Online Interactive Game Traffic: A Survey & Performance Analysis on 802.11 Network

> ENSC 835 Course Project Spring 2006 April 13, 2006

Presented by: Susan Chiu

Professor : Ljiljana Trajković

Roadmap

- Introduction
- Interactive Game Traffic Models
- Simulation Setup
- Simulation Results
- Conclusion & Future Improvements

Introduction

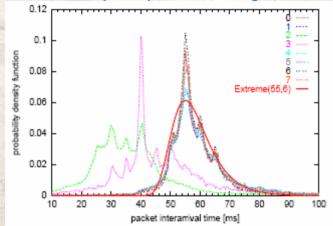
Motivations

- 3~4% of Internet traffic are game traffic¹
- Few attentions paid to game traffic QoS
- Especially interesting to see performance over WLAN
- Scope
 - Studies on 3 types of game traffic characteristics
 - Simulation
 - only on one type of the traffic

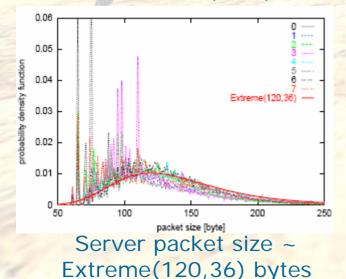
¹ S. McCreary and K. Claffy, "Trends in Wide Area IP Traffic Patterns: A View from Ames Internet Exchange", 13th ITC Specialist Seminar on Measurement and Modeling of IP Traffic, Sept 2000, pp. 1-11.

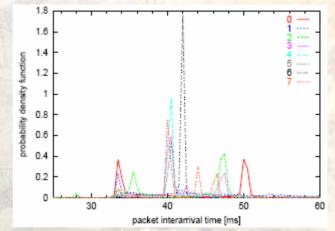
First Person Shooting

Description

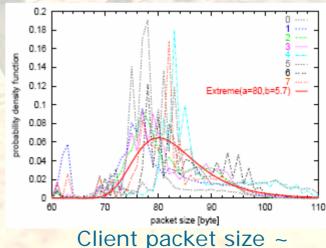

- Participants equipped with guns and play back-to-back rounds of shooting
- Goal: Defeat other players and/or teams
- Example: Counter Strike
- Architecture: Client-server application

Traffic Characteristics


- Bursty server traffic to update status of all clients (ie. periodic burst of small UDP packets)
- Clients synchronize server game state with their local state (almost constant packet interarrival time)
- Model Proposed by Färber²


Counter Strike: Traffic Model

• Model proposed by Färber:



Server per client packet interarrival time ~ Extreme(55,6) ms

Client packet interarrival time ~ Deterministic(40) ms

Extreme(80,5.7) bytes

Real-time Strategy

Description

- Players build troops and attack other troops
- Goal: Defeat the opponent allies
- Example: Starcraft
- Architecture: Synchronous Peer-to-Peer
- Traffic Characteristic
 - TCP packets setup the connection among participants for the session
 - UDP packets exchange between peers to update each other's status

Starcraft: Traffic Summary

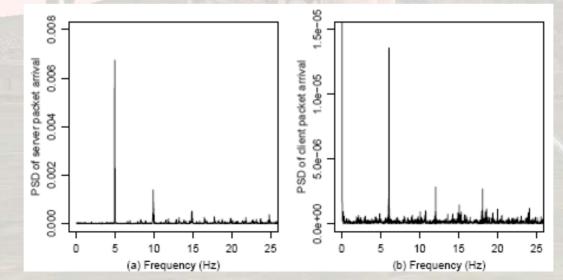
3

45/55

IAT (sec)	Exponential (µ=0.043633)
Interarrival Time	
IDT (sec)	Deterministic (0), for $p = 66.2\%$
Inter-departure Time	Uniform (a= 0.05 , b= 0.17), for p = 27.8%
	Deterministic (0.21), for $p = 6\%$
PSI (byte)	Deterministic (16), for $p = 3.2\%$
Packet size – input	Deterministic (17), for $p = 10.8\%$
	Deterministic (23), for $p = 72.4\%$
	Deterministic (27), for $p = 6.2\%$
- THAN A	Deterministic (33), for $p = 7.4\%$
PSO (byte)	Deterministic (16), for $p = 6.2\%$
Packet size – output	Deterministic (17), for $p = 10.9\%$
	Deterministic (23), for $p = 74.2\%$
	Deterministic (27), for p = 8.7%

