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Preface ee
.

e Intelligent control is a promising way of control
designinre

" Intelligent means to use
knowledge in the process.

e Thus, Intelligent control design needs some
knowledge of the system considered.

e However, such knowledge usually may not be
available.

e Learning becomes an important mechanism for
acquiring such knowledge.

Q
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Preface g
.

e Learning control seems a good idea for control
design for unknown or uncertain systems.

e To learn controllers is always a good idea, but
somehow like a dream. It is because learning is
to learn from something. But when there is no
good controller, where to learn from?

e This talk is to discuss fundamental ideas and
problems in one learning controller -- adaptive

fuzzy control.
Q
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"""""" Outline il

e Preface ::Mfd

e \What is learning and what is learning control

e Introduction to fuzzy and its applications
e Basic ideas in adaptive fuzzy control

e Problems and possible approaches for
resolving those problems

e Conclusive remarks @
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What is Learnlng? il

In the literature, there are two important definitions for
learning:

H. Simon defined learning as — “any change in a
system that allows it to perform better the second
time on the repetition of the same task or on
another task drawn from the same population.”

B. Kosko defined learning as change in all cases. “A
system learns if and only if the system parameter
vector or matrix has a nonzero time derivative.”

Q
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Concept of Machine Learning idg+
.

The first definition is to ask the system with learning
should always behave better as learning
continues.

The second definition is mainly for numerical
learning.

Both definitions give a fundamental idea for learning —
to change the system to make output differences.

The fundamental problem for learning is how to
change the system to make the system’s

behaviors as required.
Learning algorithm J o
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- Learning Control il

Traditional learning control is to estimate (or
successively approximate) some unknown
guantities.

®Copyright by Shun-Feng Su

Categories of targets for learning in control:

_earning about the plant;

_earning about the environment;

_earning about the controller; and

_earning new design goal and constraints.

March., 2014 Q
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== Learning Control il

e The first two categories are more like
modeling.

-1t is easy to achieve by using supervised
learning schemes, but have difficulties in
designing controller (model based control) due
to nonlinearity and learning insufficiency.

->Most learning control research efforts are in
these two categories.

e The last one is Al related issue and is usually
considered for general systems instead of
control systems. March., 2014 [
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e To learn controllers is always a good idea, but
somehow like a dream. It is because learning is
to learn from something. But when there is no
good controller, Where to learn from?

e Nevertheless, there still exist approaches, such
adaptive fuzzy control, that can facilitate such
an idea. < performance based learning

To define a performance index and then change the
system (learning) so as to optimize this index.

Q
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Performance based approach — find a way of
optimizing the performance index.

e Reinforcement learning is to find parameters in
the controller in a trial-and-error manner to
optimize the performance index (external
reinforcement).

e Lyapunov stability is to derive update rules of
parameters so that the derivative of the
considered Lyapunov function is negative.

March., 2014
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\
e Preface m‘ﬂ&

e \What is learning and what is learning control
e Introduction to fuzzy and its applications
e Basic ideas in adaptive fuzzy control

e Problems and possible approaches for
resolving those problems

e Conclusive remarks

March., 2014
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Introduction of Fuzzy
-

Fuzzy have been widely used in various
applications.

In fact, the fundamental idea behind fuzzy
systems is to include uncertainty in the process.
Such an inclusion provides extra information so
that the systems can be more accurate.

In other words, fuzzy is vagueness by meaning,
but can provides accurate due to this extra
information. Fuzzy

March., 2014 Q
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Fuzzy Logic Control ‘i

A Fuzzy Logic Controller (FLC) is a controller
described by a collection of fuzzy rules (e.g. IF-
THEN rules) involving linguistic variables.

The original idea of using FLC is to incorporate the
“expert experience” of a human operator into the
design of the controller in controlling a process.

The utilization of linguistic variables, fuzzy control
rules and approximate reasoning provides a
means to incorporate human expert experience In
designing the controller.

March., 2014 Q
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. Fuzzy Logic Control ‘ilgs
use rules, a value The consequences of all
ist be defined into matched rules must be

—tabets: transformed-into actions.

P S i T e T n
1% X X
Fuzzifier L(lﬂ" Inference : M(Y)._ Defuzzifiert 4 - Plant >
| Engine | States
| | or
. | | Olltplns

wledge usually is ) |
a rule structure I Fuzz Rule'

| |THesy : It is also referred to

. |

|
-~ Base as a fuzzy system.
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Rationale behind FLC /i\¢s
(N

In an FLC, the rule structure provides the
adaptation among control strategies, and then
the fuzzy mechanism provides the interpreting
capability among rules.

With the interpreting capability, the transition
between rules is gradual rather than abrupt. It is
the so-called softening process.

March., 2014 Q
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Fuzzy Systems il
...

In recent development, fuzzy systems have been
considered as an alternative of a nonlinear
system but with a linear system in each rule so
that approaches for linear systems can also be
applied.

Besides, various parameters are needed in fuzzy
systems. Those parameters can be tuned to
have excellent performance (by users or by
learning mechanisms). < adaptive fuzzy control

March., 2014 Q
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Fuzzy Systems il
o

Mamdani fuzzy rules
If (XisA)and (YisB)...then (Zis C)

Note that C is a fuzzy set and /() is a crisp
function.

U gop (V) =max min( t4 W), t(ug ), uc ().
u
Obtained from extension principle.

March., 2014 Q
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Fuzzy Systems il

Mamdani fuzzy rules : COA defuzzification

M,

To find the center
of area, it need to

use numerical
N\,

\ | mtsgrahon.
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Fuzzy Systems i
o]

TS fuzzy rules : Somewhat is also called COA.
But without numerical integration. It is obtained as

m . I
E a; f; Simple and easy to calculate.
lJ 1 . .
g Most importantly, it can be used
- in any mathematical operations,
Y a; such as derivative.

[

where @; and f; are the firing strength and the
fired result for the i-th rule and m is the rule

number.

