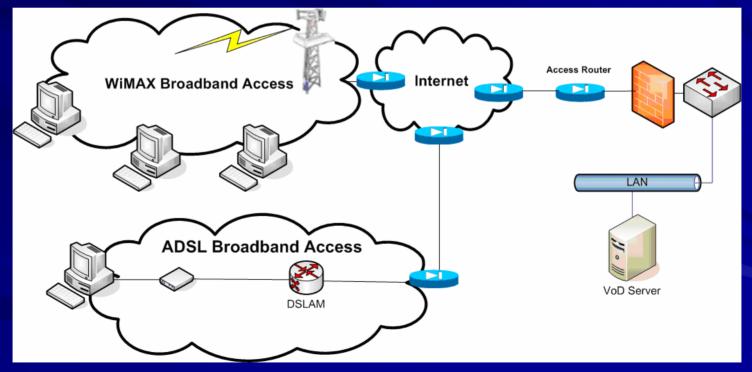
ENSC-835 Communication Networks

Spring 2008

Streaming Video Content Over WiMAX Broadband Access

Will Hrudey www.sfu.ca/~whrudey (whrudey@sfu.ca)

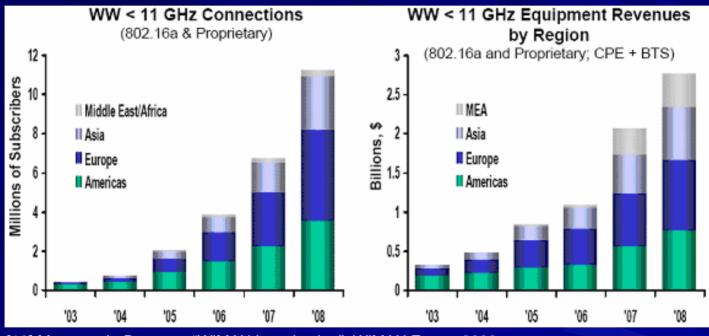
Bell RSU-2510


Roadmap

Introduction

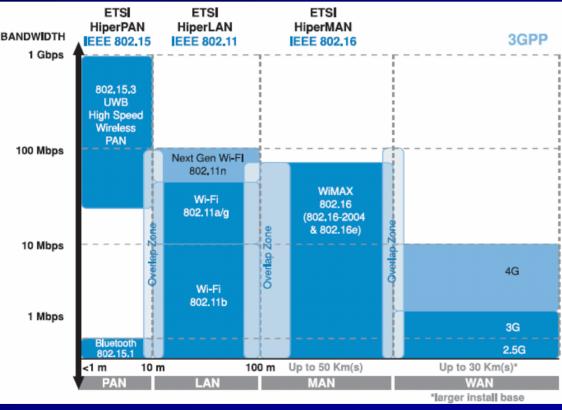
Design Validation Analysis Conclusions Challenges Future Work References

Focus of this study:

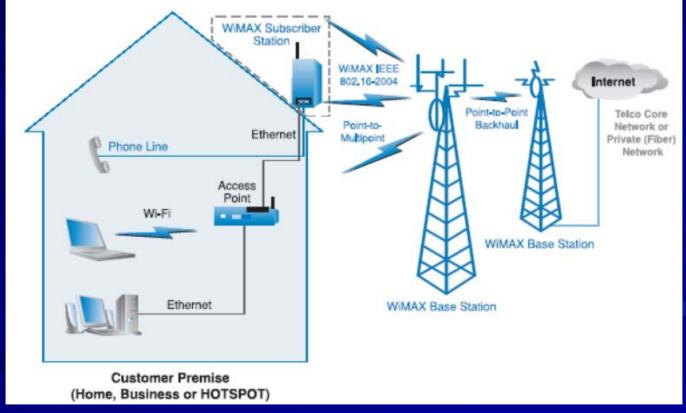

Can WiMAX deliver comparable network performance to ADSL broadband access for streaming video applications?

