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Brain-Computer Interface (BCI)

- Direct communication channel between brain and computer.

- Depends on brain activity and bypasses brain’'s normal
communication pathway of nerves and muscles.

- Transforms brain activity into command signals for controlling
external applications such as a neuroprosthetic device, robotic

arm, computer game, wheel chair control etc.

Promising communication tool for paralyzed patients



A recent application of Invasive BCI

Paralyzed woman serves herself coffee after 15 years, using
Invasive BCI controlled robotic arm.

Work in Institute for
Brain Science at
Brown University in
Rhode Island (2012).

Ultimately converts mental tasks into command signals !
http://neurogadget.com/tag/braingate.



Basic Working Principles: Brain and BCI

BRAIN:

Neurons, the basic building blocks of brain, are cells that send and
receive electro-chemical signals to and from the brain and nervous
system.

Brain consists of more than hundred billion neurons, with millions of
connections between them.

Unigue neural activations occur in response to specific actions,
thoughts, emotions etc.

Brain can be divided into various lobes having unique functional

responsibilifies. Brain parts and functions
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Methods for Brain Signal measurement
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Brain activity measurements: Why EEG?

Invasive techniques involves surgical interventions and
hence risky.

Non-invasive methods such as functional-Magnetic
Resonance Imaging (fMRI) and MEG is expensive, bulky
(not portable) and sensitive to subject movement.

Non-invasive methods such as EEG and fNIRS are
portable, less expensive, insensitive to movement and
easy to use.

EEG is the most economical method for measuring
electrical activity of brain.

High temporal resolution EEG signals can be obtained for
various activities such as emotions, body movements,
mental tasks, attention etc.



EEG measurement

» Exists inter-national standard for placing electrodes on scalp and each
electrode is named according to its location.

» F: frontal, T: temporal, C: central, P: parietal and O : occipital lobes

» Left hemisphere is named with odd numbers whereas right with even
numbers.

= Conductive gel is applied between scalp and electrodes to reduce the skin

impedance while EEG recording.
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Block diagram of EEG based BCI

Brain Signal
Acquisition

External Devices

EEG-based BCI uses EEG features to command, control, actuate and
communicate with the world directly by interfacing brain with peripheral devices
and systems.



Basic Building blocks

Data Acquisition Unit. Responsible for (i) recording EEG using
electrodes, (i) amplification and (iii) digitization of signals.
Signal Processing Unit: Consists of 2 modules

Pre-processing Module: Removes the artifacts/noise from the
recorded EEG signal and improve the signal to noise ratio.

Feature exfraction Module: Extracts the hidden information
from the pre-processed signals.

Classification Unit: Identifies the intention of BCI user from the
extracted features.

Translational Unit: Translates the idenftified intentions intfo specific
conftrol signals for various BCI based applications.

Feedback Unit: Feedback in BCI allows the user to self-regulate
his EEG to get the desired output.



Challenges and objectives

Challenges:

- Design of less expensive, simpler and more comfortable data
acquisition techniques.

New sensors/electrodes that can provide higher SNR.

Development of accurate and robust pre-processing and feature
extraction techniques.

Tuning robust machine leamning techniques and translational
algorithmes.

Design of integration and control protocols for specific applications.

Our Research focus:

Development of Signal Processing Algorithms to extract relevant features
effectively and accurately for EEG-based BCI.




Relevant EEG Features

= Slow Corfical Potentials (Event-related DC shifts in EEG), P300 (Event-related
potential rise (response) that occur 300 ms after a stimuli) , Visually Evoked
Potentials (potential changes on occipital EEG in response to a visual stimulus)
and event-related de/synchronization (ERD/ERS) etc. are widely used in BCIs.

= ERD/ERS: The naturally occuring brain rythms related to movement will undergo
change during movement imagination — ERD and ERS.

Amplitude changes in EEG during execution, preparation or imagination
of motor movements (called motor imagery (Ml)), that primarily activate the
motor cortex of brain.

= ERS: Power increase in EEG during rest phase (neurons fire synchronously).

- ERD: Power decrease in EEG, particularly contra lateral fo the movement
(heurons fire complex and individual patterns during motor imagery)

- Challenges:

= ERD/ERS are highly frequency band dependent (They can occur simultaneouly
at same/different scalp locations).

- The frequency bands that best discriminate between any 2 MI tasks
(discriminative frequency bands) are subject-dependent.




Time courses of ERD/ERS during

Ml in 2 subjects
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Motor imagery causes amplitude changes in EEG and
they appear in subject-specific frequency bands.

