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ABSTRACT

   Peer-to-Peer (P2P) networks must make use of sometimes novel approaches in order to locate nodes 

(peers)  that  hold the information being searched for.  Structured vs.  unstructured P2P networks are 

compared. The concept of a Distributed Hash Table (DHTs) is explored as a solution, particularly the 

Chord  DHT implementation.  The  routing  capabilities  and  performance  of  P2P networks  using  the 

Chord DHT protocol is examined using the OverSim simulation tool. The results of sixteen different 

simulations under four groups are examined using three different parameters: 

● Pattern of growth within a group under exponential growth of the number of peers

● Effect of exponential growth on the percentage of delivered messages

● Effect of exponential growth on the average number of hops needed to find a recipient 

   Conclusions of network behavior in all cases are drawn. The challenges faced while attempting to 

implement the project are discussed and the lessons learned listed. The direction of future work on the 

subject is touched upon. Finally,  two examples of real-world applications of DHTs are given.
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INTRODUCTION

What are Peer-to-Peer (P2P) Networks?

   A Peer-to-Peer (P2P) network or system is “a self-organizing system of equal, autonomous entities 

(peers) which aims for the shared usage of distributed resources in a networked environment avoiding 

central services” [1]. 

   In contrast, a network that is built on the centralized (client-server) paradigm concentrates authority 

regarding system parameters within entities (servers), which are given charge of many other dependent 

entities (clients). The 'system parameters' referred to here may cover such aspects as: 

● Provision of services (file serving, database searches, audio/video conferencing, etc.)

● Management of resources (bandwidth, storage space, processing power, etc.) 

● Co-ordination and control of operations

   However, networks built using such paradigms possess inherent problems with regards to scalability, 

security,  reliability,  flexibility and quality of service. Servers have a limit  to the number of clients 

whose requests can be handled, before performance in terms of response time and data transfer speeds 

begins to degrade due to increasing load. In addition, they represent vulnerabilities in the network in 

terms of bottlenecks for traffic and network failure. When a server is compromised due to too much 

load or failure, the clients dependent on it for resources are cut off from the rest of the network, denied 

access to resources and the global objective of the network as a system is also impacted. Management 

and modification of server functionality is also difficult and expensive without extensive changes to the 

system as a whole.

   P2P networks, by the very nature of the paradigm that governs their fundamental architecture present 

an  alternative  to  the  problems  that  plague  the  client-server  methodology  of  system  design  and 

implementation. Full distribution of responsibility for service provision, resource management and co-

ordination among peers means that each new peer that joins the network contributes resources and 

power to the network, instead of becoming a burden that must be serviced. Also, departure or failure of 

a peer does not impact the network as severely as failure of a server entity, as there is no single point of 

compromise. Peers can co-ordinate among themselves to work around failures. The P2P system that 

2



thus  emerges  from the  interacting  collective of  peer  nodes  is  also more adaptable  to  change.  The 

fundamental differences between a client-server and peer-to-peer network is shown in Figure 1.

Structured vs. Unstructured P2P Networks

   Despite inherent strengths that enable P2P networks to overcome the pitfalls of the client-server 

methodology, P2P networks face unique challenges of their own. One such challenge is the ability to 

locate other peers efficiently. The goal is to be able to achieve the efficiency and guaranteed results 

provided  by  a  server  while  being  fully  distributed  at  the  same  time.  Meeting  this  challenge  is 

particularly crucial in massively distributed P2P networks, containing thousands or even millions of 

nodes. 

   The Gnutella protocol was an initial attempt at achieving a fully distributed P2P system for file 

sharing. When Gnutella is implemented in a network of peers, the resulting routing mechanism that is 

used in order to find other peers that  have a piece of data and retrieve it  is described as 'network 

flooding'. In short, when a peer sends out a query regarding another peer or piece of data, it sends it to 

all peers within its neighboring peers. The end result is a flood of messages throughout the network in 
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the hope of finally reaching the intended recipient and getting a reply to the initial query. Even though 

the  network  also  implements  a  TTL (Time To Live)  restricting  the  number  of  hops  a  message  is 

allowed to traverse, the amount of traffic generated by such a routing methodology is immense. As a 

result, network performance becomes very poor as the number or peers in the network grow ever larger. 

P2P networks  implementing  this  manner  of  routing  methodology are  known as  'unstructured'  P2P 

networks. 

   Finding a solution to this problem requires one to answer the question: how can some form of order 

be brought to a P2P network that will allow efficient lookup of peers and the data that they possess, 

without bringing in any manner of centralization into the system? The idea of using distributed hashing 

to create Distributed Hash Tables (DHTs) in P2P networks has emerged over the past several years as a 

viable solution to this problem. In order to understand what a DHT is and how it operates, the concept 

of hash functions must be understood first.

The Concept of Hash Functions 

   A hash function [2] is an algorithm or mathematical function that operates on some form of data, and 

produces an integer as its output. The result of the hashing process is known as a hash value. A typical 

use of hash functions is to quicken the lookup of data in tables, such as searching databases and files. 