³ A. Dainotti, A. Pescapé, and G. Ventre, "A packet-level Traffic Model of Starcraft", *2nd International Workshop on Hot Topics in Peer-to-Peer Systems*, July 2005, pp. 33-42.

Massive Multiplayer Online Role Playing Game (MMROPG)


Description

- Thousands of participants create roles to join one huge game map, and defeat AI monsters
- Goal: In general, advance to higher level
- Example: ShenZhou Online
- Architecture: Client-server(cluster)
- Traffic Characteristics⁴
 - TCP traffic in most of Asian MMROPG
 - 98% of client payload are \leq 31 bytes
 - Headers takes up 73% of the transmission, and TCP acknowledgement take up 30%

⁴ G. Huang, M. Ye, L. Cheng, "Modeling System Performance in MMORPG", *Globecom Workshop on Global Telecommunications Conference*, Nov-Dec 2004, pp. 512-518

Massive Multiplayer Online Role Playing Game (MMROPG)

- Traffic Characteristics (ShenZhou Online) cont'd⁴
 - Both client/server traffics are highly periodic
 - Server refresh nearby object within certain metrics in multiples of 5Hz
 - Client sends action command with multiples of 6Hz according to skill type or level

Simulation Topology & Parameter Setup

Traffic model chosen: Counter Strike
3 Scenarios – 3, 5 & 8 playing hosts

0	50	100	150	200	250	300	350	400	450
50									
100								ho	ost_3
150									
200									
250				hos	t_2				
300									
350									
100									
150	hos	t_1		AP br	<u> </u>	tination			

Destination Address	100
-Wireless LAN MAC Address	1
🔝 Wireless LAN Parameters	()
BSS Identifier	0
Access Point Functionality	Disabled
Physical Characteristics	Extended Rate PHY (802.11g)
– Data Rate (bps)	54 Mbps
▶ PCF Parameters	Disabled
-Roaming Capability	Disabled

Key Parameter Settings

Network Topology

Simulation Results: 3 hosts

Statistics	Host 1 150m left	Host 2 200m above	Host 3 403m top-right	
End-to-end Delay (ms)	0.22	0.22	3.40	
Traffic Received (pkt/s)	1/1		7.1	
Throughput (kbps)	19.1	19.0	7.3	
Packet Drop (pkt/s)	0	Ο	10.3	
Retransmission Attempt (pkt)	0.168	0.168	2957	

Simulation Results: 3-Hosts Discussion

- Ete-delay is ~0.2ms at Host 1 and 2
- Host 3
 - Ete-delay increases 17 times
 - traffic received degrades ~60%
 - Packet drop observed
 - Retransmission attempts are significantly higher

Conclusion

 The network is able to handle the traffic, but the distance from a host to the AP is the major factor.

Simulation Results: 5 hosts

Statistics	Host 1	Host 2	Host 3	Host 4	Host 5
Statistics	150m	200m	224m	291m	425m
End-to-end Delay (ms)	1.09	1.11	1.10	1.12	4.96
Traffic Received (pkt/s)	16.7	16.6	16.6	16.6	0.767
Throughput (kbps)	18.7	18.7	18.6	18.6	0.719
Packet Drop (pkt/s)	0	0	0	0	21.3
Retransmission Attempt (pkt)	0.192	0.194	0.194	6.14	4455

