
®Copyright by Shun-Feng Su 
 

1 

Learning Control  
 

Ideas and Problems  
in Adaptive Fuzzy Control	

 	
Offered by Shun-Feng Su, 
E-mail: sfsu@mail.ntust.edu.tw 

 
Department of Electrical Engineering, 

National Taiwan University of Science and Technology 
 

July 26, 2016 



®Copyright by Shun-Feng Su 
 

2 

Preface 

l  Intelligent control is a promising way of control 

design in recent decades.  

l Thus, Intelligent control design needs some 
knowledge of the system considered.  

l However, such knowledge usually may not be 
available. 

l Learning becomes an important mechanism for  
acquiring such knowledge. 

 
Intelligent means to use 

knowledge in the process. 
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Preface 


l Learning control seems a good idea for control 
design for unknown or uncertain systems.  

l To learn controllers is always a good idea, but 
somehow like a dream. It is because learning is 
to learn from something. But when there is no 
good controller, where to learn from? 

l This talk is to discuss fundamental ideas and 
problems in one learning controller -- adaptive 
fuzzy control.  
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Outline 


l Preface  

l What is learning and what is learning control 

l  Introduction to fuzzy and its applications 

l Basic ideas in adaptive fuzzy control  

l Problems and possible approaches for 
resolving those problems 

l Conclusive remarks 



®Copyright by Shun-Feng Su 
 

5 

What is Learning?


In the literature, there are two important definitions for 
learning: 

H. Simon defined learning as – “any change in a 
system that allows it to perform better the second 
time on the repetition of the same task or on 
another task drawn from the same population.” 

B. Kosko defined learning as change in all cases. “A 
system learns if and only if the system parameter 
vector or matrix has a nonzero time derivative.” 
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Concept of Machine Learning


The first definition is to ask the system with learning 
should always behave better as learning 
continues.  

The second definition is mainly for numerical 
learning.  

Both definitions give a fundamental idea for learning – 
to change the system to make output differences.


The fundamental problem for learning is how to 
change the system to make the system’s 
behaviors as required.  

Learning algorithm 
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Learning Control


Traditional learning control is to estimate (or 
successively approximate) some unknown 
quantities. 

Categories of targets for learning in control: 

l  Learning about the plant; 
l  Learning about the environment; 
l  Learning about the controller; and 
l  Learning new design goal and constraints. 
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Learning Control

l  The first two categories are more like 

modeling.  
 àIt is easy to achieve by using supervised 

learning schemes, but have difficulties in 
designing controller (model based control) due 
to nonlinearity and learning insufficiency.  

 !Most learning control research efforts are in 
these two categories.  

l  The last one is AI related issue and is usually 
considered for general systems instead of 
control systems.  
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Learning Control 


l To learn controllers is always a good idea, but 
somehow like a dream. It is because learning is 
to learn from something. But when there is no 
good controller, Where to learn from?  

l Nevertheless, there still exist approaches, such 
adaptive fuzzy control, that can facilitate such 
an idea. ß performance based learning  

    
To define a performance index and then change the 
system (learning) so as to optimize this index. 
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Learning Control 

Performance based approach — find a way of 

optimizing the performance index. 

l Reinforcement learning is to find parameters in 
the controller in a trial-and-error manner to 
optimize the performance index (external 
reinforcement). 

l Lyapunov stability is to derive update rules of 
parameters so that the derivative of the 
considered Lyapunov function is negative. 
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l Preface  

l What is learning and what is learning control 

l  Introduction to fuzzy and its applications 
l Basic ideas in adaptive fuzzy control  

l Problems and possible approaches for 
resolving those problems 

l Conclusive remarks 
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Introduction of Fuzzy


Fuzzy have been widely used in various 
applications. 

In fact, the fundamental idea behind fuzzy 
systems is to include uncertainty in the process. 
Such an inclusion provides extra information so 
that the systems can be more accurate.  

In other words, fuzzy is vagueness by meaning, 
but can provides accurate due to this extra 
information.                                             Fuzzy 
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Fuzzy Logic Control  

A Fuzzy Logic Controller (FLC) is a controller 
described by a collection of fuzzy rules (e.g. IF-
THEN rules) involving linguistic variables. 

The original idea of using FLC is to incorporate the 
“expert experience” of a human operator into the 
design of the controller in controlling a process. 

The utilization of linguistic variables, fuzzy control 
rules and approximate reasoning provides a 
means to incorporate human expert experience in 
designing the controller. 
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Fuzzy Logic Control  

 
It is also referred to 
as a fuzzy system. 

 



 
 

Knowledge usually is 
in a rule structure 

and rule structures 
need partition. 

