ENSC 835: COMMUNICATION NETWORKS

FINAL PROJECT PRESENTATIONS Spring 2009

Implementation of an IEEE 802.15.4 and ZigBee Protocol using the OPNET simulator

Mohammad Reza Sahraei

http://www.sfu.ca/~mrs16/ensc835.htm mrs16@sfu.ca

- Introduction:
 - Overview
 - ZigBee vs. Bluetooth
- Performance evaluation:
 - Simulation scenarios and parameters
 - Simulation results
- Conclusions
- Unfinished work:
 - Simulation scenario and parameters
 - Implementations details
- Future work
- References

Introduction - overview

- Transmission bands:
 - 868 MHz
 - 915 MHz
 - 2459 MHz
- Device type:
 - Full-function device (FFD)
 - PAN coordinator (IEEE 802.15.4) or ZC (ZigBee)
 - Coordinator (IEEE 802.15.4) or ZR (ZigBee)
 - Reduced-function device (RFD)
 - Device (IEEE 802.15.4) or ZED (ZigBee)

ZC: ZigBee Coordinator, ZR: ZigBee Router, ZED: ZigBee End Device PAN: Personal Area Network

Introduction - overview

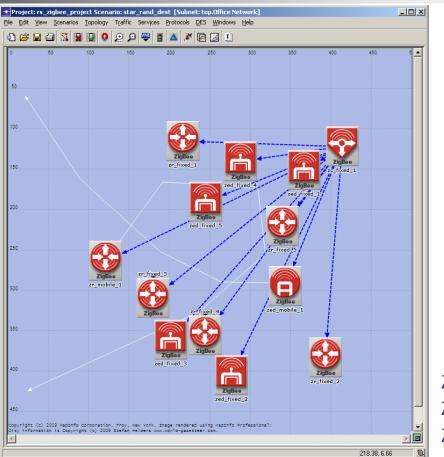
- Application layer features:
 - Generating and receiving application traffic
 - Initiating network discovery and network join
 - Failing and recovering ZigBee devices
- Network layer features:
 - Establishing a network
 - Joining a network and permitting network joins
 - Assigning an address
 - Maintaining a neighbor table
 - Mesh Routing Process
 - Network Broadcast
 - Tree routing process
 - Transmitting and receiving data
 - Mobility
 - Beacon scheduling
- MAC layer features:
 - Channel Scanning
 - CSMA/CA (Contention-based operation mode)

Introduction – ZigBee vs. Bluetooth

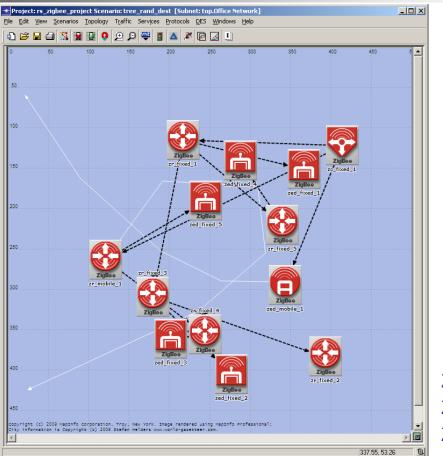
	ZigBee	Bluetooth
Transmission band	868, 915, and 2459 MHz	2.4 GHz
Data rate	250 Kbps (at 2.4 GHz)	1 Mbps
Operational range	10 – 75 m (1500 m for ZigBee Pro)	1, 10, and 100 m
Configuration	Master-slave	Peer-to-peer, master- slave
Maximum child	254	7 (active) + 255 (inactive)
Maximum power	1 mW	1, 2.5, and 100 mW
Wake up delay	15 msec	3 sec
Protocol stack	30 kwords	256 kwords
Protocol complexity	Lower	Higher
Price	less expensive	more expensive

- Introduction:
 - Overview
 - ZigBee vs. Bluetooth
- Performance evaluation:
 - Simulation scenarios and parameters
 - Simulation results
- Conclusions
- Unfinished work:
 - Simulation scenario and parameters
 - Implementations details
- Future work
- References

