TCP Congestion Control in Wired

!'_ and Wireless Networks

ENCS 835 Course Project
Spring 2008
April 7, 2008

Presented by: Mohamadreza Najiminaini
Professor: Ljiljana Trajkovic

4/16/2008

i Roadmap

= Introduction

= Related Work

= Slow-Start and Congestion Avoidance

= Fast Retransmit and Fast Recovery

= Various TCP Congestion Control Algorithms
= Simulation Results

= Conclusion

4/16/2008

Introduction

= TCP mechanism for congestion control is
Implemented at the sender

= The congestion window size at the sender is set as:
Send Window = MIN (flow control window, congestion window)

= flow control window is advertised by the receiver

= congestion window is set based on feedback from the
network

4/16/2008

Introduction

= Two significant parameters of TCP congestion control
are.
= Congestion Window size(cwnd)
= Slow-start threshhold Value (ssthresh)
= Congestion control works in two phases:
= slow start: cwnd < ssthresh
= congestion avoidance: cwnd = ssthresh

4/16/2008 4

Related Work

= Comparison of TCP Tahoe, Reno, NewReno, SACK
using ns-2:
= K. Fall and S. Floyd, “Simulation based comparisons of
Tahoe, Reno and SACK TCP,” Computer Communications
Review, vol. 26, no. 3, July 1996, pp. 5-21
= Modified Tahoe and comparison with other TCP
congestion control algorithms using Opnet Modeler:

= M. N. Akhtar, M. A. O. Barry and H. S. Al-Raweshidy
“Modified Tahoe TCP for wireless networks using OPNET
simulator,” Proc of the London Communications Symposium
(LCS2003), London, Sept 2003

4/16/2008

i Slow Start

= Initial value:

= When the sender receives an ACK, the congestion
window is increased by 1 segment:

= an ACK for two segments, cwnd is incremented by only 1
segment

= an ACK for a segment that is smaller than MSS bytes,
cwnd is incremented by 1

4/16/2008

Congestion Avoidance

= Congestion avoidance phase initiates after cwnd
reaches the slow-start threshold value

= If cwnd = ssthresh then every time an ACK reaches
to the sender, increase cwnd as:
= cwnd = cwnd + 1/ cwnd

4/16/2008

Slow-Start Algorithm with
i Congestion Avoidance

packet loss packet loss packet loss

SENDER RECEVER Window size

CWND=1

CWND=2

CWND=4 .

Time
— > —> —— P> ———»

SlowStart SlowStart Congestion Congestion
avoidance avoidance

4/16/2008 8

Fast Retransmit

= Three and more duplicate ACKs indicate a lost
segment

= Then TCP performs a retransmission of the lost
segment, without waiting for a timeout to happen

= Enter slow start:
ssthresh = cwnd/2
cwnd =1

4/16/2008

Fast Recovery

= Fast recovery avoids slow start after a fast
retransmit

= After three duplicate ACKs set:
= Retransmit the lost segment
= ssthresh = cwnd/2
= cwnd = ssthresh+3
= Increase cwnd by one for each additional duplicate ACK

= When it receives an ACK for a new packet
cwnd=ssthresh
enter congestion avoidance

4/16/2008

10

Various TCP Congestion Control

i Algorithms

o (1988, FreeBSD 4.3 Tahoe)

= Slow start
= Congestion avoidance
= Fast retransmit

o (1990, FreeBSD 4.3 Reno)
= Fast recovery
m (1996)

- (1996)

4/16/2008

11

TCP Reno

= Duplicate ACKs:
= Fast retransmit
= Fast recovery
Fast recovery avoids slow start

= Timeout:
= retransmit
= Slow start

= TCP Reno performs better than TCP Tahoe when a
single packet is dropped within a round-trip time.

4/16/2008

12

TCP New Reno

= When multiple packets drops, Reno can not handle
well

= Partial ACK:

= happens if multiple packets are lost

= A partial ACK does not acknowledge all packets that are

outstanding at the beginning of a fast recovery (this takes
sender out of fast recovery)

Sender must wait until timeout occurs
= New Reno:

= Partial ACK does not take sender out of fast recovery

= New Reno can handle multiple lost segments without
entering slow start

4/16/2008 13

Selective Acknowledgement
(SACK)

= At most 1 lost segment can be retransmitted in Reno
and NewReno per round trip time