Hash functions that work effectively for P2P satisfy some basic properties, such as:

● Determinism: 

   A given piece of data, when input must hash to the same output value each time.

● Uniformity: 

  For a given input  range,  hash functions  have a range over  which output  hash values are 

produced. The mapping should produce hash values spread out as evenly as possible over the 

output range.

● Continuity:

   Two items of input data that differ by only a little should be mapped to equal or nearly equal 

output hash values.

   A hypothetical hash function operating on a peer's IP address to produce an output hash value is 

shown below.
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Centralized vs. Distributed Hash Tables

   The hash function described in the previous section can be used in the creation of a data structure 

known as a 'hash table'. A hash table is used to link a 'key' field with an associated 'value', forming what 

is known as a 'key-value' pair, denoted by (key, value). A common example may be a person's name 

(key) and telephone number (value). However, instead of using the data in the key field as it is, it is 

operated on by a hash function, producing an output hash value. This hash value becomes the key, and 

is stored along with the associated value in the hash table. In order to retrieve the key's associated 

value, the key in it's original format (e. g., the person's name) is hashed and the hash value looked up in 

the hash table. When located, the associated value is retrieved. Thus, the final purpose of the hash table 

is to support a 'lookup' operation where, given the key (the person's name), it finds its associated value 

(telephone number). In a communication network, the purpose in this case may be to find a node using 

some uniquely distinguishing property such as its IP address (the key), in order to retrieve an item of 

data associated with that node (the value). 

   In a network built on client-server principles, the hash table would be stored on a central server, and a 

client desiring to locate another client responsible for some data would request the server to lookup that 

node's  key and retrieve its  associated value.  However,  such a  methodology cannot  work in  a  P2P 

network, as the very nature of the network architecture precludes the implementation of any centralized 

routing principles to find and retrieve data. The alternative is to distribute the hash table over all the 

participating peer, by partitioning it and giving each peer responsibility for the partition assigned to it. 

Along with partitioning and distributing the hash table, there must also be a algorithm to efficiently 

route queries from peers attempting to find other peers responsible for a particular partition, in order to 

retrieve the key(s) stored on that peer's partition. Thus, the principle of partitioning and distributing the 

hash table over the participating peer nodes, along with a routing algorithm to efficiently route requests 
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to using a peer's key to retrieve its associated values forms the heart of the Distributed Hash Table 

(DHT).

   Different perspectives on implementing the principles of DHT Algorithm have resulted in various 

types  of DHT implementaions over  the years:  Chord,  Pastry,  CAN (Content Adressable Network), 

Symphony, Viceroy and Kademlia are among the best known ones. This project focuses only on the 

Chord DHT algorithm.   

The Chord DHT Algorithm

   The Chord DHT algorithm was first published by Stoica et al. [3] in 2001. Chord uses l-bit identifiers 

as its keys, which are integers that span the continuous closed set of [0, 2l -1]. The Chord algorithm 

maps the peers in  the underlying topology of the network into a  virtual,  one-dimensional,  circular 

'identifier  space'  where the identifies are the  l-bit  keys of the peers.  The nature of the mapping is 

modulo 2l,  i.  e.  the next identifier after  2l – 1begins again at  0. The implementation of the Chord 

algorithm used for simulation in this project makes use of the US Secure Hash Algorithm 1 (SHA1) [4].

   In the Chord implementation, each peer node and the individual data items on it have individual 

identifiers produced by the hash function. A peer's identifier is known as it's 'ID' and  a data item's 

identifier is known as a 'key'. A peer is responsible for hosting a particular data item's (key, value) pair 

(k,v) if the value of its ID is greater than or equal to k (i. e. ID ≥ k). This peer will be known as that 

particular  key's  'successor'.  If  the  Chord  circle  is  pictured  as  having  the  keys  arranged  on  it  in 

increasing order as we move around it clockwise, a given peer will be responsible for hosting the keys 

that precede it in value. This is illustrated in the figure below. In this scenario, 5-bit identifiers are used, 

i. e. from 0 to 15 for peers and data items. Assuming 8 peers and 5 data items exist, they would be 

mapped to the Chord identifier space as shown below.

6



   Thus, it can be understood that the Chord identifier space/circle is formed by the collective of the 

peers, their ID's and the uniquely associated (key, value) pairs of the data items that they host. With the 

identifier space in place, the issue of efficient routing of messages related to lookup operations 

becomes essential, in order to achieve good network performance. The most efficient method of routing 

within the identifier space requires each peer to maintain some amount of per-node state in the form of 

a 'finger table' (essentially, a routing table) and a pointer to its predecessor within the identifier space. 

   The purpose of the finger table is for a peer to maintain a record of pointers to other peers in the 

identifier space. For a given l-bit identifier key used to construct the identifiers, a peer must maintain a 

maximum of l entries in its finger table. Also, for a given peer p in the Chord identifier circle, the ith 

entry in its finger table holds the pointer to a neighbor whose ID follows after its own by at least  2 i -1. 

The identifier of the neighbor is therefore essentially given by the relation IDneighbor = IDpeer +  (2i -1), 
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where 1 ≤ i ≤ l. This is illustrated in the table below, taking the peer in figure 3 with ID = 5.

