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Introduction

TCP mechanism for congestion control is 
implemented at the sender
The congestion window size at the sender is set as:
Send Window = MIN (flow control window, congestion window)

flow control window is advertised by the receiver
congestion window is set based on feedback from the 
network
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Introduction

Two significant parameters of TCP congestion control 
are:

Congestion Window size(cwnd)
Slow-start threshhold Value (ssthresh)

Congestion control works in two phases:
slow start: cwnd < ssthresh
congestion avoidance: cwnd ≥ ssthresh
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Related Work

Comparison of TCP Tahoe, Reno, NewReno, SACK 
using ns-2:

K. Fall and S. Floyd, “Simulation based comparisons of 
Tahoe, Reno and SACK TCP,” Computer Communications 
Review, vol. 26, no. 3, July 1996, pp. 5-21

Modified Tahoe and comparison with other TCP 
congestion control algorithms using Opnet Modeler:

M. N. Akhtar, M. A. O. Barry and H. S. Al-Raweshidy
“Modified Tahoe TCP for wireless networks using OPNET 
simulator,” Proc of the London Communications Symposium 
(LCS2003), London, Sept 2003
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Slow Start
Initial value: cwnd = 1(MSS)
When the sender receives an ACK, the congestion 
window is increased by 1 segment:
cwnd = cwnd + 1

an ACK for two segments, cwnd is incremented by only 1 
segment
an ACK for a segment that is smaller than MSS bytes, 
cwnd is incremented by 1 
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Congestion Avoidance

Congestion avoidance phase initiates after cwnd
reaches the slow-start threshold value
If cwnd ≥ ssthresh then every time an ACK reaches 
to the sender, increase cwnd as:

cwnd = cwnd + 1/ cwnd
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Slow-Start Algorithm with 
Congestion Avoidance
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Fast Retransmit

Three and more duplicate ACKs indicate a lost 
segment
Then TCP performs a retransmission of the lost 
segment, without waiting for a timeout to happen
Enter slow start:

ssthresh = cwnd/2
cwnd = 1
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Fast Recovery

Fast recovery avoids slow start after a fast 
retransmit
After three duplicate ACKs set:

Retransmit the lost segment
ssthresh = cwnd/2
cwnd = ssthresh+3
Increase cwnd by one for each additional duplicate ACK

When it receives an ACK for a new packet
cwnd=ssthresh
enter congestion avoidance
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Various TCP Congestion Control 
Algorithms

TCP Tahoe (1988, FreeBSD 4.3 Tahoe)
Slow start
Congestion avoidance
Fast retransmit

TCP Reno (1990, FreeBSD 4.3 Reno)
Fast recovery

New Reno (1996)
SACK (1996)
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TCP Reno

Duplicate ACKs:
Fast retransmit
Fast recovery
Fast recovery avoids slow start

Timeout:
retransmit 
slow start

TCP Reno performs better than TCP Tahoe when a 
single packet is dropped within a round-trip time.
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TCP New Reno
When multiple packets drops, Reno can not handle 
well
Partial ACK:

happens if multiple packets are lost
A partial ACK does not acknowledge all packets that are 
outstanding at the beginning of a fast recovery (this takes 
sender out of fast recovery)
Sender must wait until timeout occurs 

New Reno:
Partial ACK does not take sender out of fast recovery
New Reno can handle multiple lost segments without 
entering slow start
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Selective Acknowledgement 
(SACK)

At most 1 lost segment can be retransmitted in Reno 
and NewReno per round trip time
Selective acknowledgments: acknowledges non-
continuous blocks of data 
Multiple blocks can be transmitted in a single 
segment
TCP SACK: 

Initiate fast recovery upon 3 duplicate ACKs
Sender keeps records of SACKs and understand if segments 
are lost. Sender retransmits the subsequently segment from 
the list of the lost segments
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Simulation

Opnet Modeler and IT Guru
Simulation results:

congestion window size (CWND)
sent segment sequence number (SSSN)

Simulation scenarios:
Point to point client and server connection (PPP)

single packet drop
two packet drops

WAN topology: 0.05% packet drops and 0.001 sec packet 
latency
Wireless topology: using trajectory for packet drops
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Point-to-Point Client Server 
connection (PPP)

Application
FTP
constant file size
Constant inter-request 
time

Profile
Client
Server: FTP server
Packet discarder

drop packets



4/16/2008 17

CWND in PPP Server-Client: one 
drop
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Sent Segment Sequence Number 
PPP Server-Client: one drop
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CWND in PPP Server-Client: two 
drops
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Sent Segment Sequence Number 
PPP Server-Client: two drops
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WAN Topology

West Subnet East Subnet

WAN Topology
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CWND in WAN: packet drop 
(0.05%) packet latency (0.001)
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SSSN in WAN, packet drop 
(0.05%)-packet latency (0.001)
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Wireless Topology

Trajectory
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CWND in Wireless Topology
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Conclusion

Reno performs well only if no loss or one packet drop 
within a window
NewReno can deal with multiple lost segments 
without entering slow start
SACK (selective acknowledgement and selective 
retransmit)
TCP congestion control algorithms do not perform 
satisfactory in wireless network due to signal 
attenuation in wireless environment. 
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