G. Pfurtscheller, C. Neuper, A. Schlogl and Klaus Lugger, “Separability of EEG Signals recorded During Right and Left Motor Imagery using
Adaptive Autoregressive Parameters,” IEEE Transactions on Rehabilitation Engineering, vol. 6, pp. 316-325, September 1998.




Exiraction of MI paiterns

= Common Spatial Pattern (CSP) is a mathematical procedure for
separating a multivariate signal info additive components which
have max. difference in variance between two windows.

=  Application of CSP to time-varying multi-channel EEG generates a
new time series, where the difference between two types of signals is

maximized.
Right Left Right
Effect of CSP
5 CSPR1 transformation
£ on EEG
& CSP:R2 corresponding

to Right/Left MI

CSP:L1

Voltage amplitude (

CSP:L2

2425 2430 2435 Time (s)

The first and last rows of CSP transformed matrix provides maximum discriminative
information between classes.

For Right MI: Low variance in R1 and R2 & High variance in L1 and L2.
For Left MI: Low variance in L1 and L2 & High variance in R1 and R2.



Our Contributions on:
Motor Imagery based BCI



Selection of subject-specific discriminative bands is significant in
Common Spatial Pattern (CSP) operation of MI.

Existing Filter Bank Common Spatial Pattern (FBCSP)
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Schematic of the Existing FBCSP algorithm

(Mutual information based feature selection and SVM based classifier)

Kai Keng Ang,, Z. Y. Chin, H Zhang and Cuntai Guan, “Filter bank common spatial patterns (FBCSP) in Brain-Computer Interface”,
International Joint Conference on on Neural Networks, pp. 2390-2397, June 2008.




Proposed Discriminative Filter bank Common Spatial Pattern (DFBCSP)

= Proposed a discriminative filter bank selection method: Selects 4
filters from a set of 12 filters (parent filter bank ) based on a Fisher ratio

(FR) criterion.

= |If, S;and S, are between-class and within-class variances of the M
signal respectively, FR=S;/S,,

= Proposed DFBCSP
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Frequency bands selected by DFBCSP
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Discriminative frequency bands selected in the DFBCSP algorithm for 5 subjects in
BCl Competition lll dataset IVa (Right hand and foot MI)

- Exhibits Inter-subject variability

Kavitha P. Thomas, Cuntai Guan, Lau Chiew Tong, A. P. Vinod and Kai Keng Ang, “A New Discriminative Common Spatial Pattern Method
for Motor Imagery Brain-Computer Interfaces,” /EEE Transactions on Biomedical Engineering, vol 56, no. 11, pp. 2731-2733, November
2009.




Comparison of classification
of riaht hand and foot MI
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Average Accuracy by FBCSP (%): 90.01 # 0.82
Average Accuracy by proposed DFBCSP(%): 91.75 + 0.54



Comparison of classification of right
hand and left hand MI

I.m
> 9 2 ¢ & &

Subjects

(=
8

H DFBCSP

o &P P

Average Accuracy by FBCSP (%): 79.44%1.15
Average Accuracy by proposed DFBCSP(%): 81.07+1.26

g 3 8 8

% Classification Accuracy




Power Spectral density plots of EEG
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Average Power Spectiral Density plots of right hand and foot trials for subject
‘av’ in BCl Competition Il dataset IVa.



More analysis on frequency bands during
Mi

- Found that the selection of discriminative frequency
bands highly affects the classification accuracy of M
patterns.

- DFBCSP requires multiband filtering to select the subject-
specific DFB.

- In order to avoid this mulfi-band filtering, another method
of fime-frequency Fisher ratio patterns is proposed.

- Involves the computation Power spectral density (PSD)
using STFT of right hand and left hand EEG which gives the
Fisher values of frequency points along time domain.



Time-Frequency Fisher pattern from channel C4
for subjects 1, 4, 5 and 9 in BCl Competition IV
dataset llb (right and left hand MI)
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Discriminative band selection from
Fisher ratio pattern
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Discriminative Weight (DW) values: Sum of the Fisher values for each
frequency component along the time domain in FR pattern.
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Variation of frequency bands over sessions
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Proposed Adaptive Method for fracking the discriminative
bands - To tackle Inira-Subject Variability

Schematic of the Adaptively weighted Spectral Spatial Pattern (AWSSP)

Discriminative Feature Output
EEG frequency Bandpass . .
R . - . - extraction |—» Classifier >
estimation and filtering using CSP
filter design 9
)

Yes

Is DDW
>Threshold

Discriminative
weight updation

DDW: Deviation in Discriminative weight (DW) values

Kavitha P. Thomas, Cuntai Guan, Lau Chiew Tong, A. P. Vinod and Kai Keng Ang, “Adaptive tracking of discriminative frequency
components in EEG for a robust Brain- Computer Interface,” Accepted in Journal of Neural Engineering, February 2011.