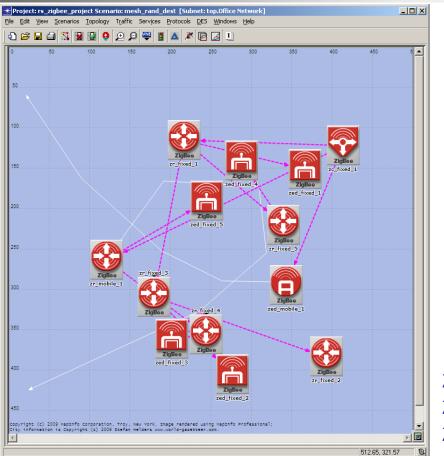
Simulation scenarios and parameters


- Simulation scenarios:
 - Star, Tree, and Mesh topologies
 - Single and multiple ZC
- Parameters:
 - 1,000 s simulated time
 - Destination: random
 - Packet inter-arrival time: constant, mean 1.0 s
 - Packet size: 1024 bytes, constant
 - Start time: uniform min 20 s, max 21 s

Simulation scenarios and parameters


Simulation scenarios:

- Star, Tree, and Mesh topologies
- Single and multiple ZC
- Parameters:
 - 1,000 s simulated time
 - Destination: random
 - Packet inter-arrival time: constant, mean 1.0 s
 - Packet size: 1024 bytes, constant
 - Start time: uniform min 20 s, max 21 s


Star topology

Tree topology

Mesh topology

Network structure

Device Name		PAN ID		Parent		
	Star	Tree	Mesh	Star	Tree	Mesh
zc_fixed_1	0	0	0	n/a	n/a	n/a
zed_mobile_1	1	93	93	zc_fixed_1	zc_fixed_1	zc_fixed_1
zr_fixed_1	2	1	1	zc_fixed_1	zc_fixed_1	zc_fixed_1
zr_mobile_1	3	47	47	zc_fixed_1	zc_fixed_1	zc_fixed_1
zr_fixed_3	4	2	2	zc_fixed_1	zr_fixed_1	zr_fixed_1
zed_fixed_1	5	46	46	zc_fixed_1	zr_fixed_1	zr_fixed_1
zed_fixed_5	6	92	92	zc_fixed_1	zr_mobile_1	zr_mobile_1
zed_fixed_2	7	23	23	zc_fixed_1	zr_fixed_3	zr_fixed_3
zr_fixed_5	8	24	24	zc_fixed_1	zr_fixed_1	zr_fixed_1
zr_fixed_2	9	3	3	zc_fixed_1	zr_fixed_3	zr_fixed_3
zr_fixed_4	10	48	48	zc_fixed_1	zr_mobile_1	zr_mobile_1
zed_fixed_3	11	69	69	zc_fixed_1	zr_fixed_4	zr_fixed_4
zed_fixed_4	12	45	45	zc_fixed_1	zr_fixed_5	zr_fixed_5

ZC: ZigBee Coordinator, ZR: ZigBee Router, ZED: ZigBee End Device PAN ID: Personal Area Network Identifier

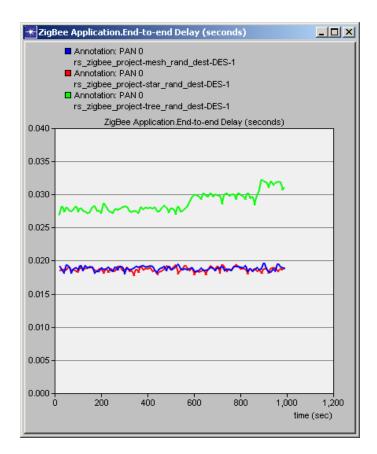
Simulation parameters

ZigBee Parameters		Value		
	Star	Tree	Mesh	
Maximum children	255	3	3	
Maximum routers	0	2	2	
Maximum depth	1	5	5	
Achieved depth	1	3	3	
Mesh routing	Disabled	Disabled	Enabled	
Transmit power	0.05	0.05	0.05	
Transmit band	2450 MHz	2450 MHz	2450 MHz	
PAN ID	Auto assigned	Auto assigned	Auto assigned	