= Selective acknowledgments: acknowledges non-
continuous blocks of data

= Multiple blocks can be transmitted in a single
segment

= TCP SACK:

= Initiate fast recovery upon 3 duplicate ACKs

= Sender keeps records of SACKs and understand if segments
are lost. Sender retransmits the subsequently segment from
the list of the lost segments

4/16/2008 14

i Simulation

= Opnet Modeler and IT Guru

= Simulation results:
= congestion window size (CWND)
= sent segment sequence number (SSSN)

= Simulation scenarios:

= Point to point client and server connection (PPP)
= single packet drop
=« two packet drops

= WAN topology: 0.05% packet drops and 0.001 sec packet
latency

= Wireless topology: using trajectory for packet drops

4/16/2008

15

Point-to-Point Client Server

i connection (PPP)

= Application
= FTP
= constant file size
= Constant inter-request
time
= Profile

s Client
s Server: FTP server

s Packet discarder
= drop packets

4/16/2008

16

CWND In PPP Server-Client: one

‘L drop

M Tahoe_onedrop
M Annotation: Conn 1 [Frpl [Part 200 <-> Logical_Mebwork_client [Paort 7024]
M Reno_onediop
B Annotatior: Conn 1 [Ftp]: [Pork 20] <-> Logical_Mebwork_chent [Port 1024]
MewReno_onedrop
Annatation: Caonn 1 [Fip]: [Pork 200 <-» Logical_Mebwork_client [Paort 1024]
SACK_onedrop
Annotatior: Conn 1 [Ftp]: [Pork 20] <-> Logical_Mebwork_clent [Port 1024]

TCP Connection. Congestion Window Size [bytes]
110,000

100,000 -

30,000 /
20,000 /

70,000 / //
60,000 l/

50,000 I
4EI:I:IEIEI / //

30,000 l I
20,000 /l I
10,000 . =
1]
| ! | ! | ! | ! |
Lodmd2s Tm 44z Tm 46z Tm 48 Tm 50z

4/16/2008

M Tahos_onedop
B Annotation: Conn 1 [Ftp] [Paort 20] <-> Logical _Metwork_client [Port 1024]
B Reno_onediop
M Annaotation: Conn 1 [Ftpl [Park 200 - Logical_Metwork_clieqt [Paort 1024]
MewReno_onedrop
Annotation:; Conn 1 [Ftp]: [Port 20] <-> Logical_Metwork_client [Fort 1024]
SACK_onedop
Annatation: Cann 1 [Fip]: [Port 20 <-» Logical_Metwork_client [Paort 1024]

TCF Connection. Congesztion Window Size [bytes)
110,000

100,000 ——— |

30,000

80,000 /\
\ /]
/|

~
50,000 \

40,000

20,000 /
10.000

I:I | I I | I I | I I |
L Am 4B Fs Tm 47.0z Tm 473z Tm 47.6z

17

Sent Segment Sequence Number
i PPP Server-Client: one drop

4/16/2008

18

CWND In PPP Server-Client: two

i drops

m Tahoe_with two_droop
m gonotation: Comn 1 [Fip]: (Porct 200 <-F Logical Hetwork_client
= Reno_with two_drop
m Arnnotation: comn 1 [Fipl: (Porkt 20% <-* Logical Hebtwork_client
Rewceno_with_ two_drop
Annotation: Comn 1 [FEpl: (Port 20 <-r Logical Retwork_client
SACK_with two_drop
Annotation: Comnm 1 [Ftp]: (Port 20} <-* Logical Hetwork_client
TP Comnmeckion. Gongestion Window Size (bptes)
100,000
30,000 |
20,000
70,000 r_/—__,...--""'
B0, 000 ,
E0, 000 [
40,000
30, 000]I \k]
20,000 , I \ l
10, 000 j J V
]
I ' | ' I ' I ' I ! I
Im 42= im 44= im 4E6= im 48s im S0s Im S52=

100, 000

a0, 000

Tahoe_with_two_dcop
Annotation:
Beno_with two_drop
Annotation:
Rewreno_with two_drop
Annotation:
SACE_with twro_drop
Annotation:

comn 1 [Fip]:
conn 1 [Ftp]:
comn 1 [Fip]:

conn 1 [Ftp]:

(Port 20% <-% Logical Hetwork client
(Poct 20} <-% Logical Hetwork_client
(Port 20% <-% Logical Hetwork client

(Poct 20} <-* Logical Hetwork_client

TCP Connection. Congestion Windoew Size (bnkes)