Simulation will stream an MPEG-4 2-hour movie to 4 video clients

- What is WiMAX Broadband Access?
 - Worldwide Interoperability for Microwave Access
 - IEEE 802.16-2004 [12]
 - IEEE 802.16e-2005
 - All IP network architecture
 - Point-to-multipoint (PMP) mode
 - Connection oriented bandwidth request / grant scheme
 - Flexible QoS supports voice & video
 - Optimum spectral efficiency
 - Channel bandwidths from 1.25 20 MHz
 - Typical cell size of 7 10 km
 - Optimized for outdoors
 - Scalable to 1000's of users
 - Provides fixed, nomadic and mobile usage


Why WiMAX?

[10] Margaret LaBrecque, "WiMAX Introduction", WiMAX Forum 2003

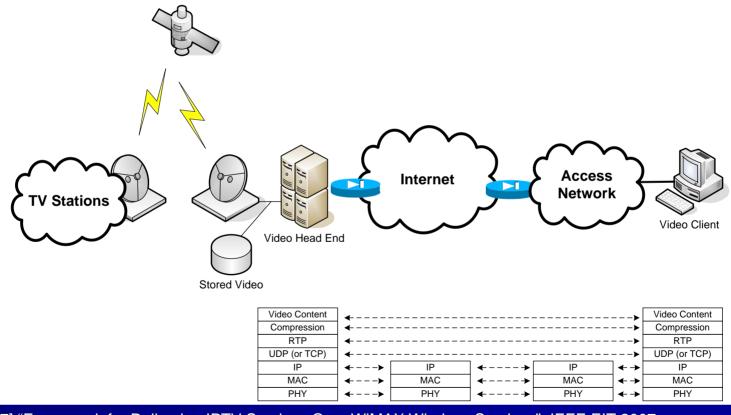

- WiMAX Forum March Press Release : 133 million users by 2012
- OPNETWORK 2007 Conference cited > 100 planned carrier trials

What is WiMAX Broadband Access?

[11] Intel, "Understanding Wi-Fi and WiMAX as Metro-Access Solutions", 2007

What Is WiMAX Broadband Access?

[11] Intel, "Understanding Wi-Fi and WiMAX as Metro-Access Solutions", 2007


What Is Video Streaming?

- Digital video source delivered to video clients over an IP network infrastructure
 - Digital video information is organized as frames
 - Frames are compressed using a video codec
 - Compressed frames are encapsulated in protocol headers
 - Video frame packets are transmitted at a constant rate
- Video packets may be IP multicast or IP unicast
- Managed services
 - IPTV (Live & VoD)
 - Video conferencing

Unmanaged services

- IPTV (Live & VoD)
- YouTube, Google Video

What Is Video Streaming?

[7] "Framework for Delivering IPTV Services Over WiMAX Wireless Services", IEEE EIT 2007

- Video Coding Schemes
 - Exploit temporal and spatial characteristics
 - Various standards and codecs
 ITU (H.26x) & ISO (MPEG-x)

Codec	Raw Data Rate	Compressed Rate
MPEG-1	30 Mbps	1.5 Mbps
MPEG-2	128 Mbps	3 – 10 Mbps
MPEG-4		< 1.024 Mbps

Based on QCIF and/or CIF video formats

Related Work

Imaging/Voice/Video For E-Health Applications over WiMAX [2]
 – Simulation performed in Matlab

IPTV over WiMAX Considerations and Transceiver Design [4]
 No simulations

Evaluation of WiMAX With Various Generic TCP and UDP loads [5]
 Utilized testbed instead of simulations

IPTV over WiMAX Proposed Framework and Challenges [7]
 No simulations

Roadmap

Introduction Design Validation Analysis Conclusions Challenges Future Work References

Loss – Number of Packets Dropped

1 - (# of received packets) / (# of expected packets)
 Avg: < 10⁻³
 Ideal: < 10⁻⁵

Delay – Average Time of Transit
 Processing delay + propagation delay + queuing delay
 Avg: < 300 ms Ideal: < 10 ms [9]