Finger Table of Peer with ID = 5 from Figure 3. 
Finger Table Entry No.  Neighbour  Successor ID

0 IDpeer + 1 6
1 IDpeer + 2 8
2 IDpeer + 4 12
3 IDpeer + 8 -
4 IDpeer + 16 -

   The implication of implementing a routing methodology constructed in this manner is that each peer 

possesses more pointers to neighbors that are situated 'close by' in its region of the identifier space, and 

fewer pointers to neighbors that are 'far away'.  Also, irrespective of how large the P2P network grows 

in terms of the number of peers, each peer will have to maintain a finger table of l entries at the most. 

Given that SHA-1 uses 160-bit identifiers, this is still a reasonable size of finger table to maintain, for a 

Chord implementation that uses SHA-1 to generate the necessary identifiers.  Apart from the finger 

table, each peer also maintains a pointer to its immediate predecessor in the identifier circle. This is 

used in a protocol to maintain accuracy of per-node state information within a dynamic P2P network 

environment and will be explained later.

   With the above infrastructure in place, message routing within the Chord identifier circle proceeds as 

follows: 

● A peer with identifier IDthisPeer receives a query message destined for another recipient (IDreceipient). 

● It examines its finger table and locates the identifier of a neighbor whose ID makes it the closest 

predecessor to the recipient on the identifier circle, i. e. IDneighbor < IDrecipient. 

● It forwards the message to that neighbor with identifier IDneighbor.

● This  repeats  until  the  message  reaches  a  node  which  determines  from its  finger  table  that 

IDrecipient is either its immediate successor or lies between its own ID and the ID of its immediate 

successor.

● The node reports its immediate successor as the query's result, which is sent back to the original 

querying node.      
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   Apart from a means of efficiently routing messages within the identifier space, DHT algorithms also 

need to provide a means for a P2P network to allow peers to join and leave the network, as well as 

dealing with events that could be detrimental to network performance, such as node failures. Chord 

makes provisions for these capabilities in the following manner. 

   A node that wishes to join the P2P network must first determine its own ID (IDjoiningPeer ). One common 

means of doing this is to hash its own IP or MAC address. In addition, it must have the identifier of 

some existing peer within the P2P network.  This peer is known as the 'bootstrap node',  that  helps 

introduce the joining node to the network. The joining node queries the bootstrap node for its own ID; 

the response of this  query will  be the identifier  of the peer that  should become the joining node's 

immediate successor.  The next step is to notify its successor of its presence using its ID; this causes the 

successor to update its state information to register the joining node as its predecessor on the identifier 

circle.  The final  step is  for  the  joining  node to  fill  up its  finger  table  by repeatedly querying  the 

bootstrap node for the identifiers of peers that are IDjoiningPeer +  (2i -1) (i. e. 1, 2, 4, 8, 16, 32,...) positions 

away on the identifier space, where i is the entry in the routing table. 

   The environment of the P2P network may be either static or dynamic. In a static network, peers do 

not leave the system. A dynamic network is one in which nodes may join and leave the network at 

different times. Most real-world P2P networks are extremely dynamic in nature, as node arrival and 

departure may be very frequent. This process of nodes joining and leaving the P2P network is known as 

'churn'. The updating of pointers to successors and predecessors is important, as a peer in the identifier 

space must have accurate information about the peers in its known neighborhood. If a new peer has 

placed itself in the space between it and its currently known successor, it must become aware of that 

fact, otherwise messages meant for the new successor will not reach it. It must also be made aware if an 

existing successor leaves the identifier  space.  In addition,  it  must also be aware of changes in the 

presence or absence of a predecessor peer. Finally, detection of node failures must also be addressed by 

fixing and updating information in the finger table.  Chord has built-in protocols to deal with such 

events.

   Chord uses a 'stabilization protocol' [1] in order to deal with such dynamic events in its identifier 

space.  This is the purpose of the predecessor pointer mentioned earlier. Every peer runs a function 
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called 'stabilize()' periodically. This function sends a query message to its immediate known successor, 

requesting it to reply with the identifier of its currently known predecessor. If the reply to the query 

matches the peer's own identifier, it means that the information that this peer and its successor have 

about their  immediate neighbors is correct.  However,  if  the identifier in the reply lies between the 

inquiring peer's  own ID and its  known successor's  ID,  then this  means  that  a  new node with the 

identifier in the query has joined in the space between the two. The inquiring node therefore must 

adjust the information in its successor pointer to point to the identifier of the new known peer and 

inform the new peer to update its own predecessor pointer accordingly. Thus, the stabilization protocol 

lays the responsibility of a predecessor node to check on its successors and correct discrepancies in 

pointers. When such a correction occurs, the new successor becomes responsible for all the (key, value) 

pairs that were handled by the predecessor node; those keys are copied across from the predecessor 

peer, and the predecessor removes them from its records.

