
 ENSC835: Communication Networks

Examination of Routing Algorithms in Distributed Hash Tables

(DHTs) for Peer-to-Peer (P2P) Networks

Spring 2008

Final Project

Kevin Thomas

http://www.sfu.ca/kta18/ENSC835Project.html

kta18.at.sfu.ca

http://www.sfu.ca/kta18/ENSC835Project.html

Table of Contents

SECTION TITLE PAGE NUMBER
ABSTRACT 1

INTRODUCTION
What are Peer-to-Peer Networks? 2
Structured vs. Unstructured P2P Networks 3
The Concept of Hash Functions 4
Centralized vs. Distributed Hash Tables 5
The Chord DHT Algorithm 6
Related Work 10
Project Scope 11

PROJECT IMPLEMENTATION DETAILS
Simulation Tools 13
 OMNeT++ 13
 INET Framework for OMNeT++ 13
 OverSim: The P2P Overlay Simulator 13
Simulation Runs and Screen Outputs 14

DISCUSSION AND CONCLUSION
Analysis of Simulation Statistics 17
Challenges and Lessons Learned 49
Future Work 50
Real-life Applications of DHTs 50

REFERENCES 52

ABSTRACT

 Peer-to-Peer (P2P) networks must make use of sometimes novel approaches in order to locate nodes

(peers) that hold the information being searched for. Structured vs. unstructured P2P networks are

compared. The concept of a Distributed Hash Table (DHTs) is explored as a solution, particularly the

Chord DHT implementation. The routing capabilities and performance of P2P networks using the

Chord DHT protocol is examined using the OverSim simulation tool. The results of sixteen different

simulations under four groups are examined using three different parameters:

● Pattern of growth within a group under exponential growth of the number of peers

● Effect of exponential growth on the percentage of delivered messages

● Effect of exponential growth on the average number of hops needed to find a recipient

 Conclusions of network behavior in all cases are drawn. The challenges faced while attempting to

implement the project are discussed and the lessons learned listed. The direction of future work on the

subject is touched upon. Finally, two examples of real-world applications of DHTs are given.

1

INTRODUCTION

What are Peer-to-Peer (P2P) Networks?

 A Peer-to-Peer (P2P) network or system is “a self-organizing system of equal, autonomous entities

(peers) which aims for the shared usage of distributed resources in a networked environment avoiding

central services” [1].

 In contrast, a network that is built on the centralized (client-server) paradigm concentrates authority

regarding system parameters within entities (servers), which are given charge of many other dependent

entities (clients). The 'system parameters' referred to here may cover such aspects as:

● Provision of services (file serving, database searches, audio/video conferencing, etc.)

● Management of resources (bandwidth, storage space, processing power, etc.)

● Co-ordination and control of operations

 However, networks built using such paradigms possess inherent problems with regards to scalability,

security, reliability, flexibility and quality of service. Servers have a limit to the number of clients

whose requests can be handled, before performance in terms of response time and data transfer speeds

begins to degrade due to increasing load. In addition, they represent vulnerabilities in the network in

terms of bottlenecks for traffic and network failure. When a server is compromised due to too much

load or failure, the clients dependent on it for resources are cut off from the rest of the network, denied

access to resources and the global objective of the network as a system is also impacted. Management

and modification of server functionality is also difficult and expensive without extensive changes to the

system as a whole.

 P2P networks, by the very nature of the paradigm that governs their fundamental architecture present

an alternative to the problems that plague the client-server methodology of system design and

implementation. Full distribution of responsibility for service provision, resource management and co-

ordination among peers means that each new peer that joins the network contributes resources and

power to the network, instead of becoming a burden that must be serviced. Also, departure or failure of

a peer does not impact the network as severely as failure of a server entity, as there is no single point of

compromise. Peers can co-ordinate among themselves to work around failures. The P2P system that

2

thus emerges from the interacting collective of peer nodes is also more adaptable to change. The

fundamental differences between a client-server and peer-to-peer network is shown in Figure 1.

Structured vs. Unstructured P2P Networks

 Despite inherent strengths that enable P2P networks to overcome the pitfalls of the client-server

methodology, P2P networks face unique challenges of their own. One such challenge is the ability to

locate other peers efficiently. The goal is to be able to achieve the efficiency and guaranteed results

provided by a server while being fully distributed at the same time. Meeting this challenge is

particularly crucial in massively distributed P2P networks, containing thousands or even millions of

nodes.

 The Gnutella protocol was an initial attempt at achieving a fully distributed P2P system for file

sharing. When Gnutella is implemented in a network of peers, the resulting routing mechanism that is

used in order to find other peers that have a piece of data and retrieve it is described as 'network

flooding'. In short, when a peer sends out a query regarding another peer or piece of data, it sends it to

all peers within its neighboring peers. The end result is a flood of messages throughout the network in

3

Figure 1. Client-Server vs. Peer-to-Peer Network Topology

the hope of finally reaching the intended recipient and getting a reply to the initial query. Even though

the network also implements a TTL (Time To Live) restricting the number of hops a message is

allowed to traverse, the amount of traffic generated by such a routing methodology is immense. As a

result, network performance becomes very poor as the number or peers in the network grow ever larger.

P2P networks implementing this manner of routing methodology are known as 'unstructured' P2P

networks.