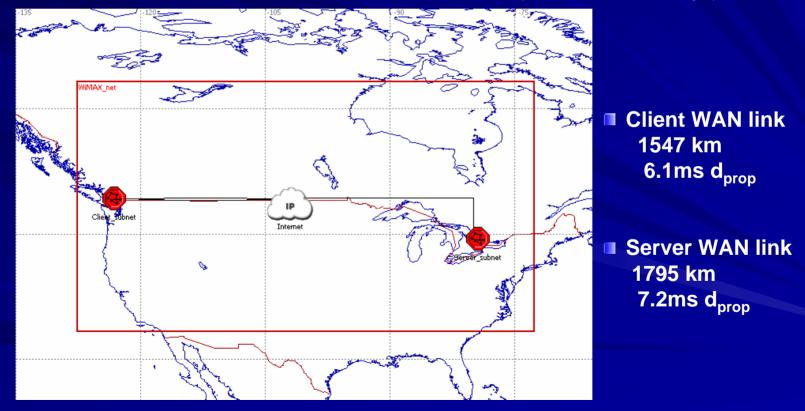
Jitter – Variation in Packet Arrival Time

Actual reception time – expected reception time
 Avg: < 60 ms
 Ideal: < 20 ms

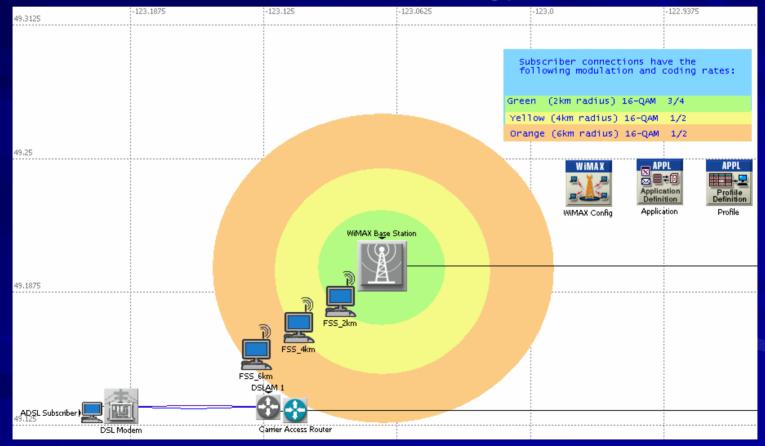
Throughput – Minimum End-to-End Transmission Rate
 Measured in bytes / sec (or bps)
 10kbps – 5Mbps [14]

Development Platform

Toshiba Tecra S2 laptop
 Intel Pentium M Processor / 1GB RAM
 Windows XP Service Pack 2


OPNET 12.0.A PL3 + WiMAX Module [13,17]
 Integrated WiMAX and ADSL nodes
 Generic Video Conferencing Application

Visual Studio .NET 2003 Dev. Environment
 Required to compile models


Overall Network Topology

Video services subnet located in Toronto

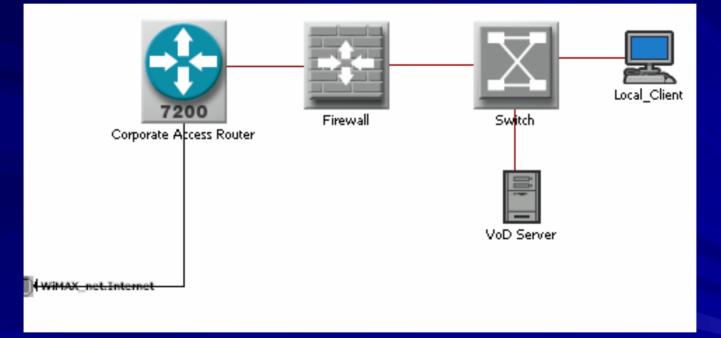
Video clients subnet located in Vancouver (3342 km away)

Video Clients Subnet Topology

Network Parameters

- Adopted latitude / longitude coordinate system to model pathloss & propagation delay
- WiMAX deployment parameters (not disclosed without NDA)
 - Scheduling algorithm: best effort
 - Min sustainable data rate (DL): 3.0 Mbps
 - Min sustainable data rate (UL): 0.640 Mbps
 - Frequency band / channel bandwidth: 2.5 GHz / 5 MHz
 - Derived 5 MHz channel definition
 - PHY layer access scheme: OFDM 512
 - Transmit Power levels (BS / SS): 5W / 2W
 - Reviewed Motorola datasheets for current generation WiMAX hardware
 - WiMAX clients are located 2 / 4 / 6 km from base station
 - Manually configured robust burst profiles as a function of distance
 - Pathloss model : suburban with mostly flat terrain with light tree densities
- ADSL Configuration
 - Downlink: 3.0 Mbps
 - Uplink: 0.640 Mbps
 - Subscriber to Central Office is 5km delay based link

