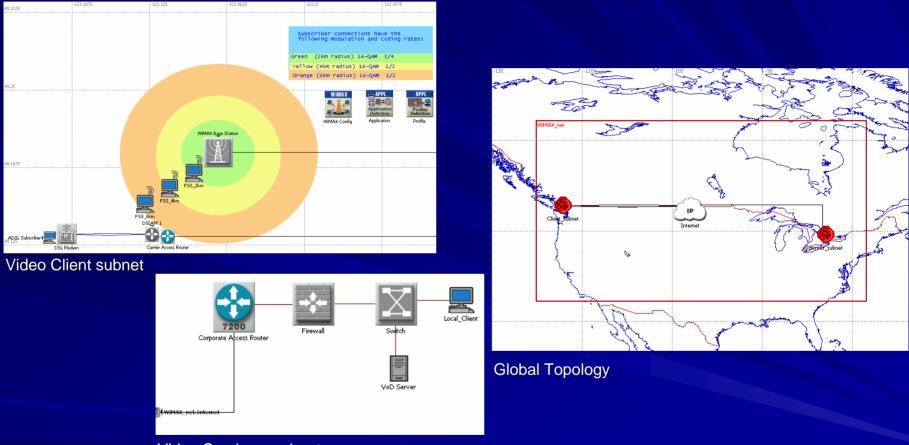
ENSC-835 Communication Networks

Final Project Demo - Spring 2008

Streaming Video Content Over WiMAX Broadband Access

Will Hrudey www.sfu.ca/~whrudey (whrudey@sfu.ca)

Roadmap


Introduction

Design / Implementation

Validation / Analysis

Introduction

Video Services subnet

Can WiMAX deliver comparable network performance to ADSL broadband access for streaming video applications?

Design / Implementation

Scenario: Stream a 2 hour MPEG-4 movie to the video clients

- Application and profile configuration
 - MPEG-4 frame distribution
 - Application deployment
- WiMAX Configuration (service classes, flows, modulation / coding)
 - WiMAX_config / base station / subscriber station
- Wireline Links
 - WAN / LAN / DSL
- Internet
 - Packet discard ratio: 0.001% / packet latency: 0.001s
- Background traffic growth
 - 10% every 30 min
- Statistics selection and promotion

Validation / Analysis

Scenarios

Simulation time / actual time – 2 hours / up to 8 hours

- Validation

- Separate incoming / outgoing scenarios using 128x120 @ 1 fps
- Background traffic on LAN & WAN links
- Background traffic with incremental growth
- MPEG-4 stream
 - Varied simulation durations and base station buffering

Results: video streaming performance metrics

- Video packet loss
- End-to-end video packet delay
- Video packet jitter
- Throughput

Summary

Challenges

Model instability led to inconsistent results (bugs)
OPNET response: upgrade to Modeler 14.5

Future Work

- Develop more comprehensive simulations and analysis
- Research and refine video performance metrics
- Model audio traffic and encapsulate A / V traffic in RTP
- Incorporate WiMAX mobility and shadowing

Conclusion

- Dependant on specific deployment parameters
- WiMAX can provide comparable network performance to ADSL for streaming video applications