 Finding a solution to this problem requires one to answer the question: how can some form of order

be brought to a P2P network that will allow efficient lookup of peers and the data that they possess,

without bringing in any manner of centralization into the system? The idea of using distributed hashing

to create Distributed Hash Tables (DHTs) in P2P networks has emerged over the past several years as a

viable solution to this problem. In order to understand what a DHT is and how it operates, the concept

of hash functions must be understood first.

The Concept of Hash Functions

 A hash function [2] is an algorithm or mathematical function that operates on some form of data, and

produces an integer as its output. The result of the hashing process is known as a hash value. A typical

use of hash functions is to quicken the lookup of data in tables, such as searching databases and files.

Hash functions that work effectively for P2P satisfy some basic properties, such as:

● Determinism:

 A given piece of data, when input must hash to the same output value each time.

● Uniformity:

 For a given input range, hash functions have a range over which output hash values are

produced. The mapping should produce hash values spread out as evenly as possible over the

output range.

● Continuity:

 Two items of input data that differ by only a little should be mapped to equal or nearly equal

output hash values.

 A hypothetical hash function operating on a peer's IP address to produce an output hash value is

shown below.

4

Centralized vs. Distributed Hash Tables

 The hash function described in the previous section can be used in the creation of a data structure

known as a 'hash table'. A hash table is used to link a 'key' field with an associated 'value', forming what

is known as a 'key-value' pair, denoted by (key, value). A common example may be a person's name

(key) and telephone number (value). However, instead of using the data in the key field as it is, it is

operated on by a hash function, producing an output hash value. This hash value becomes the key, and

is stored along with the associated value in the hash table. In order to retrieve the key's associated

value, the key in it's original format (e. g., the person's name) is hashed and the hash value looked up in

the hash table. When located, the associated value is retrieved. Thus, the final purpose of the hash table

is to support a 'lookup' operation where, given the key (the person's name), it finds its associated value

(telephone number). In a communication network, the purpose in this case may be to find a node using

some uniquely distinguishing property such as its IP address (the key), in order to retrieve an item of

data associated with that node (the value).

 In a network built on client-server principles, the hash table would be stored on a central server, and a

client desiring to locate another client responsible for some data would request the server to lookup that

node's key and retrieve its associated value. However, such a methodology cannot work in a P2P

network, as the very nature of the network architecture precludes the implementation of any centralized

routing principles to find and retrieve data. The alternative is to distribute the hash table over all the

participating peer, by partitioning it and giving each peer responsibility for the partition assigned to it.

Along with partitioning and distributing the hash table, there must also be a algorithm to efficiently

route queries from peers attempting to find other peers responsible for a particular partition, in order to

retrieve the key(s) stored on that peer's partition. Thus, the principle of partitioning and distributing the

hash table over the participating peer nodes, along with a routing algorithm to efficiently route requests

5

Figure 2. A hypothetical hash function operating on an IP address to provide an output hash value.

to using a peer's key to retrieve its associated values forms the heart of the Distributed Hash Table

(DHT).

 Different perspectives on implementing the principles of DHT Algorithm have resulted in various

types of DHT implementaions over the years: Chord, Pastry, CAN (Content Adressable Network),

Symphony, Viceroy and Kademlia are among the best known ones. This project focuses only on the

Chord DHT algorithm.

The Chord DHT Algorithm

 The Chord DHT algorithm was first published by Stoica et al. [3] in 2001. Chord uses l-bit identifiers

as its keys, which are integers that span the continuous closed set of [0, 2l -1]. The Chord algorithm

maps the peers in the underlying topology of the network into a virtual, one-dimensional, circular

'identifier space' where the identifies are the l-bit keys of the peers. The nature of the mapping is

modulo 2l, i. e. the next identifier after 2l – 1begins again at 0. The implementation of the Chord

algorithm used for simulation in this project makes use of the US Secure Hash Algorithm 1 (SHA1) [4].

 In the Chord implementation, each peer node and the individual data items on it have individual

identifiers produced by the hash function. A peer's identifier is known as it's 'ID' and a data item's

identifier is known as a 'key'. A peer is responsible for hosting a particular data item's (key, value) pair

(k,v) if the value of its ID is greater than or equal to k (i. e. ID ≥ k). This peer will be known as that

particular key's 'successor'. If the Chord circle is pictured as having the keys arranged on it in

increasing order as we move around it clockwise, a given peer will be responsible for hosting the keys

that precede it in value. This is illustrated in the figure below. In this scenario, 5-bit identifiers are used,

i. e. from 0 to 15 for peers and data items. Assuming 8 peers and 5 data items exist, they would be

mapped to the Chord identifier space as shown below.

6

 Thus, it can be understood that the Chord identifier space/circle is formed by the collective of the

peers, their ID's and the uniquely associated (key, value) pairs of the data items that they host. With the

identifier space in place, the issue of efficient routing of messages related to lookup operations

becomes essential, in order to achieve good network performance. The most efficient method of routing

within the identifier space requires each peer to maintain some amount of per-node state in the form of

a 'finger table' (essentially, a routing table) and a pointer to its predecessor within the identifier space.