   Similarly,  Chord  also  has  a  'fix  fingers'  protocol  [1]  to  deal  with  inconsistencies  in  routing 

information in  a peer node's finger table. A peer node checks if a timeout has occurred on any expected 

replies  regarding queries  that  have  been  sent  out.  If  a  timeout  is  detected,  it  infers  that  the  entry 

regarding the recipient peer in its finger table is incorrect, and removes that entry from the finger table. 

It then chooses the identifier from the preceding entry in the finger table and sends the query to that 

peer. 

   Having said this, it should also be noted that Chord requires peers to notify their predecessors and 

successors before voluntarily leaving the network. This is necessary so that the (key, value) pairs that 

the peer was responsible for are not lost; they are instead transferred to its immediate successor so that 

the data or information is preserved within the network for other peers to access.  

Related Work
● Stoica  et  al.  [3]  laid  the  groundwork with  their  published  paper  detailing  the  concept  and 

operation of the Chord DHT algorithm.

● Manku  [5]  conducted  a  detailed  theoretical  analysis  of  various  routing  implementations  in 

DHTs, providing mathematical insight into the nature of routing used Chord.

● Li,  et  al.  []  conducted  simulation  experiments  examining  the  behavior  of  various  DHT 
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algorithms under churn.

● Yang [] built a simulation of networks implementing two DHT algorithms, Chord and Pastry in 

the OPNET simulation tool environment.

● Steinmetz and Wehrle [1] provided a comprehensive yet simple and well-written description of 

the concept and implementation of various DHT algorithms in their book “Peer-to-Peer Systems 

and Applications”.

● Baumgart,  Heep  and  Krause  [8]  built  the  open-source  P2P  overlay  simulation  tool  and 

components  necessary  to  conduct  simulations  of  DHT  algorithms  and  published  a  paper 

describing its architecture.

Project Scope

   The aim of this project is to examine the behavior of a Chord DHT algorithm implemented in a P2P 

overlay network with varied parameters in the algorithm and P2P network. Sixteen simulations were 

planned under four major groups, as follows:

1. Chord Recursive DHT Algorithm in a simple network.

  Four simulation runs involving 16, 32, 64 and 128 peers in the P2P overlay network, each 

conducted for a simulation time of 1 hour (3600 seconds).

2. Chord Iterative DHT Algorithm in a simple network.

  Four simulation runs involving 16, 32, 64 and 128 peers in the P2P overlay network, each 

conducted for a simulation time of 1 hour (3600 seconds).

3. Chord Iterative DHT Algorithm in an IPv4-based network.

  Four simulation runs involving 16, 32, 64 and 128 peers in the P2P overlay network, each 

conducted for a simulation time of 1 hour (3600 seconds).

4. Chord Recursive DHT Algorithm in a simple network with faster stabilization time.

  Four simulation runs involving 16, 32, 64 and 128 peers in the P2P overlay network, each 

conducted for a simulation time of 1 hour (3600 seconds).
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   The purpose of groups 1 and 2 was to examine and compare the behavior of two possible types of 

routing methodology in the Chord DHT: iterative routing vs. recursive routing. They also looked into 

the behavior of the DHT algorithm with exponentially increasing numbers of nodes. Group 3 aimed to 

examine the behavior within a network using the Internet Protocol,  version 4.  The last  group was 

conducted to observe and compare Chord's behavior with that of group 1 when the stabilization time 

was cut in half.
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PROJECT IMPLEMENTATION DETAILS

Simulation Tools

   Three software components were needed for the working of simulation environment  during the 

course of this project:

● OMNeT++ Discrete Event Simulator

  OMNeT++ [9] is  a discrete event  simulation tool built  by Andras Varga at  the Technical 

University of Budapest,  Hungary.  It contains a network editor (GNED) that allows for easy 

construction of various network topologies on a workspace, a graphical simulation execution 

environment (Tkenv) that allows for configuration and observation of a simulation run, event-

by-event (if desired) and two statistical  recording and analysis  tools (plove and scalars) for 

visualizing and analyzing statistics generated during the course of the simulation run.

● INET Framework for OMNeT++

   The INET Framework [10] is an open-source set of models built in OMNeT++ and meant for 

the simulation of various network protocols and topologies, such as wired, wireless and ad-hoc 

networks. It incorporates various protocol suites, such as TCP-IP, PPP, IEEE 802.11, Ethernet, 

IPv4, IPv6, OSPF, etc. that can be used in combination with models of network components 

such as hosts, routers and buses among others to build models of networks and test them.

● OverSim-20070926: The P2P Overlay Simulation Framework for OMNeT++

   OverSim[11] is developed under the scope of the ScaleNet [12] project at  the Institute of 

Telematics,  Universität  Karlsruhe,  Germany.  OverSim allows the simulation of  P2P overlay 

networks,  using  OMNeT++  and  the  INET Framework.  Of  particular  interest  that  made  it 

suitable for this project was the implementation of various DHT algorithms and network models 

built using the same, one of which was Chord.

   All the above simulation tools ran on a workstation with Ubuntu Linux [13] as the operating system.
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Simulation Runs and Screen Outputs

   As mentioned earlier, 16 simulation runs within 4 groups were initially planned. Screen shots of some 

of the graphical displays of the network models and their interior components, along with some screen 

shots taken during simulation runs are shown below.