Network Parameters


- Modulation / coding and required SNR [2]

Modulation	Coding	Information Bits/symbol/Hz	Required SNR (dB)
QPSK	1/2	1	9.4
	3/4	1.5	11.2
16-QAM	1/2	2	16.4
	3/4	3	18.2
64-QAM	2/3	4	22.7
	3/4	4.5	24.4

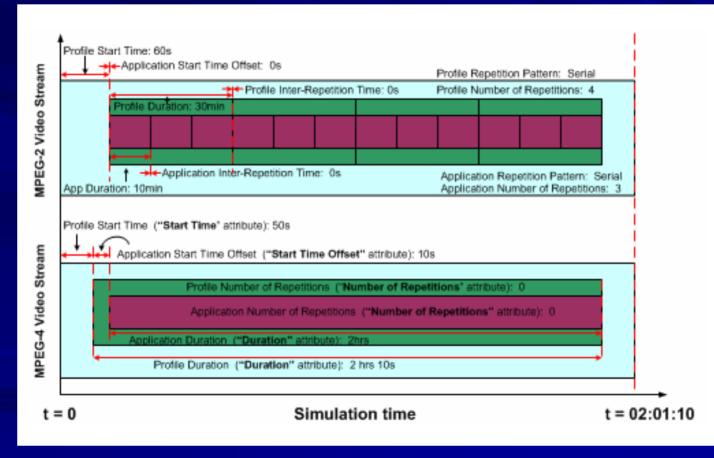
- OFDM 512 subcarriers

Frequency Division						
	DL Zone	UL Zone				
Number of Null Subcarriers - Lower Edge	46		52			
Number of Null Subcarriers - Upper Edge	45		51			
Number of Data Subcarriers	360		272			
Number of Subchannels	15		17			

Video Services Subnet Topology

- Server provides Video on Demand (VoD) services
- Local client used only for initial troubleshooting and validation

Video traffic is loss tolerant but delay sensitive
 Simulation model is trace driven
 Configured 2 video streams


MPEG-2 1280x720 @ 30 fps [15,16]
 MPEG-4 352x288 @ 25 fps [15,16]

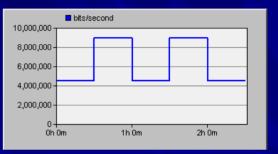
Video trace pre-processing

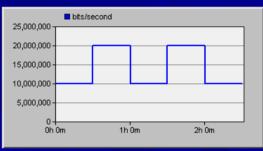
Sorted into codec sequence (versus display sequence)
 Converted frame sizes to bytes
 Imported into OPNET as a distribution

Configured Application and Profiles Nodes
 Promoted necessary statistics

Video Traffic Profiles

MPEG-2 stream resulted in poor performance so used MPEG-4 stream


WAN links – 10-20% background traffic


LAN links – 10-20% background traffic

Internet

- Packet Discard Ratio: 0.001%
- Packet Latency: 0.001s

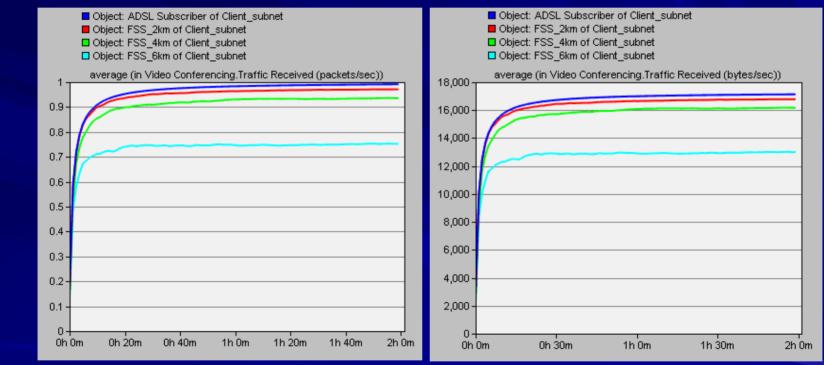
Background Traffic Growth: 10% every 30 min