 The purpose of the finger table is for a peer to maintain a record of pointers to other peers in the

identifier space. For a given l-bit identifier key used to construct the identifiers, a peer must maintain a

maximum of l entries in its finger table. Also, for a given peer p in the Chord identifier circle, the ith

entry in its finger table holds the pointer to a neighbor whose ID follows after its own by at least 2 i -1.

The identifier of the neighbor is therefore essentially given by the relation IDneighbor = IDpeer + (2i -1),

7

Figure 3. Peers and data items mapped to Chord identifier space by ID and key value.

where 1 ≤ i ≤ l. This is illustrated in the table below, taking the peer in figure 3 with ID = 5.

Finger Table of Peer with ID = 5 from Figure 3.
Finger Table Entry No. Neighbour Successor ID

0 IDpeer + 1 6
1 IDpeer + 2 8
2 IDpeer + 4 12
3 IDpeer + 8 -
4 IDpeer + 16 -

 The implication of implementing a routing methodology constructed in this manner is that each peer

possesses more pointers to neighbors that are situated 'close by' in its region of the identifier space, and

fewer pointers to neighbors that are 'far away'. Also, irrespective of how large the P2P network grows

in terms of the number of peers, each peer will have to maintain a finger table of l entries at the most.

Given that SHA-1 uses 160-bit identifiers, this is still a reasonable size of finger table to maintain, for a

Chord implementation that uses SHA-1 to generate the necessary identifiers. Apart from the finger

table, each peer also maintains a pointer to its immediate predecessor in the identifier circle. This is

used in a protocol to maintain accuracy of per-node state information within a dynamic P2P network

environment and will be explained later.

 With the above infrastructure in place, message routing within the Chord identifier circle proceeds as

follows:

● A peer with identifier IDthisPeer receives a query message destined for another recipient (IDreceipient).

● It examines its finger table and locates the identifier of a neighbor whose ID makes it the closest

predecessor to the recipient on the identifier circle, i. e. IDneighbor < IDrecipient.

● It forwards the message to that neighbor with identifier IDneighbor.

● This repeats until the message reaches a node which determines from its finger table that

IDrecipient is either its immediate successor or lies between its own ID and the ID of its immediate

successor.

● The node reports its immediate successor as the query's result, which is sent back to the original

querying node.

8

 Apart from a means of efficiently routing messages within the identifier space, DHT algorithms also

need to provide a means for a P2P network to allow peers to join and leave the network, as well as

dealing with events that could be detrimental to network performance, such as node failures. Chord

makes provisions for these capabilities in the following manner.

 A node that wishes to join the P2P network must first determine its own ID (IDjoiningPeer). One common

means of doing this is to hash its own IP or MAC address. In addition, it must have the identifier of

some existing peer within the P2P network. This peer is known as the 'bootstrap node', that helps

introduce the joining node to the network. The joining node queries the bootstrap node for its own ID;

the response of this query will be the identifier of the peer that should become the joining node's

immediate successor. The next step is to notify its successor of its presence using its ID; this causes the

successor to update its state information to register the joining node as its predecessor on the identifier

circle. The final step is for the joining node to fill up its finger table by repeatedly querying the

bootstrap node for the identifiers of peers that are IDjoiningPeer + (2i -1) (i. e. 1, 2, 4, 8, 16, 32,...) positions

away on the identifier space, where i is the entry in the routing table.

 The environment of the P2P network may be either static or dynamic. In a static network, peers do

not leave the system. A dynamic network is one in which nodes may join and leave the network at

different times. Most real-world P2P networks are extremely dynamic in nature, as node arrival and

departure may be very frequent. This process of nodes joining and leaving the P2P network is known as

'churn'. The updating of pointers to successors and predecessors is important, as a peer in the identifier

space must have accurate information about the peers in its known neighborhood. If a new peer has

placed itself in the space between it and its currently known successor, it must become aware of that

fact, otherwise messages meant for the new successor will not reach it. It must also be made aware if an

existing successor leaves the identifier space. In addition, it must also be aware of changes in the

presence or absence of a predecessor peer. Finally, detection of node failures must also be addressed by

fixing and updating information in the finger table. Chord has built-in protocols to deal with such

events.

 Chord uses a 'stabilization protocol' [1] in order to deal with such dynamic events in its identifier

space. This is the purpose of the predecessor pointer mentioned earlier. Every peer runs a function

9

called 'stabilize()' periodically. This function sends a query message to its immediate known successor,

requesting it to reply with the identifier of its currently known predecessor. If the reply to the query

matches the peer's own identifier, it means that the information that this peer and its successor have

about their immediate neighbors is correct. However, if the identifier in the reply lies between the

inquiring peer's own ID and its known successor's ID, then this means that a new node with the

identifier in the query has joined in the space between the two. The inquiring node therefore must

adjust the information in its successor pointer to point to the identifier of the new known peer and

inform the new peer to update its own predecessor pointer accordingly. Thus, the stabilization protocol

lays the responsibility of a predecessor node to check on its successors and correct discrepancies in

pointers. When such a correction occurs, the new successor becomes responsible for all the (key, value)

pairs that were handled by the predecessor node; those keys are copied across from the predecessor

peer, and the predecessor removes them from its records.

 Similarly, Chord also has a 'fix fingers' protocol [1] to deal with inconsistencies in routing

information in a peer node's finger table. A peer node checks if a timeout has occurred on any expected

replies regarding queries that have been sent out. If a timeout is detected, it infers that the entry

regarding the recipient peer in its finger table is incorrect, and removes that entry from the finger table.