March., 2014 Q
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Fuzzy System il

A fuzzy approximator is constructed by a set of
fuzzy rules as

ww ntest edu tw

R :IF X1 1S All, and ---, and x, 1S A,{l THEN yr 1s o',
for [=12,--- M

Generally, g! is a fuzzy singleton (TS fuzzy
model).

Another type is to use a linear combination of input
variables. In that case, usually, the recursive

least square (RLS) approach (or recursive

Kalman filter) can be used to identify those
coefficients.

March., 2013 Q
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Fuzzy System il
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The fuzzy systems with the center-of area like
defuzzification and product inference can be

obtained as | X
29 (]_[ﬂAz (x;))

f-norm operation for
yr(x)= P

all premise parts
2(11 )
=] i=1

It Is a unlversal function approximator and is
written as y »(x/0) = 0’ .

March., 2013 Q
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Fuzzy System ‘%’9
S

It should be noted that the above system is a
nonlinear system. But, it can be seen that the
form is virtually linear.( y »(x|0) = 0’ )

Thus, various approaches have been proposed to
handle nonlinear systems by using the linear
system techniques for the linear property
bearing in each rule, such as common P
stability or LMI design process.

March., 2013
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e Preface m‘ﬂ&

e \What is learning and what is learning control
e Introduction to fuzzy and its applications
e Basic ideas in adaptive fuzzy control

e Problems and possible approaches for
resolving those problems

e Conclusive remarks

March., 2013
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Adaptive Fuzzy Control ‘idg
]

Consider the following nth order nonlinear
system :

&= x,
K = x;3
M

X = f(X)+g(Ou = [+ gu

nnnnnnnnnnnnnn

N:<

Y = X Is the system output.

March., 2013 Q
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Adaptive Fuzzy Control ‘igs

The objective is to design an controller such that
y tracks a desired signal y, (?).

Lete=y,, — ybe the tracking error and can be
written as e=[e,e’,---,e("_1)]T =[el,ez,---,en]T

Based on the feedback linearization method, if
and are known, the reference controller is [1]

This is also referred
to as the perfect

control law

March., 2013 Q
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= Feedback linearization g+
o000 |

For tracking control, we need to obtain an perfect
control law referred to “Applied Nonlinear
Control” a method which is called “Feedback
Linearization Method.”

1

u=—-7I[-1x)+x" +K'E] | lime(¥) =0
g(X) e Hurwitz
substitute T
Assum ! & = f(x) +g(x)u |==>
C
g(x)#0

March., 2013 Q
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Adaptive Fuzzy Control ‘idg
]

where k =[k,.k,_1,-- k1" is selected such that all
roots of s +k, sV 4 v ks +ky =0
are in the open left-half plane.

ww ntest edu tw

The tracking error dynamics X y,(qf) ~kle=0
can have llme =0

[—>00

If f and g are known, the control law can be
fulfilled and then the control performance can
be guaranteed.

March., 2013 Q
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Adaptive Fuzzy Control ‘g

nnnnnnnnnnnnnn

Usually, fand g are unknown or subject to some
uncertainty, thus the perfect control may not
work.

Adaptive fuzzy control is then use fuzzy
approximator (systems) to approximate them.

Direct adaptive fuzzy control — to estimate

directly the controller "
the perfect control @N/ To use V7 (x0) = 0’ o
{ LR BT to model
g

March., 2013 Q
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Adaptive Fuzzy Control ‘g
o]

Usually, fand g are unknown or subject to some
uncertainty, thus the perfect control may not
work.

Adaptive fuzzy control is then use fuzzy
approximator (systems) to approximate them.

Direct adaptive fuzzy control — to estimate
directly the controller u .

Indirect adaptive fuzzy contry@
and
B\ o

the perfect control law-u. =—(-f + y(”) +k! e)

m
g March., 2013 Q
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Direct Adaptive Fuzzy Control ‘g
G

To approximate the Controller by using a fuzzy
systemas  i(x|0)=0,"® [3].
Consider the following Lyapunov function

1 7 1 ~7
V =—e Pe+—9 0

where &9 =(0,-0,) is the error of the
estlmated parameter and OD Is the optimal
parameter vector and is defrned as

OD = arg mm{ sup u* —MD (X‘OD)‘

0pQy, xQ,

March., 2013 Q
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Direct Adaptive Fuzzy Control ‘g
.

The idea is to let the derivative of the Lyapunov
function is negative. In that case, the system can
be said to be stable and the error will eventually
become zero if possible.

The second term of the Lyapunov function can be
view as to minimize the approximation errors.

In fact, it is to generate the derivative of 9p |
which will be used to form the update rule 0 p

fo .
...+%(OIT)9D) = +0° 8 +..=..+0 (& +terms)+...

63) =terms <= update law March., 2013 )
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Direct Adaptive Fuzzy Control i&%
c_ ]

The idea is to let the derivative of the Lyapunov
function is negative. In that case, the system can
be said to be stable and the error will eventually
become zero if possible.

The second term of the Lyapunov function can be
view as to minimize the approximation errors.

In fact, it is to generate the derivative of 0 |, which
will be used to form the update rule for . 9,

This kind of approach can be seen in lots of
learning or adaptive control schemes.

March., 2013 Q
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Direct Adaptive Fuzzy Control ‘g

lT 1 | ~7

Pe+ —e¢ Pe - — ODOD
ATtk A5 Q | 2 . o [~ .
LyapunovJ = —Ee Qe+e PBgD + — GD(Ote PB D _OD)
derivation * K
Ep=U —Up] prOX|mate err Ssumed to

be small enough.)
The ideais to Iet{g‘ ;r—aeTPBlcoD and to prove

the remaining terms jare negative in general.
Then, it can beClaimed that Dg IS negative.

A0, = ae' PB,o At it is the update law for @ Margh. 2013

NTUST



= ®Copyright by Shun-Feng Su

nnnnnnnnnnnn

Direct Adaptive Fuzzy Control i&%
c ]

If you actually use this approach, the results may
not be satisfactory.

The example shown in the paper is only for
regulation control.

