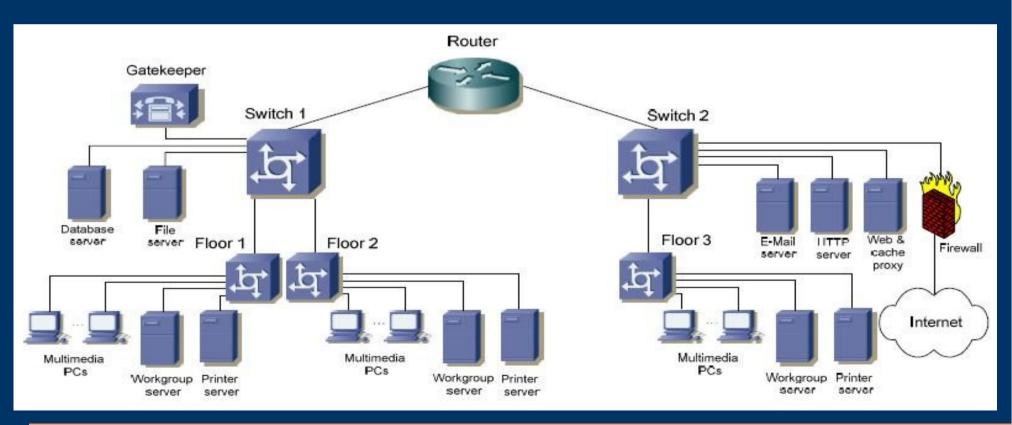
ENSC 835: COMMUNICATION NETWORKS CMPT 885: SPECIAL TOPICS: COMMUNICATION NETWORKS PROJECT DEMO Spring 2008

Deployment of Mobile and Fixed Video Conferencing over an Existing IP Infrastructure

> Victor Gusev http://www.sfu.ca/~vga9/ vga9@sfu.ca

Roadmap


- Introduction
- Motivation and Overview
- Typical Enterprise Office Network
- Applications of the Project
- Scenarios
- Results, Discussions and Conclusions

Motivation and Overview

- Use already existing IP infrastructure
- Minimal deployment cost
- Video conferencing deployment not yet analysed for WiFi in OPNET
- Commercial interest (simulate before investing time and money into hardware/software setup)
- Research interest (optimization, capacity)

Typical Enterprise Office Network

• [1] K. Salah, "Analytic approach for deploying desktop videoconferencing," *IEE Proceedings Communications*, vol. 153, no. 3, June 2006, pp. 434-444.

Applications of the Project

- Typical scenario: plant/warehouse floor (wireless), and office floor (desktops)
 - Plant maintenance (chemical, power)
 - Personnel with PDAs reporting to office
 - Production environment
 - Warehouse, equipment maintenance, report to office
 - Office with 2 floors
 - Mix of wireless clients and desktops
- Existing standards: 802.11a/b/g, 802.11e, 802.11n
- This project concentrates on the most popular deployed hardware: 802.11b and 802.11g, installed on one floor and wired workstations on the second floor

Scenarios

OPNET Simulations

Scenario	Title	# Calls	Scenario Name
1	802.11b	28	2_wlan_80211b_bg_2_flr
2	802.11g	98	3_wlan_80211g_bg_2_flr1

IT G ur u Simulations

Scenario	Title		Scenario Name
3	802.11b	9	7_H323_Cloud_8usr1

- Ex: # Video conferencing calls supported:
 - Traffic Rx/Tx Mismatch at 1m 38s, good at 1m 36s.
 - Started with 2 video packets at 70s
 - Added 2 new calls every 2 seconds
 - Hence:
 - 2calls + 2calls*((1m * 60s/m + 36s 70s)/2s) = 28video calls