It then chooses the identifier from the preceding entry in the finger table and sends the query to that

peer.

 Having said this, it should also be noted that Chord requires peers to notify their predecessors and

successors before voluntarily leaving the network. This is necessary so that the (key, value) pairs that

the peer was responsible for are not lost; they are instead transferred to its immediate successor so that

the data or information is preserved within the network for other peers to access.

Related Work
● Stoica et al. [3] laid the groundwork with their published paper detailing the concept and

operation of the Chord DHT algorithm.

● Manku [5] conducted a detailed theoretical analysis of various routing implementations in

DHTs, providing mathematical insight into the nature of routing used Chord.

● Li, et al. [] conducted simulation experiments examining the behavior of various DHT

10

algorithms under churn.

● Yang [] built a simulation of networks implementing two DHT algorithms, Chord and Pastry in

the OPNET simulation tool environment.

● Steinmetz and Wehrle [1] provided a comprehensive yet simple and well-written description of

the concept and implementation of various DHT algorithms in their book “Peer-to-Peer Systems

and Applications”.

● Baumgart, Heep and Krause [8] built the open-source P2P overlay simulation tool and

components necessary to conduct simulations of DHT algorithms and published a paper

describing its architecture.

Project Scope

 The aim of this project is to examine the behavior of a Chord DHT algorithm implemented in a P2P

overlay network with varied parameters in the algorithm and P2P network. Sixteen simulations were

planned under four major groups, as follows:

1. Chord Recursive DHT Algorithm in a simple network.

 Four simulation runs involving 16, 32, 64 and 128 peers in the P2P overlay network, each

conducted for a simulation time of 1 hour (3600 seconds).

2. Chord Iterative DHT Algorithm in a simple network.

 Four simulation runs involving 16, 32, 64 and 128 peers in the P2P overlay network, each

conducted for a simulation time of 1 hour (3600 seconds).

3. Chord Iterative DHT Algorithm in an IPv4-based network.

 Four simulation runs involving 16, 32, 64 and 128 peers in the P2P overlay network, each

conducted for a simulation time of 1 hour (3600 seconds).

4. Chord Recursive DHT Algorithm in a simple network with faster stabilization time.

 Four simulation runs involving 16, 32, 64 and 128 peers in the P2P overlay network, each

conducted for a simulation time of 1 hour (3600 seconds).

11

 The purpose of groups 1 and 2 was to examine and compare the behavior of two possible types of

routing methodology in the Chord DHT: iterative routing vs. recursive routing. They also looked into

the behavior of the DHT algorithm with exponentially increasing numbers of nodes. Group 3 aimed to

examine the behavior within a network using the Internet Protocol, version 4. The last group was

conducted to observe and compare Chord's behavior with that of group 1 when the stabilization time

was cut in half.

12

PROJECT IMPLEMENTATION DETAILS

Simulation Tools

 Three software components were needed for the working of simulation environment during the

course of this project:

● OMNeT++ Discrete Event Simulator

 OMNeT++ [9] is a discrete event simulation tool built by Andras Varga at the Technical

University of Budapest, Hungary. It contains a network editor (GNED) that allows for easy

construction of various network topologies on a workspace, a graphical simulation execution

environment (Tkenv) that allows for configuration and observation of a simulation run, event-

by-event (if desired) and two statistical recording and analysis tools (plove and scalars) for

visualizing and analyzing statistics generated during the course of the simulation run.

● INET Framework for OMNeT++

 The INET Framework [10] is an open-source set of models built in OMNeT++ and meant for

the simulation of various network protocols and topologies, such as wired, wireless and ad-hoc

networks. It incorporates various protocol suites, such as TCP-IP, PPP, IEEE 802.11, Ethernet,

IPv4, IPv6, OSPF, etc. that can be used in combination with models of network components

such as hosts, routers and buses among others to build models of networks and test them.

● OverSim-20070926: The P2P Overlay Simulation Framework for OMNeT++

 OverSim[11] is developed under the scope of the ScaleNet [12] project at the Institute of

Telematics, Universität Karlsruhe, Germany. OverSim allows the simulation of P2P overlay

networks, using OMNeT++ and the INET Framework. Of particular interest that made it

suitable for this project was the implementation of various DHT algorithms and network models

built using the same, one of which was Chord.

 All the above simulation tools ran on a workstation with Ubuntu Linux [13] as the operating system.

13

Simulation Runs and Screen Outputs

 As mentioned earlier, 16 simulation runs within 4 groups were initially planned. Screen shots of some

of the graphical displays of the network models and their interior components, along with some screen

shots taken during simulation runs are shown below.

 The above diagram shows a screen shot of the component modules that would constitute a Chord

simulation model using a simple point-to-point protocol (PPP) for communication between peers. On

the main simulation workspace are a 'Global Observer', 'Underlay Configurator', 'Churn Generator' and

'Overlay Terminal' module. The Global Observer functions as a module to set global parameters of the

simulation, provide the identifier of a bootstrap peer to a node joining the network, and collects global

14

Figure 4. A screen shot of the various components of a Chord simple network simulation model

statistics. The Underlay Configurator is used to specify parameters of the underlying network. The

Churn Generator is used to specify the type of churn (random churn, no churn, etc.), how often it

occurs and other parameters related to nodes joining and leaving the network. Finally, contained within

the 'Overlay Terminal' is the model of the peer. This contains a UDP module that generates UDP

messages for the peer, an Overlay module that contains the three essential modules of the Chord DHT (

Chord algorithm, finger table and successor list) and finally a test application module used to test the

routing of messages to peers. The above mentioned modules are common to all the Chord simulations,

including the one shown below with Chord running on a P2P network making use of the IPv4 protocol.