PAN ID: Personal Area Network Identifier

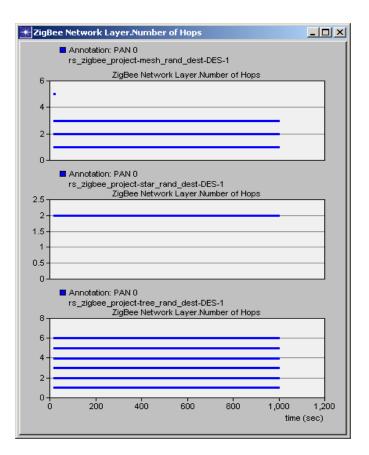
- Introduction:
 - Overview
 - ZigBee vs. Bluetooth
- Performance evaluation:
 - Simulation scenarios and parameters
 - Simulation results
- Conclusions
- Unfinished work:
 - Simulation scenario and parameters
 - Implementations details
- Future work
- References

Simulation results

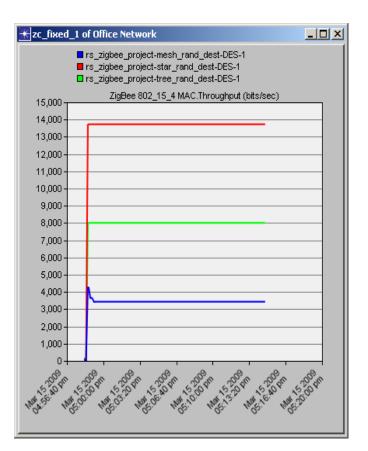

- Mesh routing table
- End-to-end delay
- Number of hops
- Throughput ZC
- Throughput global

Mesh routing table

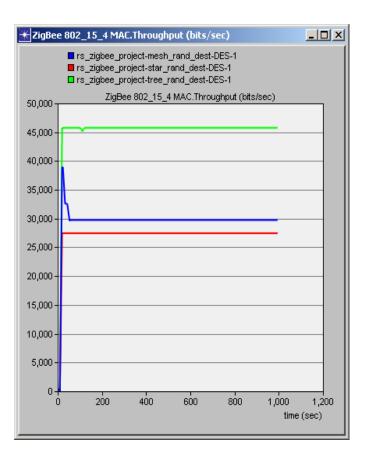
ile	Edit View Help			
	Edit <u>V</u> iew <u>H</u> elp Source	Destination	Next Hop	
1	Office Network.zc_fixed_1	Office Network.zr_fixed_4	Office Network.zr_fixed_4	
2	Office Network.zc_fixed_1	Office Network.zr_fixed_3	Office Network.zr_fixed_3	
3	Office Network.zc_fixed_1	Office Network.zr_fixed_2	Office Network.zr_fixed_2	
4	Office Network.zc_fixed_1	Office Network.zr_fixed_5	Office Network.zr_fixed_5	
5	Office Network.zc_fixed_1	Office Network.zr_mobile_1	Office Network.zr_mobile_1	
6	Office Network.zc_fixed_1	Office Network.zr_fixed_1	Office Network.zr_fixed_1	
7	Office Network.zc_fixed_1	Office Network.zed_mobile_1	Office Network.zed_mobile_1	
8	Office Network.zc_fixed_1	Office Network.zr_fixed_1	Office Network.zr_fixed_1	
9	Office Network.zc_fixed_1	Office Network.zr_mobile_1	Office Network.zr_mobile_1	
10	Office Network.zed_fixed_1	Office Network.zr_fixed_1	Office Network.zr_fixed_1	
11	Office Network.zed_fixed_2	Office Network.zr_fixed_3	Office Network.zr_fixed_3	
12	Office Network.zed_fixed_3	Office Network.zr_fixed_4	Office Network.zr_fixed_4	
13	Office Network.zed_fixed_4	Office Network.zr_fixed_5	Office Network.zr_fixed_5	
14	Office Network.zed_fixed_5	Office Network.zr_mobile_1	Office Network.zr_mobile_1	
15	Office Network.zr_fixed_5	Office Network.zr_fixed_4	Office Network.zr_fixed_4	
16	Office Network.zr_fixed_5	Office Network.zed_fixed_1	Office Network.zr_fixed_1	
17	Office Network.zr_fixed_5	Office Network.zr_fixed_3	Office Network.zr_fixed_3	
18	Office Network.zr_fixed_5	Office Network.zr_fixed_2	Office Network.zr_fixed_2	
19	Office Network.zr_fixed_5	Office Network.zr_mobile_1	Office Network.zr_mobile_1	
20	Office Network.zr_fixed_5	Office Network.zr_fixed_1	Office Network.zr_fixed_1	
21	Office Network.zr_fixed_5	Office Network.zed_fixed_4	Office Network.zed_fixed_4	
22	Office Network.zr_fixed_5	Office Network.zr_fixed_1	Office Network.zr_fixed_1	
23	Office Network.zr_fixed_4	Office Network.zed_fixed_5	Office Network.zr_mobile_1	
24	Office Network.zr_fixed_4	Office Network.zr_fixed_3	Office Network.zr_fixed_3	
25	Office Network.zr_fixed_4	Office Network.zr_fixed_2	Office Network.zr_fixed_2	
26	Office Network.zr_fixed_4	Office Network.zr_fixed_5	Office Network.zr_fixed_5	
27	Office Network.zr_fixed_4	Office Network.zr_mobile_1	Office Network.zr_mobile_1	