Less further work has been reported in the
literature.

The main problem is whether there exist the optimal
control and whether it can be approximated by
tpDe fuzzy QBproxmator, that is, whether

Is small enough?

March., 2013 Q
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Direct Adaptive Fuzzy Control
(regulation control) i

S s E . R
__.x.____i__| Thecantrol results.inthe |__|
i | origindl paper (regulation | |

20

1i] 1:5
[ Another approach J

viaren., zul3 Q
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NTUST Direct Adaptive Fuzzy Control

(Tracking Control) il
]
25 Qriginal

)
approach J

har.annron h W
7 \1'1 (9 I | | | | I | J

/N /
/N )
/A
\V4 \\V4

-1
Refe
trafectory

15 20
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Direct Adaptive Fuzzy Control [QNQ-}
S

0.8 ( Original W
/\ _— approach

.

o \ s
o.4{/ \ o, [N [

AN
o A TN
;

e S AN Y

Refergnce
trajectory

v Another approach
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Indirect Adaptive Fuzzy Control [ﬂw
S

To approximate fand g by using two fuzzy systems
as /(x0,) =070, = fand §(x0,) =0,0, =5 .
Consider the following Lyapunov function

y=teTPe+ 070, + 070,
2 205 205,
where those variables are similar to those defined

In direct adaptive control.

March., 2013 Q
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Indirect Adaptive Fuzzy Control idgs

—

V=—§eTQe+eTPB151
0, (Byiije' PBjo, +6,)
2 /

The approximate error is £r = (f /ff+ (& —-g2)iy }
Similarly we can we the up es as
| 0, =-fe P

[()g = —/3’2121eTPB1u(og]

|~
+E(%)f(/3’1e PBio +9f +

Assume to be small }
enough

March., 2013 Q
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~ Original adaptive control scheme i&%

Xd o

¥

u

Controller
™ L o2 |
u(f) = [-f(x)+x +K-E]
aLX
E f él
)

A
o

——»  Adaptive Law £

Plane X
T = f(x) + g(x)u >
y=x
\

Update Laws:

& = -Be" PBw,
T
6 = -/52 ' PBw,u

&V

VIATCIT., ZU15
NTUST
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Adaptive Fuzzy Control ‘i
_____________________________

Adaptive fuzzy control is to use fuzzy approximator
v (x0)=0"0

Fuzzy systems are universal approximators [2].

Other universal approximators can also be used, such
as:

e Radial Basis Functions;

e Cerebellar Model Articulation Controllers;

e \Navelets; etc.

As long as they can also be written as a linear form
like Yy (x|9) = OT(y) .

March., 2013 Q
NTUST



N ®Copyright by Shun-Feng Su

Adaptive Fuzzy Control ‘ilgs
.

Some approaches claimed that they also used
neural networks to act as the approximator in
their approach. In fact, it is one kind of radial
basis function neural networks, which can be

equivalent to a fuzzy system.

If you want to use other approximators which are
not of linear form, some linear approximation
approaches (like first order of Taylor
expansion) may be employed to make it
workable in the framework.

March., 2013
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Adaptive Fuzzy Control ‘igs
G

Also, such an idea can be employed to find
adaptive laws for other parameters.

nnnnnnnnnnnn

Again, a linear form is needed (or some linear
approximation mechanism is employed) to
ensure a simple form of the update law.

Besides, the squared term of the parameter must
be added into the Lyapunov function to have a
basic formation of the update law.

March., 2013 Q
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Adaptive Fuzzy Control ‘idg
]

Some approaches also adapt the idea of sliding
control, by defining the sliding surface as the
integral of the characteristic polynomial as

S(¢) = I’§(t)dz, where $%7) =™ +k"e [71.

Then, the idea is to replace all error terms by the
sliding term. For example, the Lyapunov function
is defined as:

1 1 1
V, =—(S* +— 0850+ — 57 50
9 2 g g ” ;S o f
g S
Similar results can be obtained.

ww ntest edu tw
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\
e Preface MM

e \What is learning and what is learning control
e Introduction to fuzzy and its applications
e Basic ideas in adaptive fuzzy control

e Problems and possible approaches for
resolving those problems

e Conclusive remarks

March., 2013
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Adaptive Fuzzy Control e
.

There are problems in the above approaches:

e Control aspect — &, or &, (the approximate
errors) may not be small. It may cause a
system stability problem.

e [earning aspect — Large error (chattering
phenomenon) in the Initial stage and
convergence problem (parameter drifting) in

the final stage.

March., 2013
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Adaptive Fuzzy Control 'igs
«

There are problems in the above approaches:

llllllllllllll

e Approximate errors and robust control

e |[nitialization and supervisory control.

e Parameter drifting

March., 2013 Q
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Approximate Errors ilgs
...

Errors €, may exist due to rule resolution (rule
numbers) and rule dependency (input-output
deterministic).

Rule resolution may not be sufficient if the rule
number used is small. < universal
approximator theorem

1 1
&Z—EeTQe+eTPB£D +;%

With the update law, it

IS Zero.

March., 2013 Q
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When  é€ig large, then this part
may not be negative.




N ®Copyright by Shun-Feng Su

nnnnnnnnnnnnnn

Approximate Errors il
|

Another possible error-- Rule dependency may
not be sufficient if the input variables used to
define the input-output relationship is not
sufficient. < It is called nondeterministic in
traditional learning.

For current published work, only the error and the
error derivative are used as the input
variables. If the system considered is more
complicated, maybe more terms must be
iIncluded.

March., 2013 Q
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Robust
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Control

e

Feedback linearization

Y
, U= udesign Tu

a8 Designed input
* ] (n) T )
u =g (-f+y, tk'e
ée=Ae+Bu —u)A'P+PA=-Q
is
e =Ae+B(¢, —u,,,,) Differential input
(& y = N An assignable stable
e ___ T * | inner linear system
toommm oo > | System output
*
Car = B u_efsf _____ » | Unknown input

error

7
,/
»

else

It can be
viewed
as an
unknown

Itis &, or &,inthe above.