The additional modules seen in this screen shot are those belonging to the access and backbone routers.

15

Figure 5. A screen shot showing the various modules used in a Chord simulation on an Ipv4 network

 The above diagram shows the main simulation workspace of Figure 5 during the third simulation run

of group 3 (the Chord Iterative DHT Algorithm in an IPv4-based network) with 64 peers, clustered

around 2 access routers.

16

Figure 6. A screen shot taken during simulation of a Chord DHT on an Ipv4 network with 64 peers

DISCUSSION AND CONCLUSION

Analysis of Simulation Statistics

 The simulation runs conducted generated extensive output traces. An exhaustive analysis of all the

statistical data is beyond the scope of this project. Hence, with regard to time-varying data, three

categories of graphs common to all the simulations were chosen and plotted using the 'plove' (plot

vector) plotting tool provided by OMNeT++. These three categories of plots are:

1. Node Population vs. Time

 This plot describes the variation of the number of peers present in the Chord identifier space

over the course of the 1 hour (3600 seconds) simulation. One's intuition expects to see an

increase in the fluctuation of node population as the number of peers is increased exponentially

with each simulation run under each of the four groups.

2. Current Delivery Ratio vs. Time

 The second category of time-varying graph shows how the percentage of successfully

delivered queries to recipient peers (current delivery ratio) varies over the course of the

simulation. As with the previous category, one expects to see some discernible pattern in the

delivery ratio as the number of peers is grown exponentially.

3. Global Hop Count vs. Time

 With the perspective of the entire network as a whole, this plot describes how the average

number of hops needed to deliver a message to a recipient (i. e. the 'global' hop count) peer

varies during simulation time.

 Instead of analyzing each simulation or group individually, the methodology of analysis within this

project intends compare groups against each other. The agenda of comparison will be as follows:

● Group 1 (Chord Recursive) vs. Group 2 (Chord Iterative)

 As the DHT in both these groups is implemented on a simple network with peers

communicating via a point-to-point protocol, this comparison aims to evaluate the behavior of

the recursive routing strategy against the iterative routing strategy. In doing so, the objective is

to note if the behavior of the current delivery ratio and global hop count are significantly

17

influenced by the routing strategy used.

● Group 2 (Chord Iterative) vs. Group 3 (Chord Iterative, on an IPv4 network)

 In this case, the routing strategy remains the same, but the nature of the communication

protocol used by the peers is different. Group three implements an IPv4 network with peers

clustered around two access routers connected by a backbone router. The objective in this

comparison is to observe how the change in communication protocol affects properties such as

the delivery ratio and global hop count.

● Group 1 (Chord Recursive) vs. Group 4 (Chord Recursive, with faster stabilization time)

 Once again, both these simulation groups are run with a simple point-to-point network

communication protocol. In this case, the objective is not to compare two different routing

strategies, but to compare variation of the stabilization and finger table fixing parameters with

the recursive routing strategy in place. The reader will recollect that in Group 4, all other

parameters are the same as Group 1, except for the time setting of the stabilization and finger

table fixing parameters, which are set to half the values of Group 1. Thus, with more frequent

updates of predecessor and successor pointers and fixing of routing table entries, the amount of

messages are expected to approximately double. It is expected that this will reflect in the form

of increased fluctuation in the delivery ratio and global hop count plots. With regard to Group 4,

it should be mentioned that the fourth simulation of 128 peers could not be completed due to

hardware limitations of the workstation that resulted in inability to successful run the simulation

to completion. Thus, wit respect to Group 4, comparison can only be made using the results of

runs with 16, 32 and 64 peers.

18

Trace Comparison of Node Population vs. Time for Group 1 (Chord Recursive on a simple network)

19

Figure 7(a) Population of Peers vs. Time with 16 and 32 peers respectively for Chord (Recursive)
Observation: Increasing churn is observed as the number of peers doubles; frequent variations in peer
population observed in graph 2 with 32 peers.

20

Figure 7(b) Population of Peers vs. Time with 64 and 128 peers respectively for Chord (Recursive)
Observation: Relative to 16 and 32 peers, these show increased fluctuation over shorter time frames with
shorter periods of constant number of peers.

Trace Comparison of Node Population vs. Time for Group 2 (Chord Iterative on a simple network)

21

Figure 8(a) Population of Peers vs. Time with 16 and 32 peers respectively for Chord (Iterative)
Observation: Longer periods of stable peer numbers with sporadic churn, but not occurring as often as the
corresponding graphs for Chord with Recursive routing in Figure 7(a).

22

Figure 8(b) Population of Peers vs. Time with 64 and 128 peers respectively for Chord (Iterative)
Observation: Exponential population increase results in a greater rate of churn, but also seems to indicate more
convergence as seen in the figure with 128 peer nodes.