&0, 000

70, 000

G0, 000

]
|

£0, 000

40, 000

20, 000

20, 000

10, 000

im 45=

I |
im 46=

im 47=

4/16/2008

Sent Segment Sequence Number
i PPP Server-Client: two drops

4/16/2008

20

4/16/2008

21

CWND in WAN: packet drop
(0.05%) packet latency (0.001)

B Thaeo
M Annotation: Conn 1 [Frp) [Port 20 <-» Eazt_Client [Port 1024]
M FReno
B Annotatior: Conn 1 [Ftp]: [Port 20] <-» East_Client [Port 1024]
HewReno
Annatation: Conn 1 [Fip]: [Pork 20] <- East_Client [Paort 1024]
SACk
Annotatior: Conn 1 [Ftp]: [Port 20] <-» East_Client [Port 1024]

TCF Connection. Congestion YWindow Size [bytez]
100,000

80,000 /

80.000

¥0.000

60.000

50.000

40,000

30.000

20.000

10,000

.

o i | i | i |
o 1m B2s Z2m 8= 2m 24z 2m 40z .

4/16/2008

SSSN In WAN, packet drop
(0.05%)-packet latency (0.001

B Thaeo
M Annotation: Conn 1 [Ftpl [Port 20 <-» Eazt_Client [Port 1024]
M FReno
B Annotation: Conn 1 [Ftp]: [Paort 20] <-> East_Client [Port 1024]
MHewReno
Annatation: Conn 1 [Fip): (Pork 20 <-> East_Client [Paort 1024]
SALCK
Annotation: Conn 1 [Ftp]: [Port 20] <-> Eazt_Chent [Port 1024]

TCF Connection.Sent Segment Sequence Humber
27,000,000

36,000,000 of -

35,000,000 / /
34,000,000 / /
33,000,000 / /
32,000,000 =
21,000,000 / /
30,000,000 / ‘/
23,000,000 / /

V4

28,000,000
27.000,000 /
...26,000.000 | | | | | | |
.. T 44z 2m 2m 16z 2 3

4/16/2008

q Wireless Topology

4/16/2008

i CWND in Wireless Topology

4/16/2008

25

i Conclusion

= Reno performs well only if no loss or one packet drop
within a window

= NewReno can deal with multiple lost segments
without entering slow start

= SACK (selective acknowledgement and selective
retransmit)

= TCP congestion control algorithms do not perform
satisfactory in wireless network due to signal
attenuation in wireless environment.

4/16/2008 26

References

= K. Fall and S. Floyd, “Simulation based comparisons of Tahoe, Reno
and SACK TCP,” Computer Communications Review, vol. 26, no. 3, July
1996, pp. 5-21.

= M. N. Akhtar, M. A. O. Barry and H. S. Al-Raweshidy “Modified Tahoe
TCP for wireless networks using OPNET simulator,” Proc of the London
Communications Symposium (LC52003), London, Sept 2003.

= W. Stevens, “TCP slow start, congestion avoidance, fast retransmit and
fast recovery algorithms,”. Network Working Group, RFC2001, Jan
1997.

= M. Omueti and Lj. Trajkovic, “M-TCP+: using disconnection feedback to
improve performance of TCP in wired/wireless networks, ” Proc. SPECTS
2007, San Diego, CA, USA, July 2007, pp. 443-450.

= A. S. Tanenbaum, “Computer Networks,” The Transport Layer, 4rd
Edition.

4/16/2008 27

	TCP Congestion Control in Wired and Wireless Networks
	Roadmap
	Introduction
	Introduction
	Related Work
	Slow Start
	Congestion Avoidance
	Slow-Start Algorithm with Congestion Avoidance
	Fast Retransmit
	Fast Recovery
	Various TCP Congestion Control Algorithms
	TCP Reno
	TCP New Reno
	Selective Acknowledgement (SACK)
	Simulation
	Point-to-Point Client Server connection (PPP)
	CWND in PPP Server-Client: one drop
	Sent Segment Sequence Number PPP Server-Client: one drop
	CWND in PPP Server-Client: two drops
	Sent Segment Sequence Number PPP Server-Client: two drops
	WAN Topology
	CWND in WAN: packet drop (0.05%) packet latency (0.001)
	SSSN in WAN, packet drop (0.05%)-packet latency (0.001)
	Wireless Topology
	CWND in Wireless Topology
	Conclusion
	References