Video Traffic Details

Parameters	Validation Traffic	Terminator 2	Matrix III
Resolution	128×120	1280x720	352x288
Codec	<none></none>	MPEG-2	MPEG-4 Part 2
Frame Compression Ratio	1	58.001	47.682
Min Frame Size (Bytes)	17280	627	8
Max Frame Size (Bytes)	17280	127036	36450
Mean Frame Size (Bytes)	17280	23833.792	3189.068
Display Pattern	N/A	IBBPBBPBBPBB	IBBPBBPBBPBB
Transmission Pattern	N/A	IPBBPBBPBBIB	IPBBPBBPBBIB
Group of Picture Size	N/A	12	12
Frame Rate (frames/sec)	1	15	25
Number of Frames	7,200	324,000	180,000
Peak Rate (Mbps)	0.138	30.488	7.290
Mean Rate (Mbps)	0.138	5.720	0.637
		[15 16]	[15 16]

[15,16] [15,16]

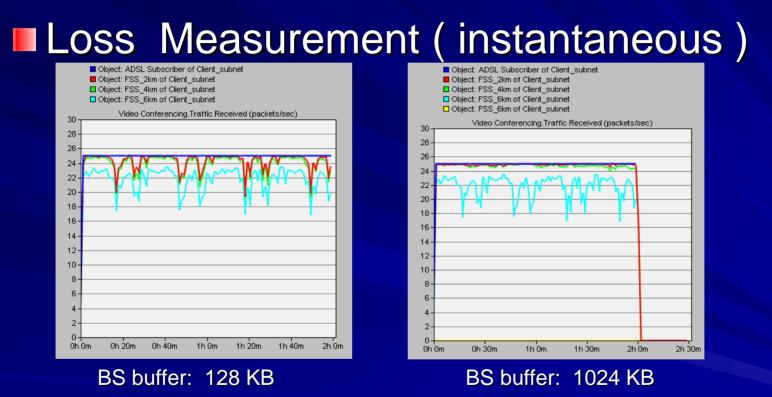
Observe peak and mean rates for MPEG-2 and MPEG-4 traffic


- Model Limitations
 - Video traffic only [15,16]
 - No RTP encapsulation
 - WiMAX AMC not available [13]
 - WiMAX power management not available [13]

Roadmap

Introduction Design Validation Analysis Conclusions Challenges Future Work References

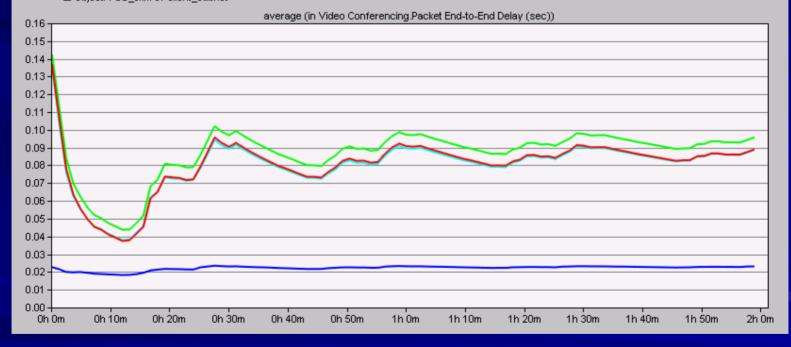
Validation


CBR Video Traffic Using 1 fps (17280 bytes/sec)

DES LogObserve WAN and LAN background traffic

Roadmap

Introduction Design Validation Analysis Conclusions Challenges Future Work References