\_ input /

March., 2013 Q
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”é = Ae + B(gd] - udesign)

Yy, =e

E,, = Ll* —UuU
dI
Use a Lyapunov function to find the energy change of system¥.

V =ePe+—

else

We have

"V =—e"Qe-2e"PBu, . +2e¢"PB &, (Energy dynamics equation)
design dl

{
*{ How to design 4, to yield that

the energy dynamics (V) fits in with a special form.

H_ tracking performance

\ L,-gain inequality March., 2013 fe)
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V =-e'Qe-2k,|g/(e"PB,)’ +2¢"PB g ¢,

' T T €,8 2 g T g
V =—-e'Qe—{(,/2k,|g|)e’PB, - (—2—=)}* +( )€, ( ),
g L I o R L e
VS —eTQe+( gup )85( gup )gu
\ 2kdglow \ 2kdg10W

Supply rate

4

w(e,,e)=—-e Qe+ (

gup T guP
)€, ( )€,
2k, 810, V2k,8 10

March., 2013 o)
NTUST
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Robust Control ‘AQ?&
c-- ]

. g g
V< -e'Qe+(—2—)¢, ( L e,
\ 2kdglow \V 2kdglow

@ Integral
€ H_, tracking perrformance

fweTQedtseT(O)Pe(O)+ f g, € dt
0 dglow
Controllable
¢ L-gain-like inequality _— attenuation level &
2
‘eQ L _ <\ k, = (gup/é)z(zglow)_l

E

u

< ( ) = S
2 [ 1V(e(0)=0
L 2kdglow _____
2

=f0 e dt , HCQ‘Z = weTQdea’f

March., 2013 Q
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Considered Example g
o]

Consider an often-used inverted pendulum
system as

X =x,
&=f+gu+d

_ gsinx,—(mlx; sinx, cosx,)/(m_+m)

/

[(4/3-mcos’ x,/m_+m)
~ cosx, /(m, +m)
[(4/3-cos’ x,/m_+m)

g

March., 2013 Q
NTUST
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Simulation 1: The assignable control performance test. We let $=0.2,

0.3,0.4, and 0.5.
Delta=0.5
/ Delta=0.4 i
Delta=0.3
Delta=0.2 i
£°)
® ,
£
>
© \
[ \ .
m \\‘
> \\‘ \
\\ |
8 85 9
time (sec.) time (sec.)
Tracking control performance
March., 2013
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Ud) Nt-m

Control action (U

®Copyright by Shun-Feng Su

Robust Control
]

800 . : : : :
6 Delta=0.2
=0.2 -~ Delta=0.3
600 |- ‘e\‘/ T — Delta=0.4
i Control actions| delta=0.5
400 - :
o
200 d
[ X \’ \\‘\ // \
On A I\ D=l e i
H ]\ Y
200/ | .
n
| ngh Initial Gain Problem.
400 _/A solution is provided in later.
|
| |
600" r : f :
0 0.2 0.4 0.6 0.8 1

time (sec.)

e

March., 2013

Q

NTUST



N ®Copyright by Shun-Feng Su

Robust Control ‘%9

____________________________________

L,-gain state

el NS T Txx feedback
_ . . , A controller
V=—eQe+e PBu —u)
; . T T 2 T *
V=-e'Qe-K |g|(e'PB)) +e_\PB L
v :
Negative define term : Baundec

________________________________________________________________________________________________________________

. A suitable value of K leads the equation to be ,
“minimum, which results in a more negative value of the |
- derivation of ¥, and the initial control action does not '
. have the oscillation (high-gain) problem.

________________________________________________________________________________________________________________

How to find a suitable K_?
March., 2013

Q

NTUST



®Copyright by Shun-Feng Su

Robust Control il

A large Kc will have nice control performance (small §) but

will have large initial control gain, but a small Kc may have
a large error in the final stage.

NTUST

\iw(_nul.l’l,lu

Aidea is to use a small Kc in the initial stage and a large Kc
in the final stage. But how to change?

/
| 4

The research goal is that how to reduce the
oscillation phenomenon of the initial control

action and remain the satisfactory initial state
response.

Use genetic algorithm to in adjusting K_.

March., 2013 Q
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Search region

®Copyright by Shun-Feng Su

The assignable control performance is a inherent
property of the L,-gain control, which can be applied to

define the search region.

The attenuation level S
determines the tracking
control accuracy, and we

can use the selection of K_

to adjust O,

such as

0= Eup /’\/ 2chlow

glow = ‘g‘ = gup

i

Example:

110

1.05

0.95-

y and ym (rad)

09

0.851-

Delta=0.5

/ Delta=0.4

Delta=0.3
Delta=0.2

0.8t 1/
7

7.5

émax

8 85
time (sec.)

=05, 68 =02

March., 2013
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The I-th chromosome is repieaerigatby§hun-Feng Su

NTUST i

uw(_,tulillu *

N )

)

[
i m is the number of the used chromosom&'—}
romosome.

Roulette wheel selection [If a chromosome cannot satisfy the
[l

Crossover

s |

Mutation

: Population
— of next
| generation

SR ?:droduction auxiliary search condition, or its cost is
P larger than a threshold cost (CostT) , -
_____ 1_________ then the chromosome will be replaced

by another good chromosome.

CostMin(k) is the minimum cost of the k-th generation.

CostAvg(k) is the average cost of the k-th generation.

_h, = 1is a retaining constant;
it provides the multiplicity for the population.

March., 2013 Q
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NTUST
Cost function il
S

'Hl\lll!l.l,l,l!
____________________________

— —e'Qe- K |g|(e'PB)) >+e'PBu’
/_ """"""""""""" T\

Negative definite term : Bounded

_______________________________________________________________________

A suitable value of K leads the cost function to
be minimum.

March., 2013
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In order to resolve the oscillation problem in
the initial stage, we must avoid the minimum
solution being found to@early.

The evolution speed is needed to be restricted
that is the design basis offthe auxiliary search condition.