 
 



The consequences of all 
matched rules must be 

transformed into actions. 

To use rules, a value 
must be defined into 

labels. 
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Rationale behind FLC  

In an FLC, the rule structure provides the 
adaptation among control strategies, and then 
the fuzzy mechanism provides the interpreting 
capability among rules.  

With the interpreting capability, the transition 
between rules is gradual rather than abrupt. It is 
the so-called softening process. 
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Fuzzy Systems  
In recent development, fuzzy systems have been 

considered as an alternative of a nonlinear 
system but with a linear system in each rule so 
that approaches for linear systems can also be 
applied. 

Besides, various parameters are needed in fuzzy 
systems. Those parameters can be tuned to 
have excellent performance (by users or by 
learning mechanisms). ß adaptive fuzzy control 



March., 2014 

®Copyright by Shun-Feng Su 
 

17 

Fuzzy Systems 

Mamdani fuzzy rules :  
If (X is A) and (Y is B) … then (Z is C) 

TSK (in modeling) or TS (in control) fuzzy rules :  
If (X is A) and (Y is B) … then Z=f(X,Y).  

Note that C is a fuzzy set and f() is a crisp 
function.  

                         min(          ,                       ). 

Obtained from extension principle. 
u

RA v max)( =!µ )(uAµ ))(),(( vut CB µµ
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Fuzzy Systems 

Mamdani fuzzy rules : COA defuzzification  

To find the center 
of area, it need to 

use numerical 
integration.
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Fuzzy Systems 

TS fuzzy rules : Somewhat is also called COA. 
But without numerical integration. It is obtained as  
 
 
    z=               ,  
 

where      and      are the firing strength and the 
fired result for the i-th rule and m is the rule 
number.  
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Simple and easy to calculate. 
Most importantly, it can be used 
in any mathematical operations, 

such as derivative.
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Fuzzy System 

A fuzzy approximator is constructed by a set of 
fuzzy rules as  

 
 
Generally,      is a fuzzy singleton (TS fuzzy 

model). 
Another type is to use a linear combination of input 

variables. In that case, usually, the recursive 
least square (RLS) approach (or recursive 
Kalman filter) can be used to identify those 
coefficients. 
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Fuzzy System 

The fuzzy systems with the center-of area like 
defuzzification and product inference can be 
obtained as  

 
 
 
 
It is a universal function approximator and is 

written as                        . 
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t-norm operation for 
all premise parts
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Fuzzy System 

It should be noted that the above system is a 
nonlinear system. But, it can be seen that the 
form is virtually linear.(                       ) 

Thus, various approaches have been proposed to 
handle nonlinear systems by using the linear 
system techniques for the linear property 
bearing in each rule, such as common P 
stability or LMI design process. 

ωθθx T
fy =)(
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l Preface  

l What is learning and what is learning control 

l  Introduction to fuzzy and its applications 

l Basic ideas in adaptive fuzzy control  
l Problems and possible approaches for 

resolving those problems 

l Conclusive remarks 
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Adaptive Fuzzy Control 

Consider the following nth order nonlinear 
system :  

 
 
 
 
 
 
               is the system output.  

1 2

2 3
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Adaptive Fuzzy Control 

The objective is to design an controller such that  
y  tracks a desired signal ym(t).  

Let                be the tracking error and can be 
written as 

Based on the feedback linearization method, if  
and  are known, the reference controller is [1] 
 .    

 

yye m −=
T

n
Tn eeeeee ],,,[],,,[ 21

)1( !!" == −e

* ( )1 ( )n T
mu f y

g
= − + +k e This is also referred 

to as the perfect 
control law
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Feedback linearization 

For tracking control, we need to obtain an perfect 
control law referred to “Applied Nonlinear 
Control” a method which is called “Feedback 
Linearization Method.”


( )1 [ f( ) ]
g( )

n T
du x= − + +x K E

x

f( ) g( )nx u= +x x& ( ) ( 1)
1 0n n

ne k e k e−+ + + =L

lim ( ) 0
t
e t

→∞
→

substitute 
Hurwitz  

Assum
e 

g(x)≠0 
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Adaptive Fuzzy Control 

where                               is selected such that all 
roots of                                                            
are in the open left-half plane.  

The tracking error dynamics                               
can have                    . 

If f  and  g are known, the control law can be 
fulfilled and then the control performance can 
be guaranteed. 

T
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Adaptive Fuzzy Control 

Usually, f and g are unknown or subject to some 
uncertainty, thus the perfect control may not 
work.  

Adaptive fuzzy control is then use fuzzy 
approximator (systems) to approximate them. 