Classification results of 5 sessions of 9
subjects in BCl Competition IV dataset lib

% Average Classification accuracy
over 9 subjects
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SWSSP: Same
filters obtained from
training data (no
updates).
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Predicted class
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class labels for
weight updation.

Classification Accuracies of BCI Competition |V Dataset Ilb (9 subjects in 5 sessions)
using FBCSP* and proposed Static/Adaptively Weighted Spectral Spatial Pattern
(SW/AWSSP) Methods.



Classification results of online data using
the proposed static and adaptive methods

In session-1 and session-2, two sets of EEG frials were recorded
which were processed using static and adaptive schemes.

Session Session-1 Session-2

Subject Static Adaptive Static Adaptive
SG 85.83% 92.50% 84.51% 87.50%
SM 84.17% 87.50% 81.66% 88.33%
SS 79.17% 86.67% 74.17% 82.50%

Average = 83.05% 80.11% 86.11%



Contributions on:
Movement Execution parameters in EEG



Movement execution parameters

- Objective
- Electrophysiological brain signals to decode various parameters of
voluntary movement.
- Movement parameters: direction, position, velocity, or acceleration.

- Whye
- Higher degrees of freedom for output device movement.

- Precise identification of neural patterns encoding movement or
movement parameters.

- Challengel
- Understanding of the neural substrate for voluntary movements.

- Non-invasive techniques do not provide sufficient signal resolution or
bandwidth.

K. Jerbi, J. R. Vidal, J. Mattout, E. Maby, F. Lecaignard, T. Ossandon, C. M. Haomameé, S. S. Dalal, R.
Bouet, J. P. Lachaux, R. M. Leahy, S. Baillet, L. Garnero, C. Delpuech, and O. Bertrand, "Inferring
hand movement kinematics from MEG, EEG and infracranial EEG: From brain-machine interfaces to
motor rehabilitation,” IRBM, vol. 32, pp. 8-18, 2011.



Research findings
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Non-invasive studies in Humans using MEG/EEG
Successfully decoded finer details of movement such as velocity/

direction.
Tasks: Voluntary hand movements in different directions at different
speeds.
|ldentified 3 spectral regions showing Movement related neural
activity.
Low frequency band Intermediate frequency Broad high-frequency
(EEG/MEG: <7 Hz) el SEle
| (EEG/MEG: 10-30 Hz) (EEG/MEG: 62-87 Hz)
: . « Movement related
»amplitele moetlarens. * ERD/ERS. amplitfude increase.
« Movement related : :
: , * Mu and beta rhythms, » Neuro-physiological
potential (MRP) slow signal . :
ACross motor cortex. meaning and mechanisms
components. : . .
underlying this is not clear!!

Waldert S, Preissl H, Demandt E, Braun C, Biroaumer N, Aertsen A, et al. Hand movement direction
decoded from MEG and EEG. J Neurosci 2008;28(4):1000-8.

Salmelin, R., Hdmaldinen, M., Kajola, M., Hari, R., 1995. Functional segregation of movement-related
rhythmic activity in the human brain. Neuroimage 2 (4), 237-243.



Summary
- Spectral:
- Low-frequency components in movement parameter decoding &
reconstruction

- <7 Hz for direction decoding.
- 2-5 Hz for speed decoding.
- Spatial:
- Primary & Supplementary motor area.
- Posterior parietal cortex.

- Temporal:
- Movement intention, planning, execution, affer movement.



Requirements

- Challenges: Why not a simple low pass filtering?
- Extracting the precise information taking intfo consideration the inter trial
variability.
- Artefact removal, improve SNR.
- Overlapping cognitive information.

- Signal Processing : Optimal information extraction from the raw

data.
- Tools:
- ICA, PCA, CSP.
- Kalman filter, MLR models.
- Different parameters in time and frequency domains.
- Features localized in time and space from low frequency subbands.
- Neural sources:
- Movement Related Potential (MRP).
- ERD/ERS.
- Gamma band activity (25-40 Hz).
- Low frequency EEG.

ICA - Independent Component Analysis
PCA- Principal Component Analysis
CSP — Common Spatial Pattern

MLR - Multiple Linear Regressor




Data Acquisition

- EQuipment
- Neuroscan Synamps 128 channel EEG amplifier.