   The above diagram shows a screen shot of the component modules that would constitute a Chord 

simulation model using a simple point-to-point protocol (PPP) for communication between peers. On 

the main simulation workspace are a 'Global Observer', 'Underlay Configurator', 'Churn Generator' and 

'Overlay Terminal' module. The Global Observer functions as a module to set global parameters of the 

simulation, provide the identifier of a bootstrap peer to a node joining the network, and collects global 
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statistics. The Underlay Configurator is used to specify parameters of the underlying network. The 

Churn Generator is used to specify the type of churn (random churn, no churn, etc.),  how often it 

occurs and other parameters related to nodes joining and leaving the network. Finally, contained within 

the 'Overlay Terminal'  is  the model  of  the peer.  This contains a  UDP module that  generates  UDP 

messages for the peer, an Overlay module that contains the three essential modules of the Chord DHT ( 

Chord algorithm, finger table and successor list) and finally a test application module used to test the 

routing of messages to peers. The above mentioned modules are common to all the Chord simulations, 

including the one shown below with Chord running on a P2P network making use of the IPv4 protocol. 

The additional modules seen in this screen shot are those belonging to the access and backbone routers.
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Figure 5. A screen shot showing the various modules used in a Chord simulation on an Ipv4 network  



   The above diagram shows the main simulation workspace of Figure 5 during the third simulation run 

of group 3 (the Chord Iterative DHT Algorithm in an IPv4-based network) with 64 peers, clustered 

around 2 access routers.
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DISCUSSION AND CONCLUSION

Analysis of Simulation Statistics

   The simulation runs conducted generated extensive output traces. An exhaustive analysis of all the 

statistical  data  is  beyond the scope of  this  project.  Hence,  with regard to  time-varying data,  three 

categories of  graphs common to all the simulations were chosen and plotted using the 'plove' (plot 

vector) plotting tool provided by OMNeT++. These three categories of plots are:

1. Node Population vs. Time

   This plot describes the variation of the number of peers present in the Chord identifier space 

over  the course of the 1 hour  (3600 seconds)  simulation.  One's  intuition expects  to  see an 

increase in the fluctuation of node population as the number of peers is increased exponentially 

with each simulation run under each of the four groups. 

2. Current Delivery Ratio vs. Time

   The  second  category  of  time-varying  graph  shows  how  the  percentage  of  successfully 

delivered  queries  to  recipient  peers  (current  delivery  ratio)  varies  over  the  course  of  the 

simulation. As with the previous category, one expects to see some discernible pattern in the 

delivery ratio as the number of peers is grown exponentially.

3. Global Hop Count vs. Time

   With the perspective of the entire network as a whole, this plot describes how the average 

number of hops needed to deliver a message to a recipient (i. e. the 'global' hop count) peer 

varies during simulation time. 

   Instead of analyzing each simulation or group individually, the methodology of analysis within this 

project intends compare groups against each other. The agenda of comparison will be as follows:

● Group 1 (Chord Recursive) vs. Group 2 (Chord Iterative)

   As  the  DHT  in  both  these  groups  is  implemented  on  a  simple  network  with  peers 

communicating via a point-to-point protocol, this comparison aims to evaluate the behavior of 

the recursive routing strategy against the iterative routing strategy. In doing so, the objective is 

to  note  if  the  behavior  of  the  current  delivery ratio  and global  hop count  are  significantly 
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influenced by the routing strategy used.

● Group 2 (Chord Iterative) vs. Group 3 (Chord Iterative, on an IPv4 network)

   In this case,  the routing strategy remains the same, but the nature of the communication 

protocol used by the peers is different. Group three implements an IPv4 network with peers 

clustered  around two access  routers  connected  by a  backbone router.  The  objective  in  this 

comparison is to observe how the change in communication protocol affects properties such as 

the delivery ratio and global hop count.

● Group 1 (Chord Recursive) vs. Group 4 (Chord Recursive, with faster stabilization time)

   Once  again,  both  these  simulation  groups  are  run  with  a  simple  point-to-point  network 

communication protocol.  In this  case,  the objective is  not  to compare two different  routing 

strategies, but to compare variation of the stabilization and finger table fixing parameters with 

the recursive  routing  strategy in  place.  The reader  will  recollect  that  in  Group 4,  all  other 

parameters are the same as Group 1, except for the time setting of the stabilization and finger 

table fixing parameters, which are set to half the values of Group 1. Thus, with more frequent 

updates of predecessor and successor pointers and fixing of routing table entries, the amount of 

messages are expected to approximately double. It is expected that this will reflect in the form 

of increased fluctuation in the delivery ratio and global hop count plots. With regard to Group 4, 

it should be mentioned that the fourth simulation of 128 peers could not be completed due to 

hardware limitations of the workstation that resulted in inability to successful run the simulation 

to completion. Thus, wit respect to Group 4, comparison can only be made using the results of 

runs with 16, 32 and 64 peers.
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Trace Comparison of Node Population vs. Time for Group 1 (Chord Recursive on a simple network)

19

Figure 7(a) Population of Peers vs. Time with 16 and 32 peers respectively for Chord (Recursive)
Observation: Increasing churn is observed as the number of peers doubles; frequent  variations in peer 
population observed in graph 2 with 32 peers.