Direct adaptive fuzzy control –  to estimate 
directly the controller     .  

the perfect control law 
* ( )1 ( )n T

mu f y
g

= − + +k e

 *u

To use   
to model  

ωθθx T
fy =)(
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Adaptive Fuzzy Control 
Usually, f and g are unknown or subject to some 

uncertainty, thus the perfect control may not 
work.  

Adaptive fuzzy control is then use fuzzy 
approximator (systems) to approximate them. 

Direct adaptive fuzzy control –  to estimate 
directly the controller     .  

Indirect adaptive fuzzy control – to estimate f 
and g.  

the perfect control law 

 *u

* ( )1 ( )n T
mu f y

g
= − + +k e
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Direct Adaptive Fuzzy Control 

To approximate the controller by using a fuzzy 
system as                               [3]. 

Consider the following Lyapunov function  
 
 
where                             is the error of the 

estimated parameter and        is the optimal 
parameter vector and is defined as  
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Direct Adaptive Fuzzy Control 

The idea is to let the derivative of the Lyapunov 
function is negative. In that case, the system can 
be said to be stable and the error will eventually 
become zero if possible. 

The second term of the Lyapunov function can be 
view as to minimize the approximation errors.  

In fact,  it is to generate the derivative of        , 
which will be used to form the update rule 
for       . 

 

Dθ
Dθ

... ( ) ... ... ... ( terms) ...T T T
D D D D D D

d
dt

+ = + + = + + +θ θ θ θ θ θ& &

terms   update lawD = ⇐θ&
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Direct Adaptive Fuzzy Control 
The idea is to let the derivative of the Lyapunov 

function is negative. In that case, the system can 
be said to be stable and the error will eventually 
become zero if possible. 

The second term of the Lyapunov function can be 
view as to minimize the approximation errors.  

In fact,  it is to generate the derivative of        , which 
will be used to form the update rule for       . 

This kind of approach can be seen in lots of 
learning or adaptive control schemes.           

Dθ
Dθ
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Direct Adaptive Fuzzy Control 

 
 
 

 
                       is approximate error (assumed to 

be small enough.) 
The idea is to let                                 and to prove 

the remaining terms are negative in general.  
Then, it can be claimed that       is negative. 
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Lyapunov 
derivation 

QPΛPΛ −=+T

                              , it is the update law for θ 1
T

D D tαΔ = Δθ e PB ω
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Direct Adaptive Fuzzy Control 

If you actually use this approach, the results may 
not be satisfactory. 

The example shown in the paper is only for 
regulation control.  

Less further work has been reported in the 
literature. 

The main problem is whether there exist the optimal 
control and whether it can be approximated by 
the fuzzy approximator; that is, whether  

                          is small enough? 
** ˆDD uu −=ε
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Direct Adaptive Fuzzy Control 
(regulation control) 

The control results in the 
original paper (regulation 

control) 

Another approach 
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Direct Adaptive Fuzzy Control 
(Tracking Control)     
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Direct Adaptive Fuzzy Control [6] 
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Indirect Adaptive Fuzzy Control [4] 

To approximate f and g by using two fuzzy systems 
as                                 and                                 . 

Consider the following Lyapunov function  
 
 
where those variables are similar to those defined 

in direct adaptive control. 
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Indirect Adaptive Fuzzy Control 

 
 
 
 
The approximate error is  
Similarly we can we the update rules as 
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Original adaptive control scheme 

Update Laws: 
 
 



1
T

f feθ β ω= − PB&

2
T

g ge uθ β ω= − PB&

Fuzzy Approximator 
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Adaptive Fuzzy Control 
Adaptive fuzzy control is to use fuzzy approximator 

–                     . 
Fuzzy systems are universal approximators [2]. 
Other universal approximators can also be used, such 

as:  
l  Radial Basis Functions; 
l  Cerebellar Model Articulation Controllers; 
l  Wavelets; etc. 
As long as they can also be written as a linear form 

like                         . 
 

ωθθx T
fy =)(

ωθθx T
fy =)(
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Adaptive Fuzzy Control 
Some approaches claimed that they also used 

neural networks to act as the approximator in 
their approach. In fact, it is one kind of radial 
basis function neural networks, which can be 
equivalent to a fuzzy system.  

If you want to use other approximators which are 
not of linear form, some linear approximation 
approaches (like first order of Taylor 
expansion) may be employed to make it 
workable in the framework. 
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Adaptive Fuzzy Control 
Also, such an idea can be employed to find 

adaptive laws for other parameters.  
Again, a linear form is needed (or some linear 

approximation mechanism is employed) to 
ensure a simple form of the update law. 