Trace Comparison of Node Population vs. Time for Group 3 (Chord Iterative on an IPv4 network)

23

Figure 9(a) Population of Peers vs. Time with 16 and 32 peers respectively for Chord (Iterative, IPv4)
Observation: Large variations from initially set network size with relatively long periods of stability.

24

Figure 9(b) Population of Peers vs. Time with 64 and 128 peers respectively for Chord (Iterative, IPv4)
Observation: Less deviation from initial network size, but increasing churn over shorter intervals. Network with
128 peers seems to indicate convergence of churn.

Trace Comparison of Node Population vs. Time for Group 4 (Chord Recursive, faster stabilization)

25

Figure 10(a) Population of Peers vs. Time with 16 and 32 peers respectively for Chord (Recursive, fast stab.)
Observation: Decreased periods of constant size and larger deviations from initial numbers relative to initial
Chord Recursive simulation run of group 1

26

Figure 10(b) Population of Peers vs. Time with 64 and 128 peers respectively for Chord (Recursive, fast stab.)
Observation: With doubling of the peers present in the system, the network seems to be taking longer to move
towards convergence, but the regions at which the number of peers remains constant persist for longer periods
of time before node arrival or departure moves the network to another state.

Trace Comparison of Group 1 vs. Group 2: Current Delivery Ratio vs. Time

27

Figure 11(a) Current Delivery Ratio vs. Time for Group 1 (top) and 2 (bottom) with 16 peers
Observation: Larger fluctuations in delivery ratio of iterative routing due to increased traffic; reporting back to
inquiring node at each stage of routing procedure is necessary in iterative routing.

28

Figure 11(b) Current Delivery Ratio vs. Time for Group 1 (top) and 2 (bottom) with 32 peers
Observation: Again, more frequent fluctuations for iterative routing with exponential growth. However,
increased network size provides alternative routing paths, so magnitude of fluctuations are lower than before.

29

Figure 11(c) Current Delivery Ratio vs. Time for Group 1 (top) and 2 (bottom) with 64 peers
Observation: Again, increased frequency of fluctuation in iterative routing delivery ratio, but magnitude of
fluctuation is lower with increased network size providing alternative routing paths, hence successful delivery.

30

Figure 11(d) Current Delivery Ratio vs. Time for Group 1 (top) and 2 (bottom) with 128 peers
Observation: Frequency of fluctuations even higher due to doubling in network size, but the system seems to be
tending toward a level of convergence as the average magnitude of the fluctuations remains approx. same.

Trace Comparison of Group 1 vs. Group 2: Global Hop Count vs. Time

31

Figure 12(a) Global Hop Count vs. Time for Group 1 (top) and 2 (bottom) with 16 peers
Observation: Wild fluctuations in hop count seen due to churn and consequent delay during stabilization &
finger-table fixing procedure. Recursive routing remains bounded upto 3 hops; whereas iterative jumps to 4.

32

Figure 12(b) Global Hop Count vs. Time for Group 1 (top) and 2 (bottom) with 32 peers
Observation: Doubling of network size results in roughly similar behavior; global average of number of hops
jumps to a max. of 5 as more signaling overhead is needed to update identifiers with increasing churn.

33

Figure 12(c) Global Hop Count vs. Time for Group 1 (top) and 2 (bottom) with 64 peers
Observation: Exponential growth results in recursive Chord requiring an average of 6 hops occasionally.
Iterative remains strongly bounded at 5 hops, as reporting back to inquiring node results in more correct
routing information.

34

Figure 12(d) Global Hop Count vs. Time for Group 1 (top) and 2 (bottom) with 128 peers
Observation: At 128 peers, both recursive and iterative Chord frequently require an average of 6 hops in order
to reach the recipient. Hop count in iterative Chord jumps to 7 hops once.

Trace Comparison of Group 2 vs. Group 3: Current Delivery Ratio vs. Time

35

Figure 13(a) Current Delivery Ratio vs. Time for Group 2 (top) and 3 (bottom) with 16 peers
Observation: With 16 peers Iterative Chord over IPv4 network shows faster achievement of 100% delivery,
with fewer and smaller magnitude of fluctuations in the percentage of delivered messages.

36

Figure 13(b) Current Delivery Ratio vs. Time for Group 2 (top) and 3 (bottom) with 32 peers
Observation: Although both behaviors may seem similar at this point, Chord over IPv4 still exhibits more
reliability, with less frequent deviations below a 90% delivery ratio.

37

Figure 13(c) Current Delivery Ratio vs. Time for Group 2 (top) and 3 (bottom) with 64 peers
Observation: Further doubling in network size results in more frequent deviations from the 100% mark, though
both networks still manage to maintain a reasonably consistent delivery ratio of above 90% most of the time.

38

Figure 13(d) Current Delivery Ratio vs. Time for Group 2 (top) and 3 (bottom) with 128 peers
Observation: At the final simulation limit of 128 peers, both networks manage to maintain a delivery ratio
above 90% most of the time, though iterative Chord over an IPv4 network still manages fewer fluctuations.

Trace Comparison of Group 2 vs. Group 3: Global Hop Count vs. Time

39

Figure 14(a) Global Hop Count vs. Time for Group 2 (top) and 3 (bottom) with 16 peers
Observation: Iterative Chord over IPv4 network needs an average of 4 hops more often; all the nodes
 are evenly clustered around two access routers, limiting the number of alternative routes available.

