
4/16/2008 1

TCP Congestion Control in Wired 
and Wireless Networks

ENCS 835 Course Project
Spring 2008
April 7, 2008

Presented by: Mohamadreza Najiminaini
Professor: Ljiljana Trajkovic



4/16/2008 2

Roadmap

Introduction
Related Work
Slow-Start and Congestion Avoidance
Fast Retransmit and Fast Recovery
Various TCP Congestion Control Algorithms
Simulation Results
Conclusion



4/16/2008 3

Introduction

TCP mechanism for congestion control is 
implemented at the sender
The congestion window size at the sender is set as:
Send Window = MIN (flow control window, congestion window)

flow control window is advertised by the receiver
congestion window is set based on feedback from the 
network



4/16/2008 4

Introduction

Two significant parameters of TCP congestion control 
are:

Congestion Window size(cwnd)
Slow-start threshhold Value (ssthresh)

Congestion control works in two phases:
slow start: cwnd < ssthresh
congestion avoidance: cwnd ≥ ssthresh



4/16/2008 5

Related Work

Comparison of TCP Tahoe, Reno, NewReno, SACK 
using ns-2:

K. Fall and S. Floyd, “Simulation based comparisons of 
Tahoe, Reno and SACK TCP,” Computer Communications 
Review, vol. 26, no. 3, July 1996, pp. 5-21

Modified Tahoe and comparison with other TCP 
congestion control algorithms using Opnet Modeler:

M. N. Akhtar, M. A. O. Barry and H. S. Al-Raweshidy
“Modified Tahoe TCP for wireless networks using OPNET 
simulator,” Proc of the London Communications Symposium 
(LCS2003), London, Sept 2003



4/16/2008 6

Slow Start
Initial value: cwnd = 1(MSS)
When the sender receives an ACK, the congestion 
window is increased by 1 segment:
cwnd = cwnd + 1

an ACK for two segments, cwnd is incremented by only 1 
segment
an ACK for a segment that is smaller than MSS bytes, 
cwnd is incremented by 1 



4/16/2008 7

Congestion Avoidance

Congestion avoidance phase initiates after cwnd
reaches the slow-start threshold value
If cwnd ≥ ssthresh then every time an ACK reaches 
to the sender, increase cwnd as:

cwnd = cwnd + 1/ cwnd



4/16/2008 8

Slow-Start Algorithm with 
Congestion Avoidance

SENDER RECEVER

CWND=1

CWND=2

CWND=4

Packet 0

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

ACK1

ACK2 ACK3

Window size

Time

SlowStart SlowStart Congestion 
avoidance

Congestion 
avoidance

packet loss packet loss packet loss



4/16/2008 9

Fast Retransmit

Three and more duplicate ACKs indicate a lost 
segment
Then TCP performs a retransmission of the lost 
segment, without waiting for a timeout to happen
Enter slow start:

ssthresh = cwnd/2
cwnd = 1



4/16/2008 10

Fast Recovery

Fast recovery avoids slow start after a fast 
retransmit
After three duplicate ACKs set:

Retransmit the lost segment
ssthresh = cwnd/2
cwnd = ssthresh+3
Increase cwnd by one for each additional duplicate ACK

When it receives an ACK for a new packet
cwnd=ssthresh
enter congestion avoidance



4/16/2008 11

Various TCP Congestion Control 
Algorithms

TCP Tahoe (1988, FreeBSD 4.3 Tahoe)
Slow start
Congestion avoidance
Fast retransmit

TCP Reno (1990, FreeBSD 4.3 Reno)
Fast recovery

New Reno (1996)
SACK (1996)



4/16/2008 12

TCP Reno

Duplicate ACKs:
Fast retransmit
Fast recovery
Fast recovery avoids slow start

Timeout:
retransmit 
slow start

TCP Reno performs better than TCP Tahoe when a 
single packet is dropped within a round-trip time.