Besides, the squared term of the parameter must 
be added into the Lyapunov function to have a 
basic formation of the update law. 
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Adaptive Fuzzy Control 

Some approaches also adapt the idea of sliding 
control, by defining the sliding surface as the 
integral of the characteristic polynomial as 

                             ,  where                              [7]. 

Then, the idea is to replace all error terms by the 
sliding term. For example, the Lyapunov function 
is defined as:  

 

Similar results can be obtained. 
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l Preface  

l What is learning and what is learning control 

l  Introduction to fuzzy and its applications 

l Basic ideas in adaptive fuzzy control  

l Problems and possible approaches for 
resolving those problems 

l Conclusive remarks 
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There are problems in the above approaches: 

l  Control aspect —                 (the approximate 
errors) may not be small. It may cause a 
system stability problem.  

l  Learning aspect — Large error (chattering 
phenomenon) in the Initial stage and 
convergence problem (parameter drifting) in 
the final stage. 

Adaptive Fuzzy Control 

 or  D Iε ε
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There are problems in the above approaches: 

l  Approximate errors and robust control 

l  Initialization and supervisory control. 

l  Parameter drifting 

Adaptive Fuzzy Control 
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Approximate Errors 

Errors        may exist due to rule resolution (rule 
numbers) and rule dependency (input-output 
deterministic). 

Rule resolution may not be sufficient if the rule 
number used is small. ß universal 
approximator theorem 

1 1   V= (  )
2

T T T T
D D D Dε α

α
− + + −e Qe e PB θ e PB ω θ% &&

When        is large, then this part 
may not be negative. 

With the update law, it 
is zero.        Dε

Dε
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Another possible error-- Rule dependency may 
not be sufficient if the input variables used to 
define the input-output relationship is not 
sufficient. ß It is called nondeterministic in 
traditional learning. 

For current published work, only the error and the 
error derivative are used as the input 
variables. If the system considered is more 
complicated, maybe more terms must be 
included. 

Approximate Errors 
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Feedback linearization 
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 or  D Iε εIt is                 in the above. 
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How to design  udesign to yield that  

the energy dynamics (   ) fits in with a special form. 
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Consider an often-used inverted pendulum 
system as 
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Simulation 1: The assignable control performance test. We let δ=0.2, 
0.3, 0.4, and 0.5.  
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1)sgn( PBeTc gKu =

)( * uuV TT −+−= PBeQee!

*2
1  )( ugKV TT

c
T PBePBeQee +−−=!

Bounded Negative define term 

L2-gain state 
feedback 
controller 

A suitable value of Kc leads the equation to be 
minimum, which results in a more negative value of the 
derivation of V, and the initial control action does not 
have the oscillation (high-gain) problem.   

How to find a suitable Kc ? 

Robust Control 
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A large Kc will have nice control performance (small δ) but 
will have large initial control gain, but a small Kc may have 
a large error in the final stage. 

The research goal is that how to reduce the 
oscillation phenomenon of the initial control 
action and remain the satisfactory initial state 
response. 

A idea is to use a small Kc in the initial stage and a large Kc 
in the final stage. But how to change? 

Use genetic algorithm to in adjusting Kc.   

Robust Control 
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Search region                                
   The assignable control performance is a inherent 
property of the L2-gain control, which can be applied to 
define the search region. 

   The attenuation level      
determines the tracking 
control accuracy, and we 
can use the selection of Kc 
to adjust     ,  
 
such as  

δ

lowcup gKg 2/=δ

uplow ggg ≤≤

δ

7 7.5 8 8.5 9
0.8

0.85

0.9

0.95

1

1.05

1.1

time (sec.)

y 
an

d 
ym

 (r
ad

)
ym 

Delta=0.2 

Delta=0.3 
Delta=0.4 
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Example:  

2.0  ,5.0 minmax == δδ
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Random population  

Cost function and  
Auxiliary search condition  

Roulette wheel selection  
and  

the elite reproduction 

Living population 

Crossover 

Mutation 

Population  
of next 

generation 

 The l-th chromosome is represented as  

)( l
c

l KCh = ml ,,2,1 !=
m is the number of the used chromosomes. 

is a gene (solution) of the  l-th chromosome. 

, 

l
cK

If a chromosome cannot satisfy the 
auxiliary search condition, or its cost is 
larger than a threshold cost (CostT) , 
then the chromosome will be replaced 
by another good chromosome. 

is the minimum cost of the k-th generation.  

is the average cost of the k-th generation.  

ho ≦ 1 is a retaining constant;  
    it provides the multiplicity for the population.  