20

Figure 7(b)  Population of Peers vs. Time with 64 and 128 peers respectively for Chord (Recursive)
Observation: Relative to 16 and 32 peers, these show increased fluctuation over shorter time frames with 
shorter periods of constant number of peers. 



Trace Comparison of Node Population vs. Time for Group 2 (Chord Iterative on a simple network)

21

Figure 8(a) Population of Peers vs. Time with 16 and 32 peers respectively for Chord (Iterative)
Observation: Longer periods of stable peer numbers with sporadic churn, but not occurring as often as the
corresponding graphs for Chord with Recursive routing in Figure 7(a). 
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Figure 8(b) Population of Peers vs. Time with 64 and 128 peers respectively for Chord (Iterative)
Observation: Exponential population increase results in a greater rate of churn, but also seems to indicate more 
convergence as seen in the figure with 128 peer nodes.



Trace Comparison of Node Population vs. Time for Group 3 (Chord Iterative on an IPv4 network)
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Figure 9(a) Population of Peers vs. Time with 16 and 32 peers respectively for Chord (Iterative, IPv4)
Observation: Large variations from initially set network size with relatively long periods of stability.
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Figure 9(b) Population of Peers vs. Time with 64 and 128 peers respectively for Chord (Iterative, IPv4)
Observation: Less deviation from initial network size, but increasing churn over shorter intervals. Network with 
128 peers seems to indicate convergence of churn.



Trace Comparison of Node Population vs. Time for Group 4 (Chord Recursive, faster stabilization)
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Figure 10(a) Population of Peers vs. Time with 16 and 32 peers respectively for Chord (Recursive, fast stab.)
Observation: Decreased periods of constant size and larger deviations from initial numbers relative to initial
Chord Recursive simulation run of group 1
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Figure 10(b) Population of Peers vs. Time with 64 and 128 peers respectively for Chord (Recursive, fast stab.)
Observation: With doubling of the peers present in the system, the network seems to be taking longer to move 
towards convergence, but the regions at which the number of peers remains constant persist for longer periods 
of time before node arrival or departure moves the network to another state.



Trace Comparison of Group 1 vs. Group 2: Current Delivery Ratio vs. Time
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Figure 11(a) Current Delivery Ratio vs. Time for Group 1 (top) and 2 (bottom) with 16 peers
Observation: Larger fluctuations in delivery ratio of iterative routing due to increased traffic; reporting back to
inquiring node at each stage of routing procedure is necessary in iterative routing.
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Figure 11(b) Current Delivery Ratio vs. Time for Group 1 (top) and 2 (bottom) with 32 peers
Observation: Again, more frequent fluctuations for iterative routing with exponential growth. However, 
increased network size provides alternative routing paths, so magnitude of fluctuations are lower than before.
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Figure 11(c) Current Delivery Ratio vs. Time for Group 1 (top) and 2 (bottom) with 64 peers
Observation: Again, increased frequency of fluctuation in iterative routing delivery ratio, but magnitude of 
fluctuation is lower with increased network size providing alternative routing paths, hence successful delivery.
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Figure 11(d) Current Delivery Ratio vs. Time for Group 1 (top) and 2 (bottom) with 128 peers
Observation: Frequency of fluctuations even higher due to doubling in network size, but the system seems to be 
tending toward a level of convergence as the average magnitude of the fluctuations remains approx. same.



Trace Comparison of Group 1 vs. Group 2: Global Hop Count vs. Time
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Figure 12(a) Global Hop Count vs. Time for Group 1 (top) and 2 (bottom) with 16 peers
Observation: Wild fluctuations in hop count seen due to churn and consequent delay during stabilization & 
finger-table fixing procedure. Recursive routing remains bounded upto 3 hops; whereas iterative jumps to 4. 
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Figure 12(b) Global Hop Count vs. Time for Group 1 (top) and 2 (bottom) with 32 peers
Observation: Doubling of network size results in roughly similar behavior; global average of number of hops  
jumps to a max. of 5 as more signaling overhead is needed to update identifiers with increasing churn.
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Figure 12(c) Global Hop Count vs. Time for Group 1 (top) and 2 (bottom) with 64 peers
Observation: Exponential growth results in recursive Chord requiring an average of 6 hops occasionally. 
Iterative remains strongly bounded at 5 hops, as reporting back to inquiring node results in more correct 
routing information.
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Figure 12(d) Global Hop Count vs. Time for Group 1 (top) and 2 (bottom) with 128 peers
Observation: At 128 peers, both recursive and iterative Chord frequently require an average of 6 hops in order 
to reach the recipient. Hop count in iterative Chord jumps to 7 hops once.