Simulation Results: 5-Hosts Discussion

- Ete-delay is more than 1ms for Host 1~4
- Host 4
 - Observable retransmission attempts
- Host 5
 - ~4.5 times of increase in ete-delay
 - ~95% of degrade in traffic reception
 - Much higher packet drop and retransmission
- Conclusion
 - Distance to the AP is still the major factor of performance
 - Increase in load is observed from network
 performance (increase in ete-delay)

Simulation Results: 3,5 and 8 hosts

1	150m	200m	291m	304m	403m	425m
	0.22	0.22			3.40	
End-to-end Delay (ms)	1.09	1.11	1.12			4.96
	2.59	2.62	2.62	2.66	6.04	6.44
	17.1	17.0			7.1	
Traffic Received (pkt/s)	16.7	16.6	16.6			0.767
(p((/3)	13.9	13.7	13.7	13.7	5.81	0.658
	19.1	19.0			7.3	
Throughput (kbps)	18.7	18.7	18.6			0.719
(Kops)	15.5	15.4	15.5	15.4	5. 99	0.607
	0	0			10.3	
Packet Drop (pkt/s)	0	0	0			21.3
(picti 3)	0	0	0	0	10.3	21.3
	0.168	0.168			2957	
Retransmission Attempt (pkt)	0.192	0.194	6.14			4455
	0.374	1.36	7.07	20.9	2980	4455

Simulation Results: 3,5 and 8-Hosts Discussion

• 8-Hosts Scenario:

- 8-hosts scenario exhibits general behaviours, distance to AP still a major factor
- Hosts within 300m range to the AP still has an acceptable ete-delay but performance degrades as the host is further
- Hosts beyond 400m almost don't get through the network at all

Across Scenarios:

- Ete-delay increased almost 13 times from 3 to 8-hosts simulation
- Increased in retransmissions infers more collisions as number of hosts increased

Conclusion

- The performance of WLAN is mostly affected by the distance to the AP.
- The network performance definitely degrade as the number of active hosts increased.
- Inferring from ete-delay, 802.11g is capable of handling Counter Strike traffic.
- OPNET simulates a very stable wireless transmission medium within the working range (ie. 300m)
- Wireless is much less stable in real life due to interference and obstacle diffraction

Conclusion (cont'd)

- Delay in this project encapsulates only up to MAC layer. More delays are expected at application layer.
- Future Improvements
 - Evaluation up to transport or application layer
 - Packet error generator to simulate the unstable wireless medium
 - More sophisticated traffic model or tracedriven simulation

Reference

- [1] S. McCreary, and K. Claffy, "Trends in wide area IP traffic patterns: a view from Ames Internet Exchange," *Proceedings of 13th ITC Specialist Seminar on Measurement and Modeling of IP Traffic,* Sept. 2000, pp. 1-11.
- [2] J. Färber, "Network game traffic modelling," *Proceedings of the 1st Workshop on Network and System Support for Games*, ACM Press, 2002, pp. 53-57.
- [3] W. C. Feng, F. Chang, W. C. Feng, and J. Walpole, "A traffic characterization of popular on-line games," *IEEE/ACM Transactions on Networking*, Vol. 13, No. 3, pp. 488-500, June 2005.
- [4] A. Dainotti, A. Pescapé, and G. Ventre, "A packet-level traffic model of Starcraft," *Proceedings of the 2nd International Workshop on Hot Topics in Peer-to-Peer Systems*, July 2005, pp. 33-42.
- [5] G. Huang, M. Ye, L. Cheng, "Modeling system performance in MMORPG," *Globecom Workshops on Global Telecommunications Conference*, Nov-Dec 2004, pp. 512-518.
- [6] K. T. Chen, P. Huang, C. Y. Huang, C. L. Lei, "Game traffic analysis: an MMORPG perspective," *Proceedings of the International Workshop on Network and Operating Systems Support for Digital Audio and Video*, 2005, pp. 19-24.
- [7] OPNET Technologies, Inc., *Wireless LAN Model User Guide*, OPNET Documentation 11.0.
- [8] OPNET Technologies, Inc., *Discrete Event Simulation API Reference Manual: Distribution Package*, OPNET Documentation 11.0.