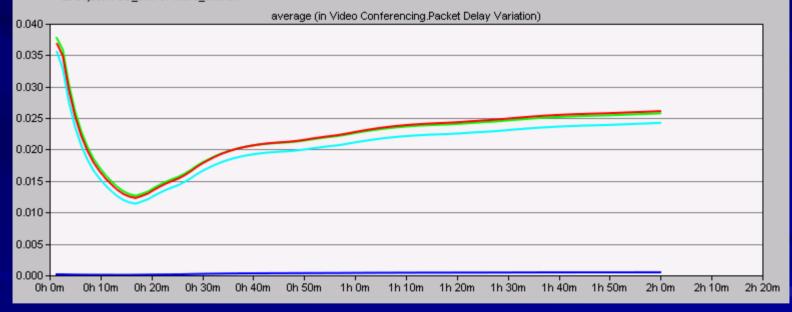


- Loss is depicted as deviation from the blue line representing 25 pkts/sec
- 1024 KB is large enough to prevent dropped downlink packets at BS
- 6km WiMAX station loss still significant because SNR is below minimum level modulation/coding [2]

Delay Measurement

Object: ADSL Subscriber of Client_subnet

- Object: FSS_2km of Client_subnet
- Object: FSS 4km of Client subnet
- Object: FSS_6km of Client_subnet

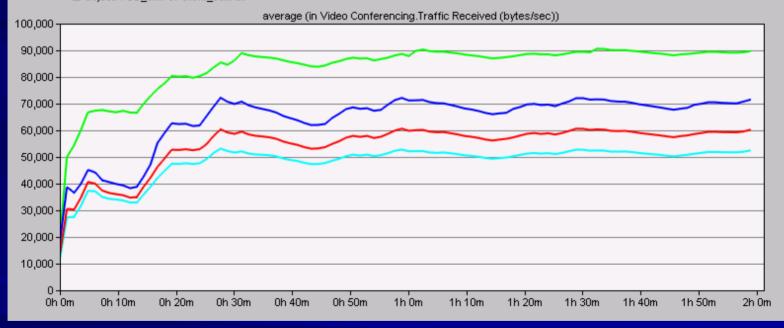


Curves are averaged across the 2-hour movie duration

– Metric Avg: < 300 ms Ideal: < 10 ms [9]

Jitter Measurement

- Object: ADSL Subscriber of Client_subnet
 Object: FSS_2km of Client_subnet
- Object: FSS_4km of Client_subnet
- Object: FSS_6km of Client_subnet


- Curves are averaged across the 2-hour movie duration
- Metric Avg: < 60 ms Ideal: < 20 ms

Object: ADSL Subscriber of Client_subnet

Object: FSS 2km of Client subnet

- Object: FSS 4km of Client subnet
- Object: FSS 6km of Client subnet

- Curves are averaged across the 2-hour movie duration
- Metric 10kbps 5Mbps [14]

Roadmap

Introduction Design Model Validation Analysis Conclusions Challenges Future Work References

Conclusions

Simulation Time: 2.0 hrs Actual time: > 8 hours primary scenario

- WiMAX satisfied the video performance metrics
 - WiMAX packet loss significantly reduced by increasing BS buffering
 - Results are understated since the model used worst case BE scheduler
- Overall results in comparison to ADSL are promising
 - Dependant on specific carrier deployment parameters
 WiMAX has capacity to deliver higher throughput rates & QoS than ADSL
 - While further refinement is required, WiMAX can provide comparable network performance to ADSL for video streaming services
- Model stability may improve with OPNET 14
 - WiMAX model results were unreasonable at times
- Simulations do not guarantee real world equivalence
 - Must be considered when interpreting results

Roadmap

Introduction Design Model Validation Analysis Conclusions Challenges Future Work References

Project Challenges

- Environment (licensing, access, VS integration)
- No OPNET newsgroups, gurus, or user-uploaded models
- Steep learning curve for OPNET configurations and video
 - Insufficient documentation
 - Importing video traces, detailed profile configuration, routing
 - WiMAX implementation
 - Extended troubleshooting (confirmed bugs: SPR-113276 / SPR-82429)
 - Learning video traffic details (formats, codecs, GOP details)
- WiMAX rtPS scheduling difficult to configure
 - Could not achieve working configuration
- Learning WiMAX fundamentals within project duration

Roadmap

Introduction Design Model Validation Analysis Conclusions Challenges Future Work References