Trace Comparison of Group 2 vs. Group 3: Current Delivery Ratio vs. Time
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Figure 13(a) Current Delivery Ratio vs. Time for Group 2 (top) and 3 (bottom) with 16 peers
Observation:  With 16 peers Iterative Chord over IPv4 network shows faster achievement of 100% delivery, 
with fewer and smaller magnitude of fluctuations in the percentage of delivered messages.
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Figure 13(b) Current Delivery Ratio vs. Time for Group 2 (top) and 3 (bottom) with 32 peers
Observation: Although both behaviors may seem similar at this point, Chord over IPv4 still exhibits more
reliability, with less frequent deviations below a 90% delivery ratio.
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Figure 13(c) Current Delivery Ratio vs. Time for Group 2 (top) and 3 (bottom) with 64 peers
Observation: Further doubling in network size results in more frequent deviations from the 100% mark, though
both networks still manage to maintain a reasonably consistent delivery ratio of above 90% most of the time.
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Figure 13(d) Current Delivery Ratio vs. Time for Group 2 (top) and 3 (bottom) with 128 peers
Observation: At the final simulation limit of 128 peers, both networks manage to maintain a delivery ratio 
above 90% most of the time, though iterative Chord over an IPv4 network still manages fewer fluctuations.



Trace Comparison of Group 2 vs. Group 3: Global Hop Count vs. Time
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Figure 14(a) Global Hop Count vs. Time for Group 2 (top) and 3 (bottom) with 16 peers
Observation: Iterative Chord over IPv4 network needs an average of 4 hops more often; all the nodes 
 are evenly clustered around two access routers, limiting the number of alternative routes available.
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Figure 14(b) Global Hop Count vs. Time for Group 2 (top) and 3 (bottom) with 32 peers
Observation: Maximum hop count in both networks remains mostly at 4 hops; iterative chord on a simple
network reaches a maximum of 5 hops once. The access and backbone routers in the IPv4 network provide
at least one constant path between the two clusters, resulting in at least one sure alternative.
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Figure 14(c) Global Hop Count vs. Time for Group 2 (top) and 3 (bottom) with 64 peers
Observation: Doubling network size to 64 peers results in almost similar behavior. Both networks remain
mostly bounded between 1 and 4 hops, but require an average of 5 hops much more frequently.
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Figure 14(d) Global Hop Count vs. Time for Group 2 (top) and 3 (bottom) with 128 peers
Observation: The final level of exponential growth sees both networks concentrated around a bound of 1 to 5 
hops on average, with frequent requirements of 6 hops and once even 7. However, the IPv4 network has less 
intense fluctuation in the 2 to 4 hop region, due to the capabilities of the IP protocol suite.



Trace Comparison of Group 1 vs. Group 4: Current Delivery Ratio vs. Time
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Figure 15(a) Current Delivery Ratio vs. Time for Group 1 (top) and 4 (bottom) with 16 peers
Observation: Cutting the period between stabilization and finger table fixes by half results in faster initial
achievement of 100% delivery ratio. The magnitude of occasional fluctuations is also lower
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Figure 15(b) Current Delivery Ratio vs. Time for Group 1 (top) and 4 (bottom) with 32 peers
Observation: At 32 peers, faster stabilization results in less frequent fluctuations of lower magnitude;
fluctuations go below 90% less often, resulting in greater stability of the network. Delivery remains at 100%
longer with exponential growth in Group 4.
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Figure 15(c) Current Delivery Ratio vs. Time for Group 1 (top) and 4 (bottom) with 64 peers
Observation: It is more evident at this stage of network growth that reduction in stabilization and finger table
fixing times results in more stability; fluctuations are less frequent and of much smaller magnitude. Delivery
Ratio for Group 4 remains on average well above 90% and longer periods at which it is 100%.



Trace Comparison of Group 1 vs. Group 4: Global Hop Count vs. Time
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Figure 16(a) Current Delivery Ratio vs. Time for Group 1 (top) and 4 (bottom) with 16 peers
Observation: Doubling the frequency of inspection and updating of identifiers of predecessors and finger 
table entries results in more frequent fluctuations in the number of hops needed to reach a recipient in the 
presence of churn. The second network records a maximum of 4 hops at least once.
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Figure 16(b) Current Delivery Ratio vs. Time for Group 1 (top) and 4 (bottom) with 32 peers
Observation: Doubling of network size results in the network of Group 4 registering a larger hop count more
often, though exponential growth also brings the added bonus of more alternative routing paths, acting as 
an offset to the larger number of hops and resulting in almost similar behavior between the 1 and 3 hop range.
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Figure 16(c) Current Delivery Ratio vs. Time for Group 1 (top) and 4 (bottom) with 64 peers
Observation: 64 peers in the network results in an expansion in the most heavily occupied range. The hop
count now spans 1 to 4 hops most frequently, with an increased use of 5 hops and expansion beginning in the 6
hop range. However, it should be noted that Group 4 still uses the higher hop range more often.



Challenges and Lessons Learned

   Two major  challenges  were  experienced  over  the  course  of  this  project,  which  are  listed  and 

explained below:

● Time lost with initial attempt using the OPNET simulation tool.