4/16/2008 13

TCP New Reno
When multiple packets drops, Reno can not handle 
well
Partial ACK:

happens if multiple packets are lost
A partial ACK does not acknowledge all packets that are 
outstanding at the beginning of a fast recovery (this takes 
sender out of fast recovery)
Sender must wait until timeout occurs 

New Reno:
Partial ACK does not take sender out of fast recovery
New Reno can handle multiple lost segments without 
entering slow start



4/16/2008 14

Selective Acknowledgement 
(SACK)

At most 1 lost segment can be retransmitted in Reno 
and NewReno per round trip time
Selective acknowledgments: acknowledges non-
continuous blocks of data 
Multiple blocks can be transmitted in a single 
segment
TCP SACK: 

Initiate fast recovery upon 3 duplicate ACKs
Sender keeps records of SACKs and understand if segments 
are lost. Sender retransmits the subsequently segment from 
the list of the lost segments



4/16/2008 15

Simulation

Opnet Modeler and IT Guru
Simulation results:

congestion window size (CWND)
sent segment sequence number (SSSN)

Simulation scenarios:
Point to point client and server connection (PPP)

single packet drop
two packet drops

WAN topology: 0.05% packet drops and 0.001 sec packet 
latency
Wireless topology: using trajectory for packet drops



4/16/2008 16

Point-to-Point Client Server 
connection (PPP)

Application
FTP
constant file size
Constant inter-request 
time

Profile
Client
Server: FTP server
Packet discarder

drop packets



4/16/2008 17

CWND in PPP Server-Client: one 
drop



4/16/2008 18

Sent Segment Sequence Number 
PPP Server-Client: one drop



4/16/2008 19

CWND in PPP Server-Client: two 
drops



4/16/2008 20

Sent Segment Sequence Number 
PPP Server-Client: two drops



4/16/2008 21

WAN Topology

West Subnet East Subnet

WAN Topology



4/16/2008 22

CWND in WAN: packet drop 
(0.05%) packet latency (0.001)



4/16/2008 23

SSSN in WAN, packet drop 
(0.05%)-packet latency (0.001)



4/16/2008 24

Wireless Topology

Trajectory



4/16/2008 25

CWND in Wireless Topology



4/16/2008 26

Conclusion

Reno performs well only if no loss or one packet drop 
within a window
NewReno can deal with multiple lost segments 
without entering slow start
SACK (selective acknowledgement and selective 
retransmit)
TCP congestion control algorithms do not perform 
satisfactory in wireless network due to signal 
attenuation in wireless environment. 



4/16/2008 27

References

K. Fall and S. Floyd, “Simulation based comparisons of Tahoe, Reno 
and SACK TCP,” Computer Communications Review, vol. 26, no. 3, July 
1996, pp. 5-21. 
M. N. Akhtar, M. A. O. Barry and H. S. Al-Raweshidy “Modified Tahoe 
TCP for wireless networks using OPNET simulator,” Proc of the London 
Communications Symposium (LCS2003), London, Sept 2003. 
W. Stevens, “TCP slow start, congestion avoidance, fast retransmit and 
fast recovery algorithms,”. Network Working Group, RFC2001, Jan 
1997.
M. Omueti and Lj. Trajkovic, “M-TCP+: using disconnection feedback to 
improve performance of TCP in wired/wireless networks,” Proc. SPECTS 
2007, San Diego, CA, USA, July 2007, pp. 443-450. 
A. S. Tanenbaum, “Computer Networks,” The Transport Layer, 4rd 
Edition.


	TCP Congestion Control in Wired and Wireless Networks
	Roadmap
	Introduction
	Introduction
	Related Work
	Slow Start
	Congestion Avoidance
	Slow-Start Algorithm with Congestion Avoidance
	Fast Retransmit
	Fast Recovery
	Various TCP Congestion Control Algorithms
	TCP Reno
	TCP New Reno
	Selective Acknowledgement (SACK)
	Simulation
	Point-to-Point Client Server connection (PPP)
	CWND in PPP Server-Client: one drop
	Sent Segment Sequence Number PPP Server-Client: one drop
	CWND in PPP Server-Client: two drops
	Sent Segment Sequence Number PPP Server-Client: two drops
	WAN Topology
	CWND in WAN: packet drop (0.05%) packet latency (0.001)
	SSSN in WAN, packet drop (0.05%)-packet latency (0.001)
	Wireless Topology
	CWND in Wireless Topology
	Conclusion
	References

