
Evaluation of TCP congestion control
mechanisms using OPNET simulator

ENSC 835: COMMUNICATION NETWORKS

FINAL PROJECT PRESENTATION
Spring 2008

Laxmi Subedi
URL: http://www.sfu.ca/~lsa38/project.html

Email: lsa38@cs.sfu.ca

2

Roadmap

Introduction
Objective and scope
Implementation
Simulation
Conclusion
Future work
References

3

Introduction: Transmission Control
Protocol

reliable, error free, connection-oriented, point-to-
point with flow control
used by most applications: FTP, HTTP, SMTP
carries about 90% internet traffic [1]
developed based on wired network properties
Sliding window protocol for flow control
problems exist when an intermediate router run out
of memory and drops the packets termed as
Congestion
no information from lower layers on congestion

[1] I. Khalifa and Lj. Trajkovic, “An overview and comparison of analytical TCP models,” (invited
session) Proc. IEEE Int. Symp. Circuits and Systems, Vancouver, British Columbia, Canada,
May 2004, vol. V, pp. 469-472.

4

Introduction: Transmission Control
Protocol

packet loss and delay indicate congestion
TCP maintains congestion window accordingly
Congestion window:

maximum number of bytes transmitted without
ACKs sent packets
minimize router buffer overflow and
retransmission effort

Approaches to manage congestion window:
Slow Start
Addititive Increase Multiplicative Decrease
Congestion Avoidance
Fast retransmit and Fast recovery

5

Introduction: Slow Start

initial congestion window: 1 MSS
on receiving ACK, congestion window
is set to 2
process increases congestion window
exponentially
continues exponential increase until
loss event or advertised receiver
window, whichever is minimum
rapid utilization of available
bandwidth.

Sender Receiver

6

Introduction: AIMD

Additive Increase:
under no congestion, window increases by 1 MSS
for every RTT (Rather than for every ACK)
helps in additional use of bandwidth

Multiplicative Decrease:
on loss event, window reduced to half of the
current window size
continues to decrease half of the previous window
on successive drops
minimum window size is 1 MSS

7

Introduction: Congestion Avoidance

after slow start threshold, window increases by 1
MSS for every RTT rather than exponentially

Congestion
threshold

Slow start
phase

Congestion
avoidance

Congestion
window

cwnd

time

8

Introduction: Fast retransmit and
Fast recovery

Fast retransmit:
uses duplicate Acks to
retransmit
retransmits without waiting
for timeout

Fast recovery:
after fast retransmit, perform
congestion avoidance instead
of slow start
duplicate ACK indicates
availability of network
resources

Sender Receiver

Dup ACK 1
Dup ACK 2
Dup ACK 3

Packet loss

9

Introduction: Algorithms

Reno, New-Reno, and SACK
use slow start, congestion avoidance, fast
retransmission and fast recovery

Reno
remains in fast recovery until it receives duplicate
acknowledgments
transmits new packet for additional received
duplicate acknowledgment

SACK
acknowledge out-of-order segment selectively
rather than cumulatively

10

Introduction: Algorithms

NewReno
improves retransmission during fast recovery
does not exit fast-recovery until acknowledgment
of all data which are not acknowledged while
entering fast recovery
uses partial ACKs (ACK segments that do not
acknowledge all the information that has been
sent up to the moment when they are issued)

11

Introduction: Literature Review

“New-Reno TCP in absence of SACK avoids Reno
TCP's performance problems when multiple packets
are dropped from a window of data. But still SACK is
better in case of multiple packet drops.” [2]

“SACK performance deteriorates in case of congested
network. In case of non-congested network all three
algorithms have comparable performance.” [3]

[2] S. Floyd and K. Fall, “Simulation Based Comparisons of Tahoe, Reno and Sack TCP”, ACM
Computer Communication Review, 1996, Vol.26, No.3: 5–21.

[3] R. Paul and Lj. Trajkovic,"Selective-TCP for wired/wireless networks,'' Proc. SPECTS 2006,
Calgary, AL, Canada, Aug. 2006, pp. 339-346.

12

Introduction: Literature Review

New-Reno outperforms Reno and SACK when no
packet losses occur during the slow-start phase.
Bandwidth-delay product leads to performance
degradation of regardless of TCP versions and the
bottleneck buffer size. [4]

Performance of New-Reno is worse than Tahoe.
SACK is the best and the most robust over the
wireless channel. [5]

[4] H. lee, S. Lee and, Y.Choi, ”The influence of the large bandwidth-delay product on TCP Reno,
NewReno, and SACK”, Proc. Information Networking Conference, Oita, Japan, 2001, pp.
327–334.

[5] F. Anjum and L. Tassiulas, “Comparative study of various TCP versions over a wireless link
with correlated losses”, IEEE/ACM Transactions on Networking (TON), NJ, USA, June 2003,
Vol. 11, Issue 3, pp. 370 – 383.