End-to-end delay

- Star and Mesh topologies have similar end-to-end delay in this simulation
- Tree topology has a higher end-to-end delay of 50% and it is increasing

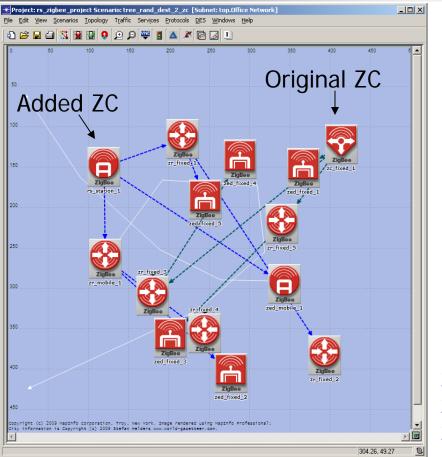

Number of hops

- Average number of hops for Mesh topology is the same as Star topology
- Tree topology has a higher average number of hops of 75%


Throughput - ZC

- The Coordinator in Star topology has the highest throughput (bits/sec)
- The Coordinator in Tree topology has the second highest throughput (bits/sec)
- The Coordinator in Mesh topology has the lowest throughput (bits/sec)

Throughput - global

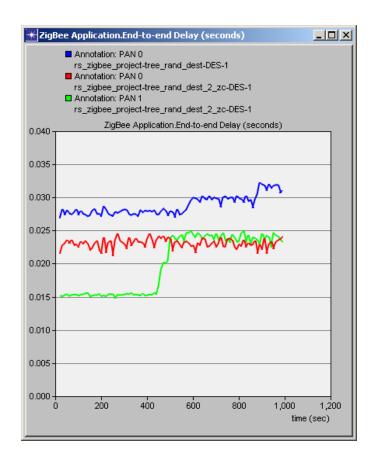

- Tree topology has the highest global throughput (bits/sec)
- Mesh topology has the second highest global throughput (bits/sec)
- Star topology has the lowest global throughput (bits/sec)

Simulation scenarios and parameters

- Simulation scenarios:
 - Star, Tree, and Mesh topologies
 - Single and multiple ZC
- Parameters:
 - 1,000 s simulated time
 - Destination: random
 - Packet inter-arrival time: constant, mean 1.0 s
 - Packet size: 1024 bytes, constant
 - Start time: uniform min 20 s, max 21 s