- Spatial location
- Primary and Secondary motor areas.

- Tasks *pend
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‘Wavelet- Common Spatial Pattern
Multi resolution Analysis by DWT

Octave band filtering using orthonormal wavelet bases followed by
downsampling.

T T T

5 4 2 " o,

fréq

Subband signals

CSP

M. Vetterli, C. Herley, "Wavelets and filter banks: Theory and design,” IEEE Transactions in Signal Processing, vol. 40, no. 9, pp. 2207-2232, Sep. 1992.
H. Ramoser, J. Muller Gerking, G. Pfurtscheller, “Optimal spatial filtering of single trial EEG during imagined hand movement,” IEEE Transactions on
Rehabilitation Engineering, vol. 8, pp. 441-446, Dec. 2000.




Functional block diagram - Speed Decoding
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Above method is modified with regularization of CSP for direction analysis.



Mean Classification Accuracies in %
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Direction dependent temporal activations

(<1 Hzrange recorded from C1 and Pz)
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Results - Speeds
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Best accuracy at 5 bands (<7 Hz): 83.7% (between fast and slow movements)



Reconstruciing movement speed
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Moving on.....Neural correlates of movement
o o HFB (76-100H2)
execution & imagery

ECoG

Spatial distribution of local neuronal
population activity during motor
imagery and actual motor
movement are similar.

 fMRI: Imagery : Visual or Kinesthetic
— Spatial overlap : Occipital and Moto LFE (8-32H2)

. _ Hand Tongue
— Primary and secondary visual areas :
motor areas
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B move>image

B move=image = image>move

T. Hanakawa, M. A. Dimyan, and M. Hallett, "Motor planning, imagery, and execution in the distributed
motor network: a time-course study with functional MRI," Cereb Cortex, vol. 18, pp. 2775-88, Dec 2008.
K. J. Miller, G. Schalk, E. E. Fetz, M. den Nijs, J. G. Ojemann, and R. P. N. Rao, "Cortical activity during motor

execution, motor imagery, and imagery-based online feedback," Proceedings of the National Academy of
Sciences, February 16, 2010 2010.



Possible Future work

No study to date has reported full closed-loop decoding multidimensional imagined
movement activity.

- Goals

- How well motor imagery can replace the information using actual
movement executione

- Real time systems : Subject trained models; adapted to own neural activity
for movement encoding using minimum optimal information.

- Detection of 3-D movements

Some Applications
- Assistive technology devices (Stroke rehabilitation)

- Serious computer games

- In automotive control: Thought driven motors, Conftrolling acceleration/speed,
Steering control.



Contributions on:
Attention related EEG



Aftention detection from EEG

- Aftention is the state of alertness
- Can be estimated using the entropy values of EEG

- Used widely in neurofeedback studies as directly related to cognition
- We have developed an attention driven computer game:

Signal Processing Module
Entro Attention
Pre-Processing ltropy Score

Estimation ;

Computation
EEG data acquisition

using Emotiv Epoc System ’ Output
Neuroheadset 4 .- Integrator « Module

A
S | — -

Framework of attention driven game




Gaming interface conirolled by EEG (for ADHD
Children)

~ Stage 1: Memorize the displayed numerals and locations

l— Messages to the player

Correctly Filled Matrices

“orrect Hits

[0]
C

Game Count Status




Gaming interface controlled by EEG
Stage 2: Focus on a point on interface in order to make the attention
score above threshold value

o
Messages to the player — Coppectly Filled Matrices
Level-2 0
‘AttentionLevel
Leyell gy 0

Correct Hits
Game Count Status

-

Click here to start the Brain Matrix Game




Gaming interface conirolled by EEG

Stage 3: Display of arows and selection of answer

by keyboard
[k
Messages to the player — Coprectly Filled Matrices
| Level-2 | 1
‘AttentionLevel
Leyel:] r

Correct Hits

e I

Game Count Status

B .

Click here to start the Brain Matrix Game




Experimental results

- Accuracy of re-filling the matrix improves by practice.

Percentage of correctly filled matrix elements in a level-3
Matrix game over 3 days (Total number of trials:30)
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Percentage of Correct trials on Day-1, Day-2 and Day-3: 75, 80, 87%




Experimental resulis

- Neurofeedback based fraining enhances the
threshold and attention scores also.
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Possible future works on attention based BCI

- Neurofeedback has been considered as an effective
treatment approach for enhancing attenfion and cognitive
skills of children with attention-deficit hyper active disorder
(ADHD).

- Planning to extend our studies for developing more interactive
games and use them for treating ADHD children.
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