» An auxiliary search condition is defined under the change
of the control action as

A constant which is used to
‘ |u(t)| |M(t At)| ‘ SU restrict the evolution speed.

It is the sample time (0.01 seconds).

March., 2013 Q
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C r r S

Control action yu
High initial gain problem

L L |8

The tracking control
performance

wwi nty

0.

u =80sgn(g)e’ PB,

05 - i
1 d =10sin(10¢) (Nt —m) -
13 2 4 6 1 2 3 4 5
time (sec.) time (sec.)
1.5_ T T T 150 T T C S
—y VRSN
rrrrrrrrrr ym 100 ! .
i I PR A4 High initial gain problem
50
1 E o
K Z
= c  -504 .
£ 42 T
= V18 0l u=380sgn(g)e PB,
@ \ S
> | £
3 -150 |, d=0 y
-200 || ]
- ] - -250 |- ]
Without the genetic adaptive scheme
L LT T B B SN B EEEE ©

time (sec.) time (sec.)



; ,,,;The initial trackiLng perfo;'mance PN
is not sacrificed. | Y '

-'\Ill!l Ill IH

o
()

y and ym (rad
" [

With the genetic adaptive scheme
-1.5

15, 250 >
The initial tracking performance '\ ,‘\
is not sacrificed. -

__ 05p
8 X
S o
©
C
©
> 05

AL

With the genetic adaptive scheme
1.5t
0

®Copyright by Shun-Feng Su

u = (GA)sgn(g)e' PB,
d =10sin(10¢) (Nt — m)

u = (GA)sgn(g)e' PB,
d=0

March., 2013
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= Robust Control il
o]

We can add an integral term to become more stable

{The compensative controller is defined as

- kd san( g)eTPBl + kczfotsgn( g)eTPBldt

By substituting «_into /.

V =—e'Qe—(/2k |g| e PB, - & )2 4 (——& )¢’
( 1g‘ 1 2k01g) ( 2kd‘g‘)

~2k_, f ;‘ g‘(eT PB1)2 dt\J\ Additional negative energy ]

March., 2013 Q
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y and ym (rad)

"\« Without the

,,,,,, 'y (Kc1=20, Kc2=0)
¥ (Ke1=20, Kc2=300)

1

integral term

Total control action (Nt-m)

| With the
integral term

| o Tracking |

2 4 performances o

time (sec.)

-20
301

60 .

®Copyright by Shun-Feng Su

Robust Control il
<

An integral term provides a more stable edge to
have better control performance.

50 |-
40 -
30 -
20 -
10+
0

L

Without the

integral term

¢ 1
Ja
P
/ \
/ 1
/ \ i
!“ I\
/ \
\ ) \
/
. \

integral term / W\

10}

With the

T

' | Control actions

,,,,,, U (Ke1=20, Kc2=0)
— u(Kc1=20, Kc2=300))

1

40"
0

4

6 8 i0
time (sec.)
March., 2013 Q
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Approximate Errors o
<

Another way of handling errors is to consider
those errors in the controller (error feedback
controller).

For indirect adaptive fuzzy control, it is easy to
find ways of estimating those errors and/or
compensating them.

For direct adaptive fuzzy control, it may be difficult
to compensate the approximate error because
it is difficult to define control errors.

March., 2013 Q
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ww ntast edu tw

Error Feedback Controller (Indireét)

An approach is proposed to improve the
accuracy of estimated value. Define a

modeling plantas ™ = £(x)+ &(x)u(?)
"Estimated f by

Estimated ¢
the fuzzy by the fuzzy
. System system
Define the estimated state error ~ #8 = x" -z
as '

that is,
[ ]9/0= f_ f\/ \Lg/(;: g gMarch 2013

NTUST
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Approximate Errors (Indirect) i&%
o]

Now, define a new Lyapunov function as

V=LtetPes Liopn L 86864 L G
2 27" 28 26, ¢
New added term state estimated error

The idea is to minimize the modeling error while

adaptive.
Similarly we can we the update rules as N
é}l = B, (Yp- BTPe)a)f ( A
. pproach |
5?;5 = p,(Yo—-B Pe)wgu\\ D

March., 2013 Q
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\ v
Indirecti\er

"K»I}llllﬂlll!

Approximate Errors

Xd i@ . Controller u . l:al;e ® X o
| - . : ¥ o=1(x)+ g(x)u
u(t =%[—f(x)+x +KE | { ye s
A
: ha | Modeled plane
Note: 00 = f(x) + B(x)u
Lyapunov LcWS g
é /51 (%_ )wf
ﬁz(ﬁé\l’e)wgu
% | - To calculate

Adaptive Law  j«—— /(D the estimated

~ ___ model
( N

Model error IMIdICIl., ZU15 O
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Simulation — chaotic eq. 'i\¢s
G

Simulate the chaotic equation # 0.18+x° —12cos(?) = u

select vector k and matrix Q are

The desire output X, = cOS()
Some parameter 31=70,82=0.01, gL=0.01.
There three conditions are simulated

1. Simulation with noise-free

2. Simulation with disturbance: with disturbance at 10
sec which function is (.05exp(-x"/0.1%)

3. Simulation with noise: with noise whose mean is O,

and standard deviation is 0.01.
March., 2013 Q
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Simulation — chaotic eq. ‘i

X1 response _

1.5

"R»I}llll../llv.l!

! — — desire output x, (t)

— actual output x, (1) Condition 1.

Proposed approach
Tracking error converges at 0.0024.

X, response
15

X1 {t) & X, t)

7 o
: : . : ,'__.,-deswe output L it)
: 1 ' P _.,f actual output x, (t)

05

qE | | | i | 2 0
0 5 10 15 20 25 30 “Sﬁ
time (sec) =
. 05
Original approach

Tracking error converges at 0.003.




1

%.

NTUST

\nn'l\,flnl;n/lllm
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Simulation — chaotic eq. "¢

X1 it) & X, it)

1.5

X1 response

| | | —— desire output X1 t) Condition 2.