Multiple ZC – tree topology

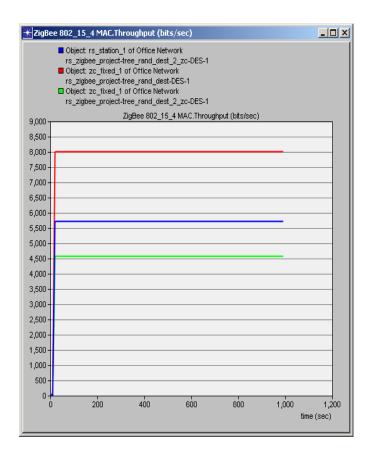
- Introduction:
 - Overview
 - ZigBee vs. Bluetooth
- Performance evaluation:
 - Simulation scenarios and parameters
 - Simulation results single vs. multiple ZC
- Conclusions
- Unfinished work:
 - Simulation scenario and parameters
 - Implementations details
- Future work
- References


Simulation results

- End-to-end delay
- Throughput ZC

End-to-end delay

- Ds_0: end-to-end delay of the network with a single PAN
- Dm_0: end-to-end delay of PAN_0 in the network with two PANs
- Dm_1: end-to-end delay of PAN_1 in the network with two PANs
- Ds_0 > Dm_0
- Ds_0 > Dm_1
- Ds_0 < Dm_0 + Dm_1</p>


PAN: Personal Area Network

Throughput - ZC

- Ts_0: throughput of ZC in the network with a single PAN
- Tm_0: throughput of ZC in PAN_0 of the network with two PANs
- Tm_1: throughput of ZC in PAN_1 of the network with two PANs
- (Ts_0 * 1.25) = Tm_1 + Tm_2

PAN: Personal Area Network ZC: ZigBee Coordinator

- Introduction:
 - Overview
 - ZigBee vs. Bluetooth
- Performance evaluation:
 - Simulation scenarios and parameters
 - Simulation results
- Conclusions
- Unfinished work:
 - Simulation scenario and parameters
 - Implementations details
- Future work
- References

Conclusions

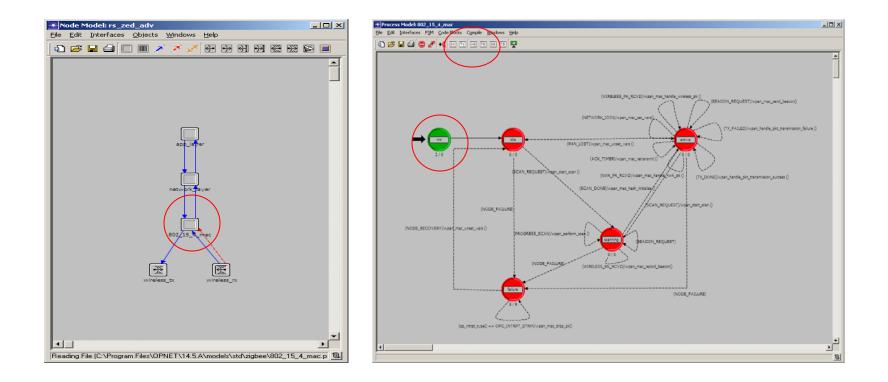
- End-to-end delay
 - Star and Mesh topologies are similar
 - Tree is higher
- Average number of hops
 - Star and Mesh topologies are similar
 - Tree is higher
- ZC throughput (bits/sec)
 - Star topology has the highest
 - Tree has the second highest
 - Mesh has the lowest
- Global throughput (bits/sec)
 - Tree topology has the highest
 - Mesh has the second highest
 - Star has the lowest

Conclusions - single vs. multiple ZC

- End-to-end delay
 - The network with a single PAN has lower than the network with two PANs
- Throughput ZC
 - The network with a single PAN has lower than the network with two PANs

- Introduction:
 - Overview
 - ZigBee vs. Bluetooth
- Performance evaluation:
 - Simulation scenarios and parameters
 - Simulation results
- Conclusions
- Unfinished work:
 - Simulation scenario and parameters
 - Implementations details
- Future work
- References

Unfinished work - simulation scenario and parameters


- Simulation scenario:
 - ZC failure and quick recovery using ZC backup (ZCB)

Parameters:

