Handover Mechanism of Mobile WiMAX (802.16E) with Wi-Fi Technology

Omar Al-Trad, student Member IEEE
Nabil Al-Rousan, student Member IEEE

Wi-Fi: Wireless Fidelity WiMAX: Worldwide Interoperability for Microwave Access

ENSC 835 Project, Simon Fraser University

□ WiMAX 802.16e-Specifications

WiMAX Specifications

□ JÉEE 802.16e-2005

 Air Interface for Fixed and Mobile Broadband Wireless Access Systems

		802.16-2004 WiMAX	802.16e 2005 WiMAX
	Standard	802.16-2004 (June 2004	802.16e (December 2005)
	Access	Fixed, nomadic	Fixed, nomadic, portable and mobile
	Modulation	OFDM	OFDMA
	Service providers Targeted	DSL and cable modem service providers, wireless and wired ISPs	Mobile operators, DSL and cable modem service providers, wireless and wired ISPs
	Subscriber unit	Outdoor or indoor CPE, eventually PCMCIA card	Indoor CPE, PCMCIA card, mini-card built in laptops

WiMAX Specifications

□**/**EEE 802.16-2004

Air Interface for Fixed Broadband Wireless
 Access Systems

□**J**/EEE 802.16e-2005

Air Interface for Fixed and Mobile Broadband
 Wireless Access Systems

□yViMAX Forum

 Formed in June 2001 to promote conformity and interoperability of the standard

<u>http://www.wimaxforum.org/</u>

WiMAX: Worldwide Interoperability for Microwave IEEE: Institute of Electrical and Electronics Engineers ENSC 835 Project, Simon Fraser University 4

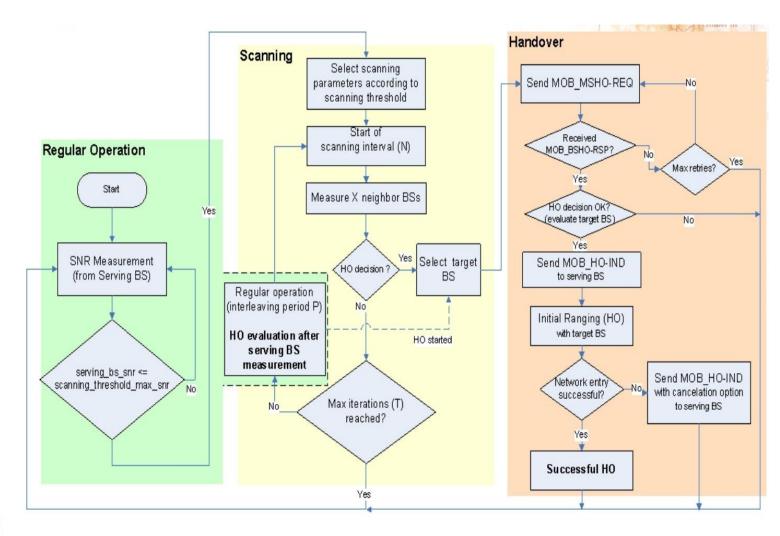
Mathematical Analysis

- The power received at the MS node $P_r[mW] = \frac{P_L G_t G_r}{P_L(d)L}$
- The antenna gain $G = \frac{4\pi A_e}{\lambda^2}$
- The signal to noise ratio
 SNR[dB] = Pr[dBm] N[dBm]
- Scanning process according to SNR[dB] = Pt + Gt + Gr - PL(d) - L - N $N[dBm] = -174[dBm] + 10 \log B + F[dB]$ $SNR_{TH_S}[dB] \ge 20 \ dB$
- handover process according to $SNR(TBS) - SNR(SBS) \ge 0.4(dB)$

Pt: Transmitted power, L: Loss factor Gt, Gr: Transmitter, Receiver Gain PL: Path loss *A_e*: Effective ApertureF: NoiseB: Bandwidth

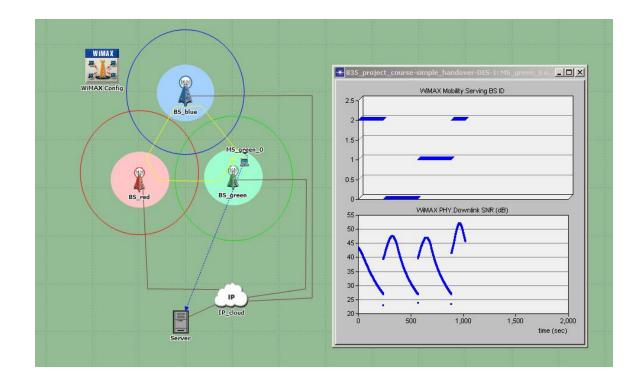
Hard Handover Mechanism

Andover control: Mobile initiated or BS initiated
 Andover process


- Network topology acquisition
- Process of BS advertising network topology or MS scanning neighbour BSs to acquire network topology
- Handover process