—— actual output x, (t)

Proposed approach
Tracking error converges at 0.003.

X, respanse — desire oytput x, )

T | — actuatBdtput x, {t)

15 T T

Original approach
Tracking error converges at 0.0041.

T
3
10 15 20 25 30
time (sec)

4,.,‘,_,_—-" |.| _15 ,/, i i I.Ii i i
o \ 0 . !

 time (sec) )

26. 8% improvement in error reductlon



C

®Copyright by Shun-Feng Su

Simulation — chaotic eq. "¢

X, response _

15

\nn'l\,flnl;n/lllm

— desire output i, ()
—— actual output x, )

Condition 3.

Proposed approach

05 Tracking error converges at 0.0925.

X1 response

X4 it) & X, it)
o

_,d'e;ipe.output %, ()
18 ' ' ' ' _,; aqﬁal output x:“(t)
a5 IS P SO ST
C RN A A
-1 ; [ T i.... PR S S __é ................... .i ......... ]
h Ra
. : 5 : =3 X 5
-1.5 I ' ' I ; ] 2SR SRR ISRRRPRIS IPRRRONE SR SPRUE AU, WA SRS IRy | SR AP SO DO
0 5 10 15 20 2 a0 = -
time (sec) 5 . b 1 o | i
.. 05 feeteaes SRR kY N SO AU/AONS 5 TSR S SO s
Original approach R N |
Tracking error converges at 0.0032. Sl SRS S A L A ‘__
P | S | i
ezl A Y-S T M- 25 30

time (sec)

21 9% |mprovement In error reductlon
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Another Approach [8] ‘i\es

3 Flamnt
C MAC - ' = o x)+ g x)u(f) + (), y=x
L Ao By =\ daptive Laws [© ]
Learning 7

Uﬂu{lll.ll tw

¥
5 .
 De— 1,

] £ ET) . = f"' C. H :
+ - e e k. i
e . oW e, b - E Tracking
Error Yector

Estimation L.aw

Compensated -
Controller

New gdded
Adaptive CMAC TSI e “compensated
e control

Supervisory Controller
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= Approach I s

V(E, ¥, 1i1, ¥, 6, £)

_LETPEL L Wi T T —
2 Elll ! A 3 Elll \

.jl 1 Eil! L :J.-_l' k
v — HEIPB.T compensated
=1 It
CMAC h = HFEIPB. Cv control also has
based . m some bounded
parameter | adaptive effects

Learning (discussed later)

b = 14 ETPB,,|.

March., 2013 Q
NTUST



Tracking error (rad)

Tracking response (rad)

--i\,llsl..l (1w
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Simulation o

i)

—

o
un

o

o
)
o

0.15

RN
D05

L.05 F

L1
0

Original approach

10

12

Tirre Feee

a IQIL'\IIIE l\-JP“I)B \ianay

15 hs
% 2 4 6 8 0 12
PRY Time (sec)
01 :
OosF .
] I.,.—" i iy
4.
0.1 1 I 1 i 1
1] 2 | B ;] ia i2
Tirme {sec)

Approach Il

March., 2013
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- Simulation s

rad

rad  supervisory adaptive FCMAC with fictitious model Dmax=4

supervisory adaptive FCMAC with CMAC compensator Dmax=4

r

0 1 > 3 5 ;
(b) sec

Approach | | /-\Ppro
The control performance is comparable.

b) sec

»
o
©
—
o
o
-
N
I

March., 2013 Q
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Simulation — Approach | 'é“}

supervisory adaptive FCMAC with fictitious model Dmax=4
20 f L L L L L L L L L )

uf
101 ik )

- f |l
V\_/—\W W% | A\ e ~

h Modeling /|

supervisory adaptive FCMAC with fictitious model Dmax=4

L L L L L L L L L

uf

o

'206%é(é)ééé%éém'o;é/éa\g/é;\éém
16 e ; | The disturbance .|
e .| Ismodeledinto ..
WO . - . E ug |
12l Modelingg | | . function. | 9
Mool 2 s 4 s 6 7 8 s W0 o i 34 5 6 7 8 9 10
(d) f’sec ~
erforman
Without dlstumgﬂ%lgg P \Rﬁth disturbance,
IS acceptable. March. Q
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Simulation — Approach Il “igs

supervisory adaptive FCMAC with CMAC compensator Dmax=4 supervisory adaptive FCMAC with CMAC compensator Dmax=4

j

_____________________________________

performafce is @ =
1-6_ T L 5 T : T T T C 15 T T T T T T T T T
1sunacceptable. — g
R — e
1.4/ - X \ \ / W—\w
S

131

The modeling %

0 1 2 3 4 5 6 7 8 9 ffedt‘awiii'éecbmieé 6 7 8 9 10
Worse.

Without disturbancek Wsturbance

March., 2013 Q
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A way of defining errors must be developed for direct
adaptive fuzzy control.

Error Feedback Controller (Diret$)

Definition:

-gain property if there exists an assignable finite
gain 0 >0 and a bias constant 7,,, €ER”
representing the initial condition such that the

following inequality holds ‘eTf < Olle + 9,
1;2 -1;2

Ty ¢
where [, =\/fo eedl  ran esents the system
output energy and |e,,. =,/f0f e’dt  represents

f i

the system input energy.

t1y

March., 2013

A control system is said to have the finite L,

o

NTUST



Vb indicates that --

The inequity
the tracking control error is bounded in a region
around origin, the size of the region can be
arbitrarily small with the choice of 8. Thus, the
following equation is guaranteed as [6].

€
Ty Lz

lmu. +u = u* [6] E. Kim, “A fuzzy disturbance
d C . . . ”
{—o0 observer and its application to control,
- IEEE Trans. Fuzzy Systems, vol. 10, no.
Consider that | Feb. 2002,

*

N’

0, is estimated asf, = (u.0.")’