40

Figure 14(b) Global Hop Count vs. Time for Group 2 (top) and 3 (bottom) with 32 peers
Observation: Maximum hop count in both networks remains mostly at 4 hops; iterative chord on a simple
network reaches a maximum of 5 hops once. The access and backbone routers in the IPv4 network provide
at least one constant path between the two clusters, resulting in at least one sure alternative.

41

Figure 14(c) Global Hop Count vs. Time for Group 2 (top) and 3 (bottom) with 64 peers
Observation: Doubling network size to 64 peers results in almost similar behavior. Both networks remain
mostly bounded between 1 and 4 hops, but require an average of 5 hops much more frequently.

42

Figure 14(d) Global Hop Count vs. Time for Group 2 (top) and 3 (bottom) with 128 peers
Observation: The final level of exponential growth sees both networks concentrated around a bound of 1 to 5
hops on average, with frequent requirements of 6 hops and once even 7. However, the IPv4 network has less
intense fluctuation in the 2 to 4 hop region, due to the capabilities of the IP protocol suite.

Trace Comparison of Group 1 vs. Group 4: Current Delivery Ratio vs. Time

43

Figure 15(a) Current Delivery Ratio vs. Time for Group 1 (top) and 4 (bottom) with 16 peers
Observation: Cutting the period between stabilization and finger table fixes by half results in faster initial
achievement of 100% delivery ratio. The magnitude of occasional fluctuations is also lower

44

Figure 15(b) Current Delivery Ratio vs. Time for Group 1 (top) and 4 (bottom) with 32 peers
Observation: At 32 peers, faster stabilization results in less frequent fluctuations of lower magnitude;
fluctuations go below 90% less often, resulting in greater stability of the network. Delivery remains at 100%
longer with exponential growth in Group 4.

45

Figure 15(c) Current Delivery Ratio vs. Time for Group 1 (top) and 4 (bottom) with 64 peers
Observation: It is more evident at this stage of network growth that reduction in stabilization and finger table
fixing times results in more stability; fluctuations are less frequent and of much smaller magnitude. Delivery
Ratio for Group 4 remains on average well above 90% and longer periods at which it is 100%.

Trace Comparison of Group 1 vs. Group 4: Global Hop Count vs. Time

46

Figure 16(a) Current Delivery Ratio vs. Time for Group 1 (top) and 4 (bottom) with 16 peers
Observation: Doubling the frequency of inspection and updating of identifiers of predecessors and finger
table entries results in more frequent fluctuations in the number of hops needed to reach a recipient in the
presence of churn. The second network records a maximum of 4 hops at least once.

47

Figure 16(b) Current Delivery Ratio vs. Time for Group 1 (top) and 4 (bottom) with 32 peers
Observation: Doubling of network size results in the network of Group 4 registering a larger hop count more
often, though exponential growth also brings the added bonus of more alternative routing paths, acting as
an offset to the larger number of hops and resulting in almost similar behavior between the 1 and 3 hop range.

48

Figure 16(c) Current Delivery Ratio vs. Time for Group 1 (top) and 4 (bottom) with 64 peers
Observation: 64 peers in the network results in an expansion in the most heavily occupied range. The hop
count now spans 1 to 4 hops most frequently, with an increased use of 5 hops and expansion beginning in the 6
hop range. However, it should be noted that Group 4 still uses the higher hop range more often.

Challenges and Lessons Learned

 Two major challenges were experienced over the course of this project, which are listed and

explained below:

● Time lost with initial attempt using the OPNET simulation tool.

 The initial plan for the project was to build the simulation model in the OPNET 11.0.A

simulation tool environment. However, it was found that OPNET 11.0.A had no tools to

simulate P2P networks. An attempt was made to develop a node model, but the learning curve

for programming in OPNET was found to be extremely steep, due to the amount of

documentation that had to be read in order to understand . The endeavor was abandoned after

very little progress had been made by the end of a month, but by then a lot of time had been

lost.

● Shifting to a new simulation tool and an unfamiliar OS

 After abandoning the work with OPNET as unfeasible within the given timeframe, a move

was made to OMNeT++, INET and OverSim. However OverSim is only supported for the

Linux operating system and supplied only in the form of uncompiled source code. There was an

additional learning curve involved in compiling the INET Framework and OverSim, as well as

learning how to use the OverSim and the Linux OS, having had no experience with either of

them.

 The lessons learned over the course of the project were as follows:

● Designing and implementing a P2P system that makes use of a DHT is an extremely

challenging endeavor. There are many factors to be considered and balanced in the appropriate

choice of a DHT implementation that produces the lowest overhead in terms of signaling, while

at the same time efficiently routing messages to the intended peers and minimizing the effects

of churn with nodes joining and leaving.

● The choice of simulation tool is extremely important, as an extremely steep learning curve

results in lost time during a project with a short cycle. In addition, it should have good support

49

for P2P simulation models and an intuitive model interface that makes observation and analysis

of network behavior as easy as possible.

● DHT routing parameters need to be chosen carefully, especially those related to dealing with

changes in information about neighboring peers in the identifier space, in order to optimize the

behavior of the chosen DHT for the specific network architecture and intended application.

