – Slide 19/26

Analysis - AODV

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University – Slide 20/26

Analysis – Throughput

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University – Slide 21/26

Analysis – End-To-End Delay

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University – Slide 22/26

Summary

Motivation

- Decentralized framework is better than a centralized framework
- Efficient routing is required
- Compared AODV, DSDV, DSR in ns-2

Simulation parameters

Varying nodes, pause time, and routing protocols

Performance metrics

Application load, dropped load, received load, routing load

Summary

- Best Case / Worst Case:
 - Application load
 - Dropped load
 - Routing load

	Hligh (N))	Low (N)
High (P)	AGBV// DSR	ABB¥ / DSR
L&W (P)	BQD y// DSR	ð§∄V / DSR

References

[1]	Agent Develop	ment Kit, http://	www.madkit.org/
L J	0 1	ý 1	U

- [2] E. Cortese, F. Ouarta, and G. Vitaglione, "Scalability and Performance of the JADE Message Transport System," Proc. Of the AAMAS Workshop on AgentCities, Bologna, Italy, July 2002
- [3] S.I. Kumaran, JINI Technology, An Overview, Upper Saddle River, NJ, USA, 2002
- [4] J. F. Kurose and K. W. Ross, Computer Networking, AW Education Group, USA, 2002.
- [5] E. Chen, D. Sabaz, and W.A. Gruver, "JADE and wireless distributed environments," IEEE International Conference on Systems, Man, and Cybernetics, The Hague, Netherlands, 2004.
- [6] E. Chen, Jade and JXTA Extensions for Implementing a Better Distributed Systen, Master's Thesis, School of Engineering Science, Simon Fraser University, Canada, 2005
- [7] AODV, http://moment.cs.ucsb.edu/AODV/aodv.html, accessed March, 2006
- [8] DSDV, http://www.cs.virginia.edu/~c17v/cs851-papers/dsdv-sigcomm94.pdf, accessed March, 2006
- [9] DSR, http://www.cs.cmu.edu/~dmaltz/internet-drafts/draft-ietf-manet-dsr-09.txt, accessed March, 2006
- [10] New Wireless Trace-File Format, http://k-lug.org/~griswold/NS2/ns2-traceformats.html#wireless:new, accessed March 2006
- [11] The Network Simulator ns-2: Documentation, http://www.isi.edu/nsnam/ns/nsdocumentation.html, accessed April 2006

Q&A?

Comparative Analysis of AODV, DSDV and DSR using ns-2 School of Engineering Science - Simon Fraser University – Slide 26/26