   The initial  plan for the project  was to build the simulation model in the OPNET 11.0.A 

simulation  tool  environment.  However,  it  was  found  that  OPNET 11.0.A had  no  tools  to 

simulate P2P networks. An attempt was made to develop a node model, but the learning curve 

for  programming  in  OPNET  was  found  to  be  extremely  steep,  due  to  the  amount  of 

documentation that had to be read in order to understand . The endeavor was abandoned after 

very little progress had been made by the end of a month, but by then a lot of time had been 

lost.

● Shifting to a new simulation tool and an unfamiliar OS

   After abandoning the work with OPNET as unfeasible within the given timeframe, a move 

was made to  OMNeT++, INET and OverSim. However  OverSim is  only supported for the 

Linux operating system and supplied only in the form of uncompiled source code. There was an 

additional learning curve involved in compiling the INET Framework and OverSim, as well as 

learning how to use the OverSim and the Linux OS, having had no experience with either of 

them.

   The lessons learned over the course of the project were as follows:

●    Designing  and  implementing  a  P2P system that  makes  use  of  a  DHT is  an  extremely 

challenging endeavor. There are many factors to be considered and balanced in the appropriate 

choice of a DHT implementation that produces the lowest overhead in terms of signaling, while 

at the same time efficiently routing messages to the intended peers and minimizing the effects 

of churn with nodes joining and leaving.

●    The choice of simulation tool is extremely important, as an extremely steep learning curve 

results in lost time during a project with a short cycle. In addition, it should have good support 

49



for P2P simulation models and an intuitive model interface that makes observation and analysis 

of network behavior as easy as possible. 

●    DHT routing parameters need to be chosen carefully, especially those related to dealing with 

changes in information about neighboring peers in the identifier space, in order to optimize the 

behavior of the chosen DHT for the specific network architecture and intended application.  

Future Work

   Given the simulation and analysis work covered in this project, the direction of future work would be 

to conduct similar analysis on other DHT algorithms, such as Pastry, CAN, Kademlia, Viceroy, Gia, 

Koorde, Broose and Bamboo. The aim of such work is to compare the performance of various DHT 

implementations in order to gain an understanding of the strengths and weaknesses of each. This would 

provide insight as to how certain features of these DHTs could be combined to build a DHT suitable for 

a  certain  application,  such  as  P2P  networks  routing  mostly:  multimedia-oriented  traffic;  instant 

messaging,   file  sharing,  control  messages,  etc.  Another possible  direction of inquiry would be an 

adaptable DHT protocol, that could perhaps shift from one type to another on the fly, so that a peers 

could  decide  amongs  themselves  which  DHT protocol  might  be  suitable  for  use  given  network 

situations, and use it accordingly.   

Real-life Applications of DHTs

   While the topic chosen and work done over the course of this project may seem somewhat abstract 

and  theoretical,  this  is  not  so.  DHTs  are  currently  implemented  and  in  operation  in  real-world 

applications. Some of those applications were encountered previously and are outlined in brief below.

1. P2P File-Sharing Applications

   The rise of peer-to-peer file sharing networks was what instigated interest in the peer-to-peer 

paradigm as a research area. From the initial days of networks using a central server to find 

other  peers  and  then  using  peer-to-peer  communication  for  file  transfer  (Napster),  to  the 

flooding  network  query  used  in  the  Gnutella  network,  P2P file  sharing  applications  have 

become a major source of observed Internet traffic, accounting for up to 60% or more of traffic 

observed [1]. It has been observed that the most recent implementations of P2P file-sharing 
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applications (BitTorrent and Azureus, to name two) implement DHTs into their protocols, thus 

enabling faster searching and retrieval of files, as well as a greater likelihood of guaranteeing 

the file being searched for. The user interfaces of the BitTorrent applications is shown below.

2. OEM Communications Software
   With  increasing  interest  in  communication  protocols  for  P2P networks,  companies  that 

develop  Original  Equipment  Manufacturer  (OEM)  communications  software  for  various 

applications  are  using  DHTs  in  their  software  to  achieve  their  product  objectives  of  P2P 

communication. One such company is SIPeerior Technologies [14], located in Virginia, USA. 

SIPeerior's  website  states  that  its  software  “enables  serverless  implementations  of  real-time 

applications  such as  VoIP,  IMS,  IPTV, streaming media  and gaming”.  SIPeerior  uses  DHT 

algorithms  such  as  Chord  in  its  communications  software  in  order  for  devices  using  the 

software to form peer-to-peer networks where data can be distributed and retrieved efficiently. 

One such example is in the communications devices that might be used by first responders at 

the scene of an emergency. P2P communications software with DHT protocols integrated allows 

them to avoid the time spent in setting up a server and configuring their devices to communicate 

with each other. Instead, OEM P2P communications software such as that supplied by SIPeerior 

allows them to bring their devices to the scene and simply power them up. The devices will 

configure  themselves,  form  a  P2P  network  and  route  messages  to  each  other  using  the 

software's built in DHT protocol. Thus, DHTs hold a lot of potential to change the way devices 

communicate with each other using self-organizing P2P networks.

51

Figure 6. The BitTorrent file-sharing application interface
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