)(kCostMin

)(kCostAvg

1 

2 

3 
 )( })()({)( kCostMinhkCostAvgkCostMinkCostT o +−=
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Cost function                                  

*2
1  )( ugKV TT

c
T PBePBeQee +−−=!

Bounded Negative definite term 

Cost function  2
1)( PBeTcKCostE −=

A suitable value of Kc leads the cost function to 
be minimum.  
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Δ<Δ−− uttutu  )()( 

In order to resolve the oscillation problem in 
the initial stage, we must avoid the minimum 
solution being found too early.   

It is the sample time (0.01 seconds).  

A constant which is used to 
restrict the evolution speed. 

Ø  An auxiliary search condition is defined under the change 
of the control action as  

The evolution speed is needed to be restricted  
that is the design basis of the auxiliary search condition.  
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High initial gain problem 

1)sgn(80 PBeTgu =

)( ) 10sin(10 mNttd −=

1)sgn(80 PBeTgu =
0=d

Without the genetic adaptive scheme 

Without the genetic adaptive scheme 

The tracking control  
performance 

Control action 
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)( ) 10sin(10 mNttd −=
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0=d

With the genetic adaptive scheme 

With the genetic adaptive scheme 

The initial tracking performance 
 is not sacrificed. 

The initial tracking performance 
 is not sacrificed. 
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c
T

t
TT uV PBePBeQee 22 −+−= ε!

We can add an integral term to become more stable 

dtgkgku Tt

c
T

cc 1

 

0 211 )sgn()sgn( PBePBe ∫+=

The compensative controller is defined as   

∫−

+−−−=

t T
c

t
cc

tT
c

T

dtgk

gk
g

gk
ggkV

 

0 

2
12

22

1

2

1
11

)(2       

)
2

()
2

 2(

PBe

PBeQee ε
ε!

0>1ck 0≥2ck

By substituting uc into      . V!

Robust Control 

Additional negative energy 
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Robust Control 
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An integral term provides a more stable edge to 
have better control performance.  

Without the  
integral term 

With the  
integral term 

Without the  
integral term 

With the  
integral term 

Tracking  
performances 

Control actions 
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Another way of handling errors is to consider 
those errors in the controller (error feedback 
controller). 

For indirect adaptive fuzzy control, it is easy to 
find ways of estimating those errors and/or 
compensating them. 

For direct adaptive fuzzy control, it may be difficult 
to compensate the approximate error because 
it is difficult to define control errors. 

Approximate Errors 



March., 2013 

®Copyright by Shun-Feng Su 
 

68 

Error Feedback Controller (Indirect) 

An approach is proposed to improve the 
accuracy of estimated value. Define a 
modeling plant as  

 

 

Define the estimated state error 
as                       ; 

that is, 
 
 

( ) ( ) ( )  nx f x g x u= +%% %

ˆf f f= −% ˆg g g= −%

( ) ˆˆ ˆ( ) ( ) ( ) nx f x g x u t= +

( ) ( ) ( )ˆn n nx x x= −%

Estimated f by 
the fuzzy 

system 

Estimated g 
by the fuzzy 

system 
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Approximate Errors (Indirect) 

Now, define a new Lyapunov function as     
 
 
 

The idea is to minimize the modeling error while 
adaptive. 

Similarly we can we the update rules as 

2
g g

1 2

1 1 1 1V
2 2 2 2

T T
n f fe e x θ θ θ θ

β β
= + + +TP %% %%%

New added term state estimated error 

1( )T
f n fx eθ β ω= −B P& %

2( )T
g n gx e uθ β ω= −B P& %

Approach I 
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Approximate Errors (Indirect) 

Fuzzy Approximator Note: 
Lyapunov Laws: 

 
 



1( )T
f n fx eθ β ω= −B P& %

2( )T
g n gx e uθ β ω= −B P& %  

To calculate 
the estimated 

model 

Model error 
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Simulation – chaotic eq. 

Simulate the chaotic equation 

   select vector k and matrix Q are 

The desire output             . 
Some parameter β1=70,β2=0.01, gL=0.01.  
There three conditions are simulated 

1. Simulation with noise-free 
2. Simulation with disturbance: with disturbance at 10 

sec which function is                    .  
3. Simulation with noise: with noise whose mean is 0, 

and standard deviation is 0.01.  

30.1 12cos( )x x x t u+ + − =&& &

[ ]
30 5

12 7 ,
5 30

T ⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
k Q

cos( )dx t=

2 20.05exp( / 0.1 )x−
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Simulation  – chaotic eq. 

Original approach 
Tracking error converges at 0.003.  

Proposed approach 
Tracking error converges at 0.0024.  

Condition 1. 

20% improvement in error reduction 
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Simulation – chaotic eq. 