Future Work

- Develop more comprehensive simulations
 - Experimentally characterize specific WiMAX parameters
 scheduling, transmit power, antenna gain, channel bandwidths
- Conduct comprehensive analysis on data
- Research and refine video performance metrics
- Encapsulate video traffic in RTP
- Incorporate audio streams
- WiMAX mobility and shadowing

References

- [1] M. Chatterjee, S. Sengupta, and S. Ganguly, "Feedback-Based real-time streaming over WiMax," *IEEE Wireless Communications Magazine*, vol. 14, no. 1, pp. 64-71, Feb. 2007.
- [2] D. Niyato, E. Hossain, and J. Diamond, "IEEE802.16/WiMAX-Based broadband wireless access and its application for telemedicine / e-health services," *IEEE Wireless Communications Magazine*, vol. 14, no.1, pp. 72-83, Feb. 2007.
- [3] Kuo-Hui Li, Intel WiMAX Solutions Division [Online]. Available: http://santos.ee.ntu.edu.tw/mobile/Speech/WiMAX%20Network%20Architecture.pdf (January 2008).
- [4] F. Retnasothie, M. Ozdemir, T. Yucek, H. Celebi, J. Zhang, and R. Muththaiah, "Wireless IPTV over WiMAX: challenges and applications," *Proc. IEEE WAMICON* 2006, Clearwater, FL, Dec. 2006, pp. 1-5.
- [5] F. Yousaf, K. Daniel, and C. Wietfeld, "Performance evaluation of IEEE 802.16 WiMAX link with respect to higher layer protocols," *Proc. IEEE ISWCS 2007*, Trondheim, Norway, Oct. 2007, pp. 180-184.
- [6] H. Juan, H. Huang, C. Huang, and T. Chiang, "Scalable video streaming over mobile WiMAX," *Proc. ISCAS 2007*, New Orleans, Louisiana, May 2007, pp. 3463-3466.

References

- [7] I. Uilecan, C. Zhou, and G. Atkin, "Framework for delivering IPTV services over WiMAX wireless networks," *Proc IEEE EIT 2007*, Chicago, IL, May 2007, pp. 470-475.
- [8] J. She, F. Hou, P. Ho, and L. Xie, "IPTV over WiMAX key success factors, challenges, and solutions," *IEEE Communications Magazine*, vol. 45, no. 8, pp. 87-93, Aug 2007.
- [9] V. Markovski, F. Xue, and Lj. Trajkovic, ``Simulation and analysis of packet loss in video transfers using User Datagram Protocol," *The Journal of Supercomputing*, vol. 20, no. 2, pp. 175-196, Sep. 2001.
- [10] M. LaBrecque, WiMAX introduction [Online]. Available: http://www.wimaxforum.org/technology/downloads (February 2008).
- [11] Intel, Understanding Wi-Fi and WiMAX as metro-access solutions [Online]. Available: http://www.rclient.com/PDFs/IntelPaper.pdf (February 2008).
- [12] IEEE Std. 802.16-2004: Part 16: Air interface for fixed broadband wireless access systems [Online]. Available: http://standards.ieee.org/getieee802/802.16.html (February 2008).

References

- [13] OPNET WiMAX (802.16e) model user guide [Online]. Available via OPNET WiMAX registration.
- [14] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach, 4/e. Boston, MA: Pearson/Addison-Wesley, 2008.
- [15] G. Auwera, P. David, and M. Reisslein, "Traffic characteristics of H.264/AVC variable bit rate video," [Online]. Available: http://trace.eas.asu.edu/h264/index.html (March 2008).
- [16] G. Auwera, P. David, and M. Reisslein, "Traffic and quality characterization of single-layer video streams encoded with the H.264/MPEG-4 advanced video coding standard and scalable video coding extension" [Online]. Available: http://trace.eas.asu.edu/h264/index.html (March 2008).
- [17] OPNET modeler software [Online]. Available: <u>http://www.opnet.com/products/modeler/home.html</u>.
- [18] WiMAX forum [Online]. Available: http://www.wimaxforum.org/news/pr/view?item_key=9212a980801358eef27c4dec8bb ab579bfc6529a (April 2008).