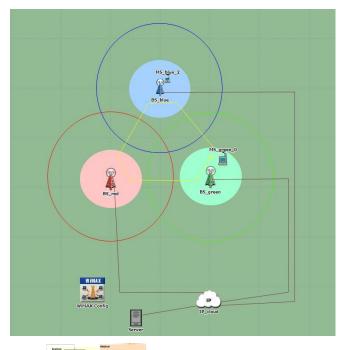
Process of associating with target BS and disassociating with serving BS

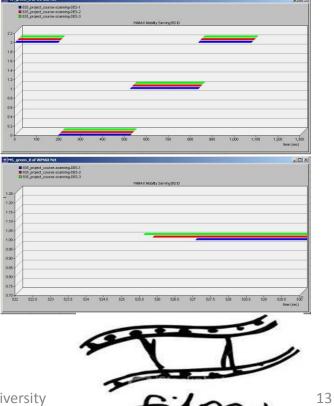
- *f*Cell Reselection: scanning and association process
- fHO Decision and Initiation
- \$ynchronization to DL of Target BS
- *f*Ranging, network re-entry with Target BS
- *f*Termination of MS context with Serving BS


Hard Handover Mechanism

SNR based Handover

MS: Mobile Station BS: Base Station SNR: Signal To Noise Ratio

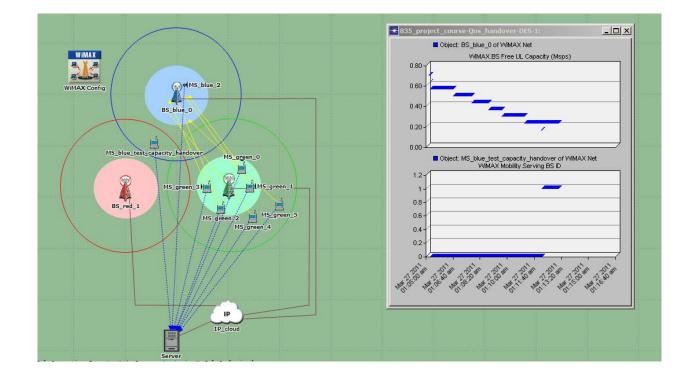


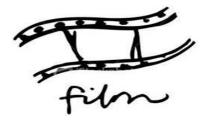


Effect of Scanning Interval on handover

QoS is characterized by the service level prediction that indicates the level of service expected by MS from target BS. According to the criteria:

 $(current \ capacity) \leq 0.75 * (maximum \ capacity)$




ENSC 835 Project, Simon Fraser University

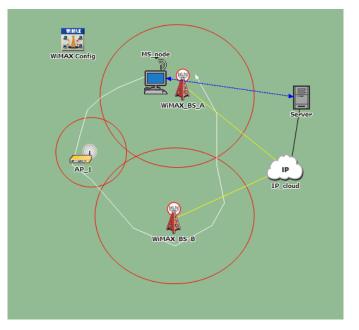
QoS Criteria Handover

QoS: Quality Of Service UL: Uplink DL: Downlink

Second Phase Initial Results

- Challenges we faced:
 - Criteria to choose the handover process
 - User defined, cost.. etc.
 - Software defined:
 - SNR
 - Capacity
 - QoS
 - Modifying the physical port of the WLAN adding some control process for switching between the heterogeneous technology

Conclusions


- Designing the network in a way to maximize its capacity and improve QoS promised.
- Changing handover parameter which effect the performance of the network.
- Successfulness in the first step improve the over-whole process.
 using advanced technique in the physical layer effect upper layer algorithms as well as improve the coverage area of the network and its performance.

Future work

- Derive a mathematical model which can express the various parameters that effect Handover mechanism.
- Implement this Handover mechanism between heterogeneous network i.e., vertical handover between Wi-Fi and WiMAX. But due to time limitation we postponed the other phases to be completed later.

21

References

- 1. B. G. Lee and S. Choi, *Broadband Wireless Access and Local Networks Mobile WiMAX and Wi-Fi*. ARTECH HOUSE, INC, 2008.
- 2. H. Pirkomaji and V. Vakily, "Improved handover interruption time in wimax, using gps," in *Next Generation Mobile Applications, Services and Technologies (NGMAST), 2010 Fourth International Conference on*, 2010, pp. 203–207.
- B.-G. Choi, K. P. Moon, Y. M. Kwon, and M. Y. Chung, "An inter-fa handover scheme to improve performance of mobile wimax systems," in *TENCON 2009 - 2009 IEEE Region 10 Conference*, Jan. 2009, pp. 1–5.
- S. Choi, G.-H. Hwang, T. Kwon, A.-R. Lim, and D.-H. Cho, "Fast handover scheme for real-time downlink services in ieee 802.16e bwa system," in *Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st*, vol. 3, June 2005, pp. 2028 – 2032.
- 5. R. Rouil and N. Golmie, "Adaptive channel scanning for ieee 802.16e," in *Military Communications Conference, 2006. MILCOM 2006. IEEE,* 2006, pp. 1–6.

Thank You! Q&A