Original approach 
Tracking error converges at 0.0041.  

Proposed approach 
Tracking error converges at 0.003.  

Condition 2. 

26.8% improvement in error reduction 
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Simulation – chaotic eq. 

Original approach 
Tracking error converges at 0.0032.  

Proposed approach 
Tracking error converges at 0.0025.  

Condition 3. 

21.9% improvement in error reduction 
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Another Approach [8]
 
 

CMAC 
based 

Learning 
 
 



 
 

New added 
compensated 

control 
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Approach II


 
 



 
 
 



 
 

CMAC 
based 

parameter 
Learning 

 
 



 
 

compensated 
control also has 
some bounded 
adaptive effects 
(discussed later) 
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Simulation


Original approach                         Approach II 
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Simulation


          Approach I                            Approach II 
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The control performance is comparable. 

 
 Disturbance 
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Simulation – Approach I


   Without disturbance                With disturbance Modeling performance 
is acceptable.


 
 
 
 



 
 

The disturbance 
is modeled into 

the system 
function. 

 
 



Modeling f


Modeling g
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Simulation – Approach II


   Without disturbance                With disturbance 
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performance is 
unacceptable. 

 
 

 The modeling 

effects will become 
worse.
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where                          represents the system 
output energy and                         represents 
the system input energy. 

Definition:  
 A control system is said to have the finite     

-gain property if there exists an assignable finite 
gain          and a bias constant               
representing the initial condition such that the 
following inequality holds 



2L

0>δ +∈Rbiasγ

biasLTtLT ff
γεδ +≤

22
 e

∫=
f

f

T T

LT dt
 

0 
 

2

eee

∫=
f

f

T

tLTt dt
 

0 

2
 

2

εε

Error Feedback Controller (Direct) 
A way of defining errors must be developed for direct 
adaptive fuzzy control. 



March., 2013 

®Copyright by Shun-Feng Su 
 

82 

d
T
ddc uuu ωθ~* =−≅

		is estimated as                      .  T
dcd u )(~ 1−= ωθ

*lim uuu cdt
=+

∞→

Consider that    

dθ
~

[6] E. Kim, “A fuzzy disturbance 
observer and its application to control,” 
IEEE Trans. Fuzzy Systems, vol. 10, no. 
1, Feb. 2002. 

The inequity                           indicates that -- biasLtTLT ff
γεδ +≤

22

e
the tracking control error is bounded in a region 
around origin, the size of the region can be 
arbitrarily small with the choice of δ. Thus, the 
following equation is guaranteed as [6]. 

Error Feedback Controller (Direct) 
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By substituting the estimative value into the earlier 
adaptive law, the proposed adaptive law is found as 
follows:  

T
dcmd

T
md ug )()sgn( 1

21
−+= ωeωPBeθ βα!

                                      is a simple adaptation 
scheme to enhance the learning stability 
more.  

Q.E.D.   

The estimative value can be multiplied by another  
adaptive rate         as 

T
dcmd u )(~ 1

2
−= ωeθ β

2
emβ

22
2

2
12 neee +++= !e

Error Feedback Controller (Direct) 
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1. If             , then the approximate error feedback term  

                       is not used. 

            is still used, the other parameters       and        will be 
adjusted to show the change of the learning speed.    



Simulation 2: The learning speed tests are illustrated in this 
simulation.  

151 =ck mβmα

T
dcm u )( 1

2

−ωeβ

0=mβ

2. The value of       is also increased to illustrate the effects of 
the learning speed.    

mα

Adaptive rate 1 
Adaptive rate 2 

Simulations 
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Reached Time (sec.) and Cycle 

0.1 20    25.12                        (4th cycle) 
0.1 0                  Unstable 
1 20    25.12                        (4th 

cycle) 
1 0                  Unstable 
10 20    18.84                        (3th 

cycle) 
10 0                  Unstable 
20 20    18.84                        (3th 

cycle) 
20 0                  43.96          

(7th cycle) 
30 20    18.84                        (3th 

cycle) 
30 0                  31.40          

(5th cycle) 
40 20    18.84                        (3th 

cycle) 
40 0                  25.12          

(4th cycle) 
50 20   18.84                         (3th cycle) 
50 0                  18.84          

(3th cycle) 

mβmα

1. A suitable βm 
provides more stable 
learning speed even 
if the adaptive rates         
are different. 

2. It can be found that 
the selection of the 
adaptive rate can be 
relaxed because the 
proposed approach.  

mα

T
dcmd

T
md ug )()sgn( 1

21
−+= ωeωPBeθ βα!

d
T

md g ωPBeθ 1)sgn(α=!

