ENSC 835: COMMUNICATION NETWORKS

SPRING 2011

DEMO OF PROJECT PERFORMANCE EVALUATION OF KEY 802.11 MAC PROTOCALS

Yitao Wu Student ID, 301127569 Email Address, yutaow@sfu.ca Biao Li Student ID, 301154307 Email Address, biaol@sfu.ca

Team 8

Supervised by Ljiljana Traikovic

Evaluation of Three Key Features of MAC Layer

• RTS/CTS (Request to Send/Clear to Send)

UNIVERSITY

- RTS/CTS handshake before sending packets, similar to TCP connection
- To solve the problem of Hidden Node
- Fragmentation

SFU

- To divide the large packets smaller to avoid retransmitting large packets in the presence of RF interference.
- Back-off Algorithm
 - A algorithm to let node wait for a while before delivery when collision occurs in busy time.
 - 802.11 mainly use DCF. There is no arbiter.
 - Each node have to cooperate with each other to use the channel fairly

Implementation – RTS/CTS Evaluation

- Network topology A small and simple 5 nodes wireless LAN network is simulated. The Node 0 in the center acts as AP, receiving data from the Nodes 1-4. Nodes 1 acts as Hidden Node to the node 2-4.
- Hidden Node The tool "Rx Group Config" is introduced to hide the Node 1 from node 2-4.
- Network configuration Distance Threshold of "Rx Group Confie" was defined to group receiver of nodes0-4. Node 0-1 blong one group, node 0, 2-4 is in another group

	Pa	rameters of t	he network			500	10 RX Group	150	200	250	300	350
Params	Scenarios					node 2	Config					
	1	2	3	4	5		node_5					
Dest Address	0	0	0	0	0							
Start Time	exp(15)	exp(15)	exp(15)	exp(15)	exp(15)							
ON State Time	exp(10)	exp(10)	exp(10)	exp(10)	exp(10)	3						3
OFF State Time	Off	Off	Off	Off	Off							·····
Pack Interarrival	exp(0.02)	exp(0.02)	exp(0.02)	exp(0.02)	exp(0.02)	node_3			node_0			node_1
Packet Size	exp(2048)	exp(2048)	exp(2048)	exp(2048)	exp(2048)							
Data Rate	1 Mbps	1 Mbps	1 Mbps	1 Mbps	1 Mbps	·····						
Rts Threshold	None	1024	None	1024	256	٢						
RX Group - Distance	N/A	N/A	220 m	220 m	220 m							

Implementation – Fragmentation Evaluation

- Network topology 11 nodes network. Node 11 act as receiving only AP. Nodes 1-10 work as sending only nodes.
- Jammer Node Jammer Node is introduced in the network to simulate the interference.
- Scenarios 8 scenarios have been studied in this project.

Scenarios:

SFU

- 1. No Fragmentation without interference.
- 2. No Fragmentation with interference.
- 3. Default threshold 1024 bytes without interference.

SIMON FRASER UNIVERSITY

- 4. Default threshold 1024 bytes with interference.
- 5. Threshold 512 bytes without interference.
- 6. Threshold 512 bytes with interference.
- 7. Threshold 256 bytes without interference.
- 8. Threshold 256 bytes with interference.

Fragmentation

Parameters	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8
Data Source								
Interarrival Time(second)	exp(0.035)							
Packet Size(Byte)	4000	4000	4000	4000	4000	4000	4000	4000
Wireless Lan								
Data Rate	1Mbps							
RTS Threshold	None							
Fragmentation Threshold	None	None	1024	1024	512	512	256	256
Buffer Size	256000	256000	256000	256000	256000	256000	256000	256000
Large Packet Processing	Drop							
Interference	No	Yes	No	Yes	No	Yes	No	Yes

Implementation – Backoff Algorithm

• Comparison of two back-off Algorithms: BEB vs. DIDD

IVERSITY

- 20, 40 and 60 wireless nodes build ad hoc network.
 - Packets' interarrival time: exp(0.2)
 - Packet size: exp(1500)

SIMON FRASER

SFU

- New node parameter "Backoff Method"
 - Control back-off algorithm used by node
- DIDD Algorithm replaces BEB at state "BKOFF_NEED"

\odot	-Roaming Capability	Disabled
0	-Large Packet Processing	Drop
	Backoff Method	MIND
	Min CW	0
0	PCF Parameters	Disabled

Implementation – Backoff Algorithm

SFU

SIMON FRASER UNIVERSITY