March., 2013
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" Error Feedback Controller (Diret$)’
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" Error Feedback Controller (Diret$)’

The estimative value can be multiplied by another
adaptive rate as

By substituting the estimative value into the earlier
adaptive law, the proposed adaptive law is found as
follows:

Gcl - am Sgn(g)eTPBlw(l + /))/nJ

~1\T
?Hz (MC(OC’ )

le], = \/‘61‘2 ""62‘2 +“i§‘én‘§imple adaptation
scheme to enhance the learning stability Q_E_D_

more.
March., 2013 Q

NTUST



| =N ®Copyright by Shun-Feng Su

NTUST
"1 i mulations e
S

Simulation 2: The learning speed tests are illustrated in this
simulation. Adaptive rate 2

Adaptive rate 1 \
P ~

k , =15 still used, the other parameters Gand il be
adJusted to show the change of the learning speed.

————————————————————————————————————————————————————————————————————————————————————————————————————————————————

1. If /J’m = (, then the approximate error feedback term
/J’m”e”z(ucm;l)T is not used.

2. The value of «a  is also increased to illustrate the effects of
' the learning speed. '

________________________________________________________________________________________________________________

March., 2013
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Simulate results ;&:&

- 1. A suitable B,

- provides more stable
. learning speed even
. if the adaptive rates

. are different.

- 2. It can be found that
" the selection of the

. adaptive rate can be
- relaxed because the

- proposed approach.

v’ The stable learning speed
is guaranteed.

The initial learning stability
is guaranteed.

“ | ﬁ Reached Time (sec.) and Cycle
uw(_!l n._uu,m " [ — == ——
0.1 20 2512 | (4th cycle)
L o0 b uwae i [
1 20 |1 2512 (4th
<::ycle) |
i
1 0 : : Unstable
10 20 | 1884 (3th
¢ycle) |
10 0 : : Unstable
20 20 . 18.84 (3th
¢ycle) !
20 o | I 43.96
(7th cycle;)
30 20 . 18.84 (3th
¢ycle) !
I
30 o | : 31.40
(‘5—t/e\€yde')
4
40 ' 8 “INT (3th
0d B am Sgn g)e&(i)Bl()?i,yté)q Hg‘ﬁ (uco‘)d )

0 . =a, sgn( g)e’ PB oMarch., 2013
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Adaptive Fuzzy Control 'igs
«

There are problems in the above approaches:

llllllllllllll

e Initialization and supervisory control.

March., 2013 Q
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Initialization il
o]

Initial status (initial states and initial parameter
values) may cause various problems for a

learning system.

A so-called supervisory controller [3,5] is often
used and the effects are satisfactory. In above
examples, all use supervisory controllers. It is
similar to hitting control for sliding model
control.

The supervisory controller is proposed in the early
version of adaptive fuzzy control and can also
act as one kind of robust control. March., 2013 [

NTUST

nnnnnnnnnnnnnn



P

NTUST

®Copyright by Shun-Feng Su

Supervisory Control  “idgs

- rbTvzt;hz;g
supervisory \ 3 Supervisory | U, |_._co_ndz_t10£_:
control J — | controller <
i r/_Adaptivel: h
h U U
A7 ,i,_,» tuzzy i >€:3_+| Plant I
A control
e \_ systems Y
Adaptive
fuzzy Adaptlve
control |
L, Robust // -

Controller

March., 2013
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Supervisory Control  “idgs
G

The control in supervised control is u=u, +u_,
where u  is the approximated perfect control
law and u_ Is the supervisory controller.

Consider the derivative of Lyapunov function
D8S1= -(1/2)e'Q e+e'PB(u -u, —u,), where u’ is
the optimal control.

Thus, if u_ is large enough, the derivate of V will
be always negative.

itis &

March., 2013 Q
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Supervisory Control  “idgs
G

Controller u=u,6+ TS Supervisory controller

- u, =sgn(g)(-C,,)

e

Csu+ e'PB (gu —gu,)

T =-(J5)e'Qe+e'PBg
Bl _ [O O e O I]T

Cgu, ==f+y, +K.e

N

1
B = —EeTQSe+eTPSB1‘g

S

C,+e'PB (-f+y +ke—gu,)

March., 2013 Q
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Supervisory Control  “idgs

1 =
= —EeT Qe+e' PB, ’g C,+e'PB (-f+y" +ke—gu,)

V: = _(%)eTQse + eTPsBlequu + ‘eTPsBl (f;/lp + yi(nn) + kfe + (|gum )up)

___________________________________________ K, =zl :Apositive constant.

Stable condition 1y <( { J» >0 : The upper-bound of /.

""" l (‘gup ),, : The upper-bound of the gu,,.
T n

L { C,, =-sgn(e'PB)(f,, +[."

esign
u, =sgn(g)(-C,,)
Y& Design result :

u, = sgn(g)sgn(e'PB,) K,, (f,, +|y

+Kk e

+ (\ gu,),,)

T
Kk e

+(gu,|),p)

March., 2013
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Supervisory Control  “idgs
G

Thus, the supervisory controller can be selected
as

u, =sgn(g)sgn(e'PB) K, (f,, +|y."

where the subscript up is the upper bound of
that function and K, is a constant.

It can be found that the supervisory controller is a
function of the upper bound of the system
function.

If the bound is not properly selected, the control
performance may not be satisfactory.

)up)

+‘kfe‘+(‘gup

March., 2013 Q
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Simulation il

adaptive fuzzy without supervisory control Dmax=4 maxfzi=1 maxfzo=5

Tad

L

L L L L L L L

i

r

- a
2 3 4 5 6 7 8 9 10

_ (b) . sec
Without supervisory control March. 2013
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Simulation s

rad Dmax=4 maxfzi=1 maxfzo=5

/ Improved fro

02 F"\"SE?‘ 0062@0 013749 (50%*

r _ r r reducnon
(0] 1 2 3 4 5 6 10
@) sec

i“\WWWJV o i WW

20!
o

C r C C L C C
4 5 6 7 8 9 10
(b) sec

With supervisory control March., 2013
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Supervisory Control
-

Consider another system as

X=e" —1+u

i

This system do not have a bound for the system
function. - The system diverges.

rad

2k

RMSE=NaN

Dmax=4 Mo=1 maxfa=1 maxfzo=5

-
-
S

-4

9 10 ¢

NTUST
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Supervisory Control  “idgs
.