Simulate results 

ü  The stable learning speed 
is guaranteed. 
ü The initial learning stability 
is guaranteed.   
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There are problems in the above approaches: 

l  Approximate errors and robust control 

l  Initialization and supervisory control. 

l  Parameter drifting 

Adaptive Fuzzy Control 
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Initial status (initial states and initial parameter 
values) may cause various problems for a 
learning system. 

A so-called supervisory controller [3,5] is often 
used and the effects are satisfactory. In above 
examples, all use supervisory controllers. It is 
similar to hitting control for sliding model 
control.  

The supervisory controller is proposed in the early 
version of adaptive fuzzy control and can also 
act as one kind of robust control. 

Initialization 
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Supervisory Control 

 
 

Adaptive 
fuzzy 
control 

 



 
 

supervisory 
control 

 
 



 
Robust control if 
used, such as 
compensated 

control 
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The control in supervised control is                   , 
where      is the approximated perfect control 
law and       is the supervisory controller.  

Consider the derivative of Lyapunov function  
                                                          , where      is 

the optimal control. 
Thus, if       is large enough, the derivate of V will 

be always negative. 

Supervisory Control 

p su u u= +

pu
su

*(1 2) ( )T T
s s s p sV u u u= − + − −e Q e e PB& *u

su

It is         Iε
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Controller  p su u u= + Supervisory controller 

sgn( )( )s suu g C= −

)()2
1( *

11 mss
T

sus
T

s
T

s guguCgV −++−= BPeBPeeQe!

T]1000[1 !=B
ekTs

n
ms yfgu ++−= )(*

( )
1 1

1 ( )
2

T T T n T
s s s su s m s pV g C f y gu= − + + − + + −e Q e e P B e P B k e&

Supervisory Control 
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( )
1 1

1 ( )
2

T T T n T
s s s su s m s pV g C f y gu= − + + − + + −e Q e e P B e P B k e&

))(()2
1( )(

11 upm
T
s

n
mups

T
susus

T
s

T
s guyfCKV +++++−≤ ekBPeBPeeQe!

1suK ≥ : A positive constant. 
0upf > : The upper-bound of f. 

( )p upgu : The upper-bound of the gum. 
( )

1sgn( )( ( ) )T n T
su s up m s p upC f y gu= − + + +e PB k e

0≤sV!Stable condition : 

Design  

( )
1sgn( )sgn( )  ( ( ) )T n T

s s su up m s p upu g K f y gu= + + +e PB k e

sgn( )( )s suu g C= −
Design result :  

Supervisory Control 
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Thus, the supervisory controller can be selected 
as 

 
     where the subscript up is the upper bound of 

that function and Ks is a constant. 
It can be found that the supervisory controller is a 

function of the upper bound of the system 
function.  

If the bound is not properly selected, the control 
performance may not be satisfactory. 

Supervisory Control 

( )
1sgn( )sgn( )  ( ( ) )T n T

s s s up m s p upu g K f y gu= + + +e P B k e



March., 2013 

®Copyright by Shun-Feng Su 
 

93 

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4
adaptive fuzzy without supervisory control Dmax=4   maxfzi=1   maxfzo=5

(a)                                       sec

 

 

RMSE=0.013749

rad

Nt

y
r

0 1 2 3 4 5 6 7 8 9 10
-20

-10

0

10

20

(b)                                       sec

 

 
U
d

Without supervisory control 

Simulation 



March., 2013 

®Copyright by Shun-Feng Su 
 

94 With supervisory control 

Simulation 
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0.013749 (50% 

reduction)
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Supervisory Control 

Consider another system as 
 
This system do not have a bound for the system 

function. à The system diverges. 
 
 

1xx e u= − +&
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The problem is that the bound is a function of f. 
 
The idea is to use previous control action so that 

the bounded for the perfect control law can be 
reduced so that the supervisory control can 
easily be implemented.  

The term of the system function becomes the 
difference of the system function, of which the 
bound is much smaller than that of the system 
function.  