Future Work

 Given the simulation and analysis work covered in this project, the direction of future work would be

to conduct similar analysis on other DHT algorithms, such as Pastry, CAN, Kademlia, Viceroy, Gia,

Koorde, Broose and Bamboo. The aim of such work is to compare the performance of various DHT

implementations in order to gain an understanding of the strengths and weaknesses of each. This would

provide insight as to how certain features of these DHTs could be combined to build a DHT suitable for

a certain application, such as P2P networks routing mostly: multimedia-oriented traffic; instant

messaging, file sharing, control messages, etc. Another possible direction of inquiry would be an

adaptable DHT protocol, that could perhaps shift from one type to another on the fly, so that a peers

could decide amongs themselves which DHT protocol might be suitable for use given network

situations, and use it accordingly.

Real-life Applications of DHTs

 While the topic chosen and work done over the course of this project may seem somewhat abstract

and theoretical, this is not so. DHTs are currently implemented and in operation in real-world

applications. Some of those applications were encountered previously and are outlined in brief below.

1. P2P File-Sharing Applications

 The rise of peer-to-peer file sharing networks was what instigated interest in the peer-to-peer

paradigm as a research area. From the initial days of networks using a central server to find

other peers and then using peer-to-peer communication for file transfer (Napster), to the

flooding network query used in the Gnutella network, P2P file sharing applications have

become a major source of observed Internet traffic, accounting for up to 60% or more of traffic

observed [1]. It has been observed that the most recent implementations of P2P file-sharing

50

applications (BitTorrent and Azureus, to name two) implement DHTs into their protocols, thus

enabling faster searching and retrieval of files, as well as a greater likelihood of guaranteeing

the file being searched for. The user interfaces of the BitTorrent applications is shown below.

2. OEM Communications Software
 With increasing interest in communication protocols for P2P networks, companies that

develop Original Equipment Manufacturer (OEM) communications software for various

applications are using DHTs in their software to achieve their product objectives of P2P

communication. One such company is SIPeerior Technologies [14], located in Virginia, USA.

SIPeerior's website states that its software “enables serverless implementations of real-time

applications such as VoIP, IMS, IPTV, streaming media and gaming”. SIPeerior uses DHT

algorithms such as Chord in its communications software in order for devices using the

software to form peer-to-peer networks where data can be distributed and retrieved efficiently.

One such example is in the communications devices that might be used by first responders at

the scene of an emergency. P2P communications software with DHT protocols integrated allows

them to avoid the time spent in setting up a server and configuring their devices to communicate

with each other. Instead, OEM P2P communications software such as that supplied by SIPeerior

allows them to bring their devices to the scene and simply power them up. The devices will

configure themselves, form a P2P network and route messages to each other using the

software's built in DHT protocol. Thus, DHTs hold a lot of potential to change the way devices

communicate with each other using self-organizing P2P networks.

51

Figure 6. The BitTorrent file-sharing application interface

REFERENCES

[1] R. Steinmetz, K. Wehrle, “Peer-to-Peer Systems and Applications”, LNCS 3485, Springer-Verlag Berlin
Heidelberg 2005.
[2] Hash function, http://en.wikipedia.org/wiki/Hash_Table – last modified April 9th, 2008 at 11:17.
[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications”, In Proceedings of the 2001 ACM Sigcomm Conference, ACM Press, 2001.
[4] RFC 3174 – US Secure Hash Algorithm 1 (SHA1) - http://www.faqs.org/rfcs/rfc3174.html - last accessed on
April 18th, 2008.
[5] Manku, “Routing Networks for Distributed Hash Tables”, In Proceedings of the twenty-second annual
symposium on Principles of Distributed Computing (PODC), 2003.
[6] J. Li, J. Stribling, T. M. Gil, R. Morris, and F. Kaashoek, "Comparing the Performance of Distributed Hash
Tables Under Churn", In Proceedings of IPTPS, 2004.
[7] J. Yang, “Measuring the Performance and Reliability of Routing in Peer to Peer Systems”, 2005.
[8] I. Baumgart, B. Heep, S. Krause, “OverSim: A Flexible Overlay Network Simulation Framework”, In
Proceedings of 10th IEEE Global Internet Symposium in conjunction with IEEE INFOCOM 2007, Anchorage,
AK, USA, 2007.
[9] OMNeT++ Community Site - http://www.omnetpp.org - last accessed on April 19th, 2008.
[10]INET Framework - http://www.omnetpp.org/staticpages/index.php?page=20041019113420757 - last
accessed on April 19th, 2008.
[11] The OverSim P2P Simulator - http://www.oversim.org - last accessed on April 19th, 2008.
[12] The ScaleNet Project - http://www.scalenet.de/ - last accessed on April 19th, 2008.
[13] Ubuntu Linux Home Page - http://www.ubuntu.com/ - last accessed on April 19th, 2008.
[14] SIPeerior Technologies - http://www.sipeerior.com - last accessed on April 19th, 2008.

52

http://www.ubuntu.com/
http://www.scalenet.de/
http://www.oversim.org/
http://www.omnetpp.org/staticpages/index.php?page=20041019113420757
http://www.omnetpp.org/
http://www.faqs.org/rfcs/rfc3174.html
http://en.wikipedia.org/wiki/Hash_Table