The problem is that the bound is a function of .

u, =sgn(g)sgn(e'PB,) K, (+ 0|+ [kl + (|gu, )

The idea iIs to use previous control action so that
the bounded for the perfect control law can be

reduced so that the supervisory control can
easily be implemented.

The term of the system function becomes the
difference of the system function, of which the
bound is much smaller than that of the system
function.

March., 2013 Q
NTUST



= ®Copyright by Shun-Feng Su

ww ntest edu tw

Supervisory Control  “idgs

u*=u(k-1)+g,(” -A)+ g, E

+ err

transition

Compensated
learning for E.

E = errg ter rtracking

u=u(k=1)+MyE"™ +&.6,,)+uz, +u,

March., 2013 Q
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CMAC learning process

1
Wnew = Wold + —uszk

0

CMAC controlling process

T
Ucyue = Cvk w

u

N

Ucemac
Robust fuzzy controller

: + (n) T + (n) b d
4,6‘?-##, U, )+ M, (e —¢€ Af)+usﬂ<i>—> XU =frbutd —

u, =sat(S/D_, )xD,_..

| 2N ®Copyright by Shun-Feng Su

Supervisory Control /idgs
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Inverted Pendulum il
' rad CMAC compensator Dmax=4 Mo=0.7 maxfzi=1 maxfzo=5

\nw(nul.l,l,lu
0'4 F L L L L L L L L L
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Exponential System
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i

rad CMAC compensator Dmax=4 Mo=1
0'6 E L L L L L L L L
0.4 Y
r
0.2
O I
Much 0.0} RMSE=0.030789
better tha=84 i r r r r r r r r
h o 1 3 4 5 6 7 8 9 10
other @ (@) sec
approache | L L L L L L L
U
Q
s« L U
0 [T e
-5 I .
C r r r r r r r r
0] 1 3 4 5 6 7 8 9 10

(b) sec
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Adaptive Fuzzy Control 'igs
«

There are problems in the above approaches:

llllllllllllll

e Parameter drifting

March., 2013 Q
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Parameter Drifting il
G

For adaptive fuzzy control, it can be found that the
parameter is a function of errors:

Of = —/J)leTPBl(Df

T
Og = —ﬁzu[e PBI(!)

nnnnnnnnnnnn

When there are errors, the parameters will be
changed. It can be expected that for tracking
problems, there are always errors and the
parameters are always '

This referred to as
the parameter drifting problem. March., 2013
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Parameter Drifting il
o]

Two situations occur:

nnnnnnnnnnnnnn

e The parameters may drift to some unwanted
regions (in fact, some values may go
unbounded.)

e The parameters in the optimal controller are not
constants. This violates the basic assumption in
the derivation of the update rules.

é‘b = (6 —¢) = & < nolonger true!

March., 2013 Q
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NTHST
| Parameter Drifting ‘é{i}

[The tracking ’ \/\/\AW

rror 1s small-}
= —enoughin 5
SCC.

The actual output y _/ The control u

All parameters are |

still changing W

The consequence |
, | VAVAVAVAVAV Vo

— 2013 P
et e s o ’ "
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Parameter Drifting M

Pt

With external noiSe,” _
the system may

Ine actual output y "he control u

Decome
O U ELLS,

PP A 3 ‘vavvp

The consequence
0

March., 2013 Q
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"""""" Parameter Drifting il

For the unbounded phenomenon, the original
adaptive fuzzy control [3] has proposed a
simple way of restraining it.

e By simply clipping the bounded

e By using the projection onto the boundary
surface. (Projection methods)

March., 2013 Q
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Clipping - Regulation control g

The actual output y The control u

V// < Most of the

parameters go to
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In above situations, it can be found that the
parameters in the learned control are never
constants. This violates the basic assumption
in the derivation of the update rules.

nnnnnnnnnnnnnn

Besides, it becomes an adaptive controller
because the learned controller may not work
well when the system stops learning.

Note that such a controller still works well, but the
adaptive mechanism cannot be stopped.
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Another approach is to consider the dead-zone
modification. The idea is simple. It is to stop
learning under certain conditions. It is similar
to the early stopping approach in neural
network learning to avoid overfitting.

The problem is when to stop learning? Can the
learned controller can work fairly without
adaptation?
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The dead-zone approach is to modify the adaptive
rule as

nnnnnnnnnnnnnn

& _ (a,sgn(g)e PBo, , if e ze,
D

= 3

0 , if |ef, <e,

How to select €, ?

t is desired that the error will not become larger
than e, when the learning is stopped.
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If such a learning control is desired, a robust
mechanism must be employed to ensure that
the error bound be restrained in the control
process.

We have employed the dissipative control (HTAC)
In designing the supervisory controller as:

nnnnnnnnnnnnnn

U, = Sggn(zg )¢"PB, with the H-infinity tracking
performgnce having an attenuation level as

5|22

\/ glow March., 2013 Q
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The learning is stopped after 15 seconds and
an external disturbance is added into the
§_ystem at the same time.

—y ] —
. ym ym

Without HTAC the

5 2 | 2slearfred controllef el

time (sec.) i March., 2013
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With HTAC, the
learned'controfler 10
can work well.
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Adaptive fuzzy control can be viewed as one
learning control mechanism.

The idea is simple and can be extended to
various learning mechanisms.

In fact, such an idea can also be employed in
various learning control schemes.

Some deficits of such an approach are discussed.

If you want to use such kind of approaches,
those issues must be considered in your
research.
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Those ideas are from different papers. Thus, | do
not try to combine all approaches together.

Sometimes, some approaches may have similar
or conflict roles. If you are interested, you may
try them by yourself.

In fact, some approaches may not be complete. In
other words, you may find more problems and
more suitable approaches in you study .

Papers published
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