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Introduction

= TCP mechanism for congestion control is
Implemented at the sender

= The congestion window size at the sender is set as:
Send Window = MIN (flow control window, congestion window)

= flow control window is advertised by the receiver

= congestion window is set based on feedback from the
network
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Introduction

= Two significant parameters of TCP congestion control
are.
= Congestion Window size(cwnd)
= Slow-start threshhold Value (ssthresh)
= Congestion control works in two phases:
= slow start: cwnd < ssthresh
= congestion avoidance: cwnd = ssthresh
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Related Work

= Comparison of TCP Tahoe, Reno, NewReno, SACK
using ns-2:
= K. Fall and S. Floyd, “Simulation based comparisons of
Tahoe, Reno and SACK TCP,” Computer Communications
Review, vol. 26, no. 3, July 1996, pp. 5-21
= Modified Tahoe and comparison with other TCP
congestion control algorithms using Opnet Modeler:

= M. N. Akhtar, M. A. O. Barry and H. S. Al-Raweshidy
“Modified Tahoe TCP for wireless networks using OPNET
simulator,” Proc of the London Communications Symposium
(LCS2003), London, Sept 2003

4/16/2008



i Slow Start

= Initial value:

= When the sender receives an ACK, the congestion
window is increased by 1 segment:

= an ACK for two segments, cwnd is incremented by only 1
segment

= an ACK for a segment that is smaller than MSS bytes,
cwnd is incremented by 1
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Congestion Avoidance

= Congestion avoidance phase initiates after cwnd
reaches the slow-start threshold value

= If cwnd = ssthresh then every time an ACK reaches
to the sender, increase cwnd as:
= cwnd = cwnd + 1/ cwnd
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Slow-Start Algorithm with
i Congestion Avoidance

packet loss packet loss packet loss
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avoidance avoidance
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Fast Retransmit

= Three and more duplicate ACKs indicate a lost
segment

= Then TCP performs a retransmission of the lost
segment, without waiting for a timeout to happen

= Enter slow start:
ssthresh = cwnd/2
cwnd =1
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Fast Recovery

= Fast recovery avoids slow start after a fast
retransmit

= After three duplicate ACKs set:
= Retransmit the lost segment
= ssthresh = cwnd/2
= cwnd = ssthresh+3
= Increase cwnd by one for each additional duplicate ACK

= When it receives an ACK for a new packet
cwnd=ssthresh
enter congestion avoidance
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Various TCP Congestion Control

i Algorithms

o (1988, FreeBSD 4.3 Tahoe)

= Slow start
= Congestion avoidance
= Fast retransmit

o (1990, FreeBSD 4.3 Reno)
= Fast recovery
m (1996)

- (1996)
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TCP Reno

= Duplicate ACKs:
= Fast retransmit
= Fast recovery
Fast recovery avoids slow start

= Timeout:
= retransmit
= Slow start

= TCP Reno performs better than TCP Tahoe when a
single packet is dropped within a round-trip time.
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TCP New Reno

= When multiple packets drops, Reno can not handle
well

= Partial ACK:

= happens if multiple packets are lost

= A partial ACK does not acknowledge all packets that are

outstanding at the beginning of a fast recovery (this takes
sender out of fast recovery)

Sender must wait until timeout occurs
= New Reno:

= Partial ACK does not take sender out of fast recovery

= New Reno can handle multiple lost segments without
entering slow start
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Selective Acknowledgement
(SACK)

= At most 1 lost segment can be retransmitted in Reno
and NewReno per round trip time

= Selective acknowledgments: acknowledges non-
continuous blocks of data

= Multiple blocks can be transmitted in a single
segment

= TCP SACK:

= Initiate fast recovery upon 3 duplicate ACKs

= Sender keeps records of SACKs and understand if segments
are lost. Sender retransmits the subsequently segment from
the list of the lost segments
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i Simulation

= Opnet Modeler and IT Guru

= Simulation results:
= congestion window size (CWND)
= sent segment sequence number (SSSN)

= Simulation scenarios:

