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Problems in Sydney
- Long delays
- Congestions

- Tunnel decisions
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Challenges of Complexity

» Massive amounts of data

» Checking properties on such a scale — certificates?
» Optimizing on such a scale

» Planning vs self-organisation

» Local vs global control

» Security (cyber-physical)
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Changes

» The existing grids typically do not have the right structure and
capacities

» Generation is much more volatile, i.e. now on both sides of the
generation = load equation

> New loads, e.g. plug-in (hybrid) electric vehicles
(PHEV)

»MUCH MORE UNCERTAINTY FOR THE GRID

»Need end-to-end control — ‘smart grids’
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More new stuff

THE GRIDROUTER™
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Smart grids — what will they do?

» USA DOE NETL has identified the following features:

 Self-healing from power disturbance events

» Enabling active participation by consumers in demand response
« Operating resiliently against physical and cyber attack

* Providing power quality for 215t century needs

« Accommodating all generation and storage options

- Enabling new products, services and markets

» Optimizing assets and operating efficiently

11



Power grid basics

> PLAN — network, operations

» BALANCE — power, energy

» STABILITY — limits, dynamics

» PERFORMANCE - efficiency, effectiveness

» RECOVERY - from emergencies

12
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Transmission network expansion planning

Ref: Chen, Hill and Dong, IEEE
t GM 2012
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Transmission network expansion planning
min E C;il; +a2 r,
(i,])EL k

S.t. STf+g+r=d
0
f;j _bij(nij +nij)(8i _Hj) =0

‘fij‘ < (m; +n)f;
O<g=<g
O<r=d
Osnys@

n; 1s integer, f, and 6, are unbounded

(i,)) €L
where here c.., b

i D 1y noij and f; represent the cost of a circuit to be added, the susceptance of that circuit, the
number of circuits added, the number of circuits in the base case, the power flow on line. 7 is the vector of
artificial generations (or load curtailment). a is a penalty parameter associated with loss of load caused by lack

of transmission capacity.
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So what is a definition as a process?

» A 'smart grid has in-built processes which ensure:

- Observability of all flows, voltages, currents, phases, frequency etc
- Inference to translate to knowledge about balance, stability, etc

- Distributed decision and control to ensure balancing, stability etc

- Emergency reconfiguration for recovery

New: adaptable to generation, load volatility

Clearly degrees here: full deal is 100% volatile generation

15
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More monitoring, computing and control
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Grid2050 Architecture (Bakken et al.)
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» Problems in Sydney
- Long delays
- Congestions
- Tunnel decisions

» Network view

- Structure
- Similar systems, e.g. Internet

» Traffic control
- Flows and dynamics

- Coordination (intersection, region,
wide-area)
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» Optimized expansion structure?
- Performance
- Security
- Cost

» Braess’s paradox

- More links, less performance

» What communication links for wide-area control?

19
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» Flow control: normal flow

> Dynamic control: transients

» Recovery control: failures,
emergencies

» Hierarchy needed (global control)

» Coordination needed (beyond
intersection)

» Types
Self-organise

Soft flow control, e.g. tariffs

Hard flow control, e.g., lights

Hard recovery, e.g. gating

Control Questions

Measured

Controlled Measure

A A

A 4
v

Traffic Network

v

A 4
v
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Feedback Networks

Complex
Dynamic
Network
Network
control of
a network
Control
Network

Networks time-varying,
switched, nonlinear
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Graphs of Control

The system is a large network (system graph)

- Cannot be controlled centrally

Controllers will need to communicate (control graph)

Sensing of data (sensor graph)

- Control designed around multiple graphs

23



THE UNIVERSITY OF

SYDNEY

General Network Model

We consider the general dynamic network consisting of:
- diffusive coupling;

- massive numbers of nodes modelled as n-dimensional systems

N

X, =fl.(xl.,pl