- 1,000 s simulated time
- Destination: random
- Packet inter-arrival time: constant, mean 1.0 s
- Packet size: 1024 bytes, constant
- Start time: uniform min 20 s, max 21 s

- Introduction:
 - Overview
 - ZigBee vs. Bluetooth
- Performance evaluation:
 - Simulation scenarios and parameters
 - Simulation results
- Conclusions
- Unfinished work:
 - Simulation scenario and parameters
 - Implementations details
- Future work
- References

Unfinished work - implementation details

Unfinished work - implementation details

```
static void failNode(void * ptrVoid, int iCode);
void wpan_prj_init();
...
void wpan_prj_init() {
      double dInterruptTime = 100.0; // time is second that the interrupt is scheduled
      int iCode = 0; // verification code
     void * ptrVoid = 0; // data structure to send to the called function
      FIN (wpan_prj_init());
     dInterruptTime += op_sim_time();
     op_intrpt_schedule_call(dInterruptTime, iCode, failNode, ptrVoid);
      FOUT;
}
static void failNode(void * ptrVoid, int iCode)
                                              {
      Objid iObjId;
      Objid iParentObjId;
      FIN (failNode);
     if ((0 == my_pan_id) && (0 == my_network_address) && (-1 == my_parent_address)) {
                printf("Node: Coordinator with PAN_ID: 0\n");
                op_ima_obj_attr_set(op_intrpt_source(), "condition", OPC_BOOLINT_DISABLED);
```

- Introduction:
 - Overview
 - ZigBee vs. Bluetooth
- Performance evaluation:
 - Simulation scenarios and parameters
 - Simulation results
- Conclusions
- Unfinished work:
 - Simulation scenario and parameters
 - Implementations details
- Future work
- References

Future work

- Access to OPNET source code of the network and the application layers
- Complete ZC backup (ZCB) concept:
 - Monitor and mirror ZC data
 - Substitute ZC in case of failure
- Implement and analyze the concept in ns-2

ZCB: ZigBee Coordinator Backup

References

- E. D. Pinedo-Frausto and J. A. Garcia-Macias, "An experimental analysis of ZigBee networks," *Proc. LCN, 33rd IEEE Conference*, Montreal, Que. Oct. 2008, pp. 723 - 729.
- X. Li, K. Fang, J. Gu, and L. Zhang, "An improved ZigBee routing strategy for monitoring system," *Proc. ICINIS, First International Workshop*, Wuhan, Nov. 2008, pp. 255 258.
- N.-C. Liang, P.-C. Chen, T. Sun, G. Yang, L.-J. Chen, and M. Gerla, "Impact of node heterogeneity in ZigBee mesh network routing," *Proc. SMC, IEEE International Conference*, Taipei, Oct. 2006, vol. 1, pp. 187 - 191.
- J. Y. Jung and J. W. Lee, "ZigBee device access control and reliable data transmission in ZigBee based health monitoring system," *Proc. ICACT*, 10th International Conference, Gangwon-Do, Feb. 2008, vol. 1, pp. 795 - 797.
- M.-S. Pan and Y.-C. Tseng, "The orphan problem in ZigBee-based wireless sensor networks," *Proc. MSWIM*, Chania, Crete Island, Greece, 2007, pp. 95 - 98.
- H. Labiod, H. Afifi, and C. De Santis, *Wi-Fi, Bluetooth, ZigBee and WiMAX*. London: Springer, 2007, pp. 109 122, 210 212.
- Wikipedia, ZigBee. Available: http://en.wikipedia.org/wiki/ZigBee
- ZigBee Alliance. Available: http://www.zigbee.org
- Jennic, Jennic's ZigBee e-learning Course. Available: <u>http://www.jennic.com/elearning/zigbee/index.htm</u>
- C. Evans-Pughe, "Is the ZigBee wireless standard, promoted by an alliance of 25 firms, a big threat to Bluetooth?," IEE Review, vol. 49, pp. 28 31, Mar. 2003.
- S. Farahani, ZigBee Wireless Networks and Transceivers. London: Newnes, 2008.