= Point to point client and server connection (PPP)
= single packet drop
=« two packet drops

= WAN topology: 0.05% packet drops and 0.001 sec packet
latency

= Wireless topology: using trajectory for packet drops
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Point-to-Point Client Server

i connection (PPP)

= Application
= FTP
= constant file size
= Constant inter-request
time
= Profile

s Client
s Server: FTP server

s Packet discarder
= drop packets
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CWND In PPP Server-Client: one

‘L drop

M Tahoe_onedrop
M Annotation: Conn 1 [Frpl [Part 200 <-> Logical_Mebwork_client [Paort 7024]
M Reno_onediop
B Annotatior: Conn 1 [Ftp]: [Pork 20] <-> Logical_Mebwork_chent [Port 1024]
MewReno_onedrop
Annatation: Caonn 1 [Fip]: [Pork 200 <-» Logical_Mebwork_client [Paort 1024]
SACK_onedrop
Annotatior: Conn 1 [Ftp]: [Pork 20] <-> Logical_Mebwork_clent [Port 1024]
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M Tahos_onedop
B Annotation: Conn 1 [Ftp] [Paort 20] <-> Logical _Metwork_client [Port 1024]
B Reno_onediop
M Annaotation: Conn 1 [Ftpl [Park 200 - Logical_Metwork_clieqt [Paort 1024]
MewReno_onedrop
Annotation:; Conn 1 [Ftp]: [Port 20] <-> Logical_Metwork_client [Fort 1024]
SACK_onedop
Annatation: Cann 1 [Fip]: [Port 20 <-» Logical_Metwork_client [Paort 1024]
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Sent Segment Sequence Number
i PPP Server-Client: one drop
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CWND In PPP Server-Client: two

i drops

m Tahoe_with two_droop
m gonotation: Comn 1 [Fip]: (Porct 200 <-F Logical Hetwork_client
= Reno_with two_drop
m Arnnotation: comn 1 [Fipl: (Porkt 20% <-* Logical Hebtwork_client
Rewceno_with_ two_drop
Annotation: Comn 1 [FEpl: (Port 20 <-r Logical Retwork_client
SACK_with two_drop
Annotation: Comnm 1 [Ftp]: (Port 20} <-* Logical Hetwork_client
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comn 1 [Fip]:
conn 1 [Ftp]:
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conn 1 [Ftp]:

(Port 20% <-% Logical Hetwork client
(Poct 20} <-% Logical Hetwork_client
(Port 20% <-% Logical Hetwork client

(Poct 20} <-* Logical Hetwork_client
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Sent Segment Sequence Number
i PPP Server-Client: two drops
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CWND in WAN: packet drop
(0.05%) packet latency (0.001)

B Thaeo
M Annotation: Conn 1 [Frp) [Port 20 <-» Eazt_Client [Port 1024]
M FReno
B Annotatior: Conn 1 [Ftp]: [Port 20] <-» East_Client [Port 1024]
HewReno
Annatation: Conn 1 [Fip]: [Pork 20] <- East_Client [Paort 1024]
SACk
Annotatior: Conn 1 [Ftp]: [Port 20] <-» East_Client [Port 1024]
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SSSN In WAN, packet drop
(0.05%)-packet latency (0.001

B Thaeo
M Annotation: Conn 1 [Ftpl [Port 20 <-» Eazt_Client [Port 1024]
M FReno
B Annotation: Conn 1 [Ftp]: [Paort 20] <-> East_Client [Port 1024]
MHewReno
Annatation: Conn 1 [Fip): (Pork 20 <-> East_Client [Paort 1024]
SALCK
Annotation: Conn 1 [Ftp]: [Port 20] <-> Eazt_Chent [Port 1024]
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q Wireless Topology
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i CWND in Wireless Topology
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i Conclusion

= Reno performs well only if no loss or one packet drop
within a window

= NewReno can deal with multiple lost segments
without entering slow start

= SACK (selective acknowledgement and selective
retransmit)

= TCP congestion control algorithms do not perform
satisfactory in wireless network due to signal
attenuation in wireless environment.
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