ENSC 835: High-Performance Networks Spring 2008

Implementation of a Multi-Channel Multi-Interface Ad-Hoc Wireless Network

Chih-Hao Howard Chang

howardc@sfu.ca

Final Project Demo
School of Engineering Science Simon Fraser University

Roadmap

- Project Description
- Modified MobileNode in ns-2
- AODV Routing in ns-2
- Modified AODV with Interface Switching Capability
- Simulation

Configuration
Interface Switching
Sample ns-2 Output
Average Throughputs
Observations

Project Description

- Extend the Network Simulator (ns-2.32) to support multiple channels and multiple interfaces by referring to [1]
modify ns-2's MobileNode library to support multiple interfaces
preserve the legacy operations of IEEE 802.11 interfaces
- Implement the interface switching protocol proposed in [2]
integrate this algorithm in the existing AODV routing agent in ns-2
- Simulate a multi-channel multi-interface ad-hoc wireless network (in chain topologies) using the modified ns-2
demonstrate the effectiveness of interface switching and the improvement in the network throughput
[2] P. Kyasanur and N. H. Vaidya, "Routing and Link-layer Protocols for Multi-Channel MultiInterface Ad Hoc Wireless Networks," SIGMOBILE Mobile Computing and Communications Review, vol. 10, no. 1, pp. 31-43, Jan. 2006.

Modified MobileNode in ns-2

- Each node can have as many instances of the link layer, ARP, interface queue, MAC, network interface and channel entities as the number of interfaces

AODV Routing in ns-2

- Route establishment:
source node broadcasts a RREQ to find a route to destination node
each node receiving the RREQ forwards to the next node
a route is determined when the RREQ reaches a node that offers accessibility to destination node
o the route is established by sending a RREP back to source node

Modified AODV with Interface Switching Capability

- command()
initially, the node chooses a random channel for its fixed interface and switchable interface
add the fixed channel used by this node to its NeighbourTable
update the node's ChannelUsageList with its fixed channel
- sendRequest(), sendReply(), sendHello()
add the fixed channel used by this node and its NeighbourTable to the outgoing RREQ, RREP, or Hello packet
- recvRequest(), recvReply(), recvHello()
when the node receives a RREQ, RREP, or Hello packet from a neighbour, it updates:
- the node's NeighbourTable with the fixed channel of that neighbour
- the node's ChannelUsageList using the NeighbourTable of its neighbour.

Modified AODV with Interface Switching Capability

- forward()

RREQ or RREP:
add the fixed channel used by this node and its NeighbourTable to the outgoing packet
data:

- consult the node's ChannelUsageList, find the channel with the largest usage
- if the node's fixed channel has the largest usage:
- with a probability of 0.4 (from paper [2]), the node:
- reverses its ChannelUsageList about the fixed channel previously used
- changes its fixed channel to a less used channel
- transmits a new Hello packet informing neighbours of its new fixed channel \rightarrow sendHello()
- if the usage of the node's fixed channel is ok:
- look up the fixed channel of the next node in NeighbourTable
- assign this fixed channel to the node's switchable interface

Simulation: Configuration

- Using the modified ns-2.32:
test the effectiveness of interface switching and throughput in multi-channel and multi-interface ad-hoc wireless networks

- Scenarios:
simple chain topologies of 2-11 stationary nodes (single route)
2-4 channels per node
2 interfaces per node (1 fixed, 1 switchable)
simulation duration: 60 s (actual simulation time is slightly longer)
channel capacity: 5.4 Mbps
constant bit-rate (CBR) traffic flow from Node 0 to Node N-1
- transmitted over UDP (no flow and congestion controls)
- 1000 bytes per packet, sent every 1.4 ms

Simulation: Interface Switching

Example: 4 nodes, 3 channels [0, 1, 2], 2 interfaces [0, 1]

- NT[n] is the fixed channel used by node n
- CUL[c] is the number of nodes using c as their fixed channel
- Fixed Channel (FC)
- Switchable Channel (SC)

Simulation: Sample ns-2 Output

- 4 nodes, 3 Channels, 2 interfaces:

CBR traffic from Node 0 to Node 3
Average throughput is 2586.36 kbps

Simulation: Sample nam Output

- Network Animator (nam) in ns-2.32:
only nodes can currently be seen
dumping of traffic data and thus visualization of data packet movements for wireless scenarios is still not supported
- The following is a chain topology with 4 wireless nodes:

Simulation: Results

- Average throughputs while varying the number of channels, $\mathrm{n} \rightarrow \mathrm{nC} 2 \mathrm{l}$ vs. 1C1I

Simulation: Observations

- The throughput of 1C1I networks degrades as the number of nodes increases by 1 each time
intermediate nodes cannot send and receive data at the same time
interference within the carrier sense range
- Higher throughput with multiple channels and 2 interfaces on each node
interface switching assigns the fixed channel of successive nodes to different channels
\bigcirc intermediate nodes can send data to the next node using its switchable interface, while receiving data on its fixed interface
- Smaller throughput improvement when the number of nodes $>$ number of channels +1
some nodes will be on some common channels \rightarrow interference
however, generally still higher than the case of 1C1I

Questions?

Thank you!