13

Project: Objective and scope

Objective:
observe, analyze, and compare congestion
window recovery processes
analyze congestion window in case of link
disconnection (wireless property)
get familiar with OPNET simulation tool

Scope:
compare Reno, SACK, and New-Reno
analyze Congestion window
simulate drop and disconnection events

14

Implementation: Steps

get familiar with Opnet tool
get familiar with algorithms implemented
select and built appropriate nodes
built suitable network topology
select appropriate parameter to evaluate
performance of algorithms during congestion
select appropriate statistics
perform analysis on collected statistics

15

Simulation: Simple Client Server
Topology

Client and Server connected
with 1.5 Mbps line
Packet discarder, between
server to client link, impose
packet loss
File of size 3 MB is
transferred from server to
client using ftp application
Different packet loss scenario
is created for 0.5 second

Client server topology

16

No packet loss

Congestion window (Reno, SACK, NewReno) Download response time

17

One packet loss

Congestion window (Reno, SACK, NewReno) Download response time

18

Two packets loss

Congestion window (Reno, SACK, NewReno) Download response time

19

All packets loss

Congestion window (Reno, SACK, NewReno) Download response time

20

Simulation: Client and Server with
disconnection node

consist of two subnets: Client and Server in each
client and server connected to routers: 100 Mbps link
routers are connected to the Internet cloud: 45 Mbps
link
150 MB is transferred using ftp application
link between client and router is disconnected via
failure recovery node
disconnection time intervals:

0.05s, 0.1s, and 0.2s
10s

21

Simulation: Client and Server with
disconnection node

Network topology to simulate disconnected network

22

Disconnection for 0.05s, 0.1s, 0.2s

Congestion window (SACK, Reno, NewReno) Download response time

23

Disconnection for 10s

Congestion window (Reno,SACK, NewReno) Download response time

24

Simulation: Client and Server with
congested network

consists of multiple subnets: multiple clients and
servers
client and server connected to each subnet router by
100 Mbps link
45 Mbps link connects routers to backbone Internet
database and ftp application are used in server
profile using server application are run on client
congested network is simulated

25

Simulation: Client and Server with
congested network

Fig: Network topology used to simulate congested network

26

Congestion window at port 1025

Average congestion window at port 1025
Reno, Sack, and New-Reno

27

Congestion window at port 1026

Average congestion window at port 1026
Reno, Sack, and New-Reno

28

Congestion window at port 1027

Average congestion window at port 1027
Reno, Sack, and New-Reno

29

Slightly congested network

Average congestion window for low congested network
Reno, Sack, and New-Reno

30

Conclusion

Simple client server model:
Reno, SACK, and NewReno recovers congestion
window similarly in case of all and no packets loss

SACK performs best for multiple packets loss
Reno performs worst among three algorithms

Client and server with disconnected node:
All algorithms are incapable to distinguish link
disconnection

31

Conclusion

window recovery process varies with
disconnection interval
SACK performs better for short disconnection

Multiple clients and servers model:
conflicting behavior for heavily congestion network
SACK performs better in slightly congested
network

32

Future Work

model wireless node with disconnection behavior for
detailed analysis
analyze variation in drop time for more further
performance analysis
investigate to identify the cause of conflicting
behavior of Reno, NewReno, and SACK algorithms
for heavily congested network
implement new algorithms and compare their
performance with these basic algorithms

33

References

[1] S. Floyd and K. Fall, “Simulation Based Comparisons of
Tahoe, Reno and Sack TCP”, ACM Computer Communication
Review, 1996, Vol.26, No.3: 5–21 [1]
[2] S.Floyd and T.Henderson “The New-Reno Modification to
TCP’s Fast Recovery Algorithm” RFC 2582, Apr 1999. [2]
[3] R. Paul and Lj. Trajkovic,"Selective-TCP for wired/wireless
networks,'' Proc. SPECTS 2006, Calgary, AL, Canada, Aug.
2006, pp. 339-346. [3]
[4] W. G. Zeng and Lj. Trajkovic,"TCP packet control for
wireless networks,'' Proc. IEEE Int. Conf. on Wireless and
Mobile Computing, Networking and Communications (WiMob
2005), Montreal, Canada, Aug. 2005, pp. 196-203, vol. 2. [4]
[5] Z. Chen and M.M. Ali, "The performance of TCP congestion
control algorithm over high-speed transmission links,'' IEEE
Canadian Conf., Department of Electrical and Computer
Engineering, Concordia University, Montreal, Canada, May
2004, pp.1371 - 1374 Vol.3. [5]

34

References

[6] G. Holland and N. Vaidya,"Analysis of TCP performance over
mobile ad hoc networks,'' Proc. ACM/IEEE Int. Conf. on Mobile
Computing, Networking,, Seattle, Washington, United States,
1999, pp. 219-230.[6]
[7] F. Anjum and L. Tassiulas, “Comparative study of various
TCP versions over a wireless link with correlated losses”,
IEEE/ACM Transactions on Networking (TON), NJ, USA, June
2003, Vol. 11, Issue 3, pp. 370 – 383. [7]
[8] H. lee, S. Lee and, Y.Choi, ”The influence of the large
bandwidth-delay product on TCP Reno, NewReno, and SACK”,
Proc. Information Networking Conference, Oita, Japan, 2001,
pp. 327–334. [8]
[9] RFC [online]. Available: http://www.ietf.org/rfc.html.