Supervisory Control 

( )
1sgn( )sgn( )  ( ( ) )T n T

s s s up m s p upu g K f y gu= + + +e P B k e
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Supervisory Control 
( ) ( )

0* ( ) ( 1) [ ( ) ( 1) ( ) ( 1)
ˆ ˆ ˆ                   ( ( ) ( 1)) ]

n n
m m

T
g

u u k u k g y k y k f k f k

k e k e k err

= = − + − − − + −

+ − − +

( )
0 0* ( 1) ( )nu u k g e f g E= − + −Δ +

g tracking transitionE err err err= + +

( )
0( 1) ( )n T

f f CMAC su u k M e u uε θΔ= − + + + +

 
 Compensated 
learning for E. 
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Supervisory Control


sf
)n(

rf ueMkuu +−+−= Δ )()1( T
0 θε

maxmax )/( DDSsatus ×=

kvsoldnew Cu
LM

WW
0

1
+=

WCu T
vCMAC k

=

su

yr +

-

CMACu

dbufx n ++=)(
Robust fuzzy controller

CMAC learning process

CMAC controlling process

+
+
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Inverted Pendulum
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Exponential System
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There are problems in the above approaches: 

l  Modeling errors 

l  Initialization and supervisory control. 

l  Parameter drifting 

Adaptive Fuzzy Control 
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For adaptive fuzzy control, it can be found that the 
parameter is a function of errors: 

 

 

When there are errors, the parameters will be 
changed. It can be expected that for tracking 
problems, there are always errors and the 
parameters are always changing. 

Parameter Drifting 

f
T

f ωPBeθ 11β−=!

g
T

Ig u ωPBeθ 12 ˆβ−=!

This referred to as  
the parameter drifting problem.
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Parameter Drifting


Two situations occur: 

l  The parameters may drift to some unwanted 
regions (in fact, some values may go 
unbounded.) 

l  The parameters in the optimal controller are not 
constants. This violates the basic assumption in 
the derivation of the update rules. 

                                          ß no longer true! *( )= − = −θ θ θ θ&% & & &
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Parameter Drifting
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error is small 
enough in 5 
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still changing 
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With external noise, 

the system may 
become unacceptable 
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Parameter Drifting


For the unbounded phenomenon, the original 
adaptive fuzzy control [3] has proposed a 
simple way of restraining it. 

l  By simply clipping the bounded 

l  By using the projection onto the boundary 
surface. (Projection methods) 
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Clipping – Regulation control
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Projection


The update parameters    =     *  
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are saturated 
after 30 sec. 
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For tracking 
cases, the 
parameters 

are not 
constants. 
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Parameter Drifting


In above situations, it can be found that the 
parameters in the learned control are never 
constants. This violates the basic assumption 
in the derivation of the update rules. 

Besides, it becomes an adaptive controller 
because the learned controller may not work 
well when the system stops learning. 

Note that such a controller still works well, but the 
adaptive mechanism cannot be stopped. 
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Parameter Drifting


Another approach is to consider the dead-zone 
modification. The idea is simple. It is to stop 
learning under certain conditions. It is similar 
to the early stopping approach in neural 
network learning to avoid overfitting.  

The problem is when to stop learning? Can the 
learned controller can work fairly without 
adaptation? 



March., 2013 

®Copyright by Shun-Feng Su 
 

11
2 

Parameter Drifting


The dead-zone approach is to modify the adaptive 
rule as 

 

  

How to select        ? 

It is desired that the error will not become larger 
than      when the learning is stopped. 
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Parameter Drifting
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In this example, the learning 
is turned on when the error 

exceeds the threshold.


How can the 
remaining error 
be assured to be 
smaller than the 

threshold? 

An ideal case
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Parameter Drifting


If such a learning control is desired, a robust 
mechanism must be employed to ensure that 
the error bound be restrained in the control 
process. 

We have employed the dissipative control (HTAC) 
in designing the supervisory controller as: 

                                   with the H-infinity tracking 
performance having an attenuation level as 

                          . 

12

sgn( )
8
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= e PB

2

lowg
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Parameter Drifting


It can be any 
adaptive controller, 
such as adaptive 

fuzzy or CMAC, etc. 
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Parameter Drifting
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In this example, the learning 
is turned on when the error 

exceeds the threshold.
The learned f                               the learned g
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Parameter Drifting


The learning is stopped after 15 seconds and 
an external disturbance is added into the 
system at the same time. 
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With HTAC, the 
learned controller 

can work well. 

Without HTAC, the 
learned controller 

does not work well.  
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Conclusions


Adaptive fuzzy control can be viewed as one 
learning control mechanism. 

The idea is simple and can be extended to 
various learning mechanisms. 

In fact, such an idea can also be employed in 
various learning control schemes. 

Some deficits of such an approach are discussed. 
If you want to use such kind of approaches, 
those issues must be considered in your 
research. 
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Epilogue


Those ideas are from different papers. Thus, I do 
not try to combine all approaches together.  

Sometimes, some approaches may have similar 
or conflict roles. If you are interested, you may 
try them by yourself. 

In fact, some approaches may not be complete. In 
other words, you may find more problems and 
more suitable approaches in you study . 

Papers published 
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Thank you for your attention! 
 

     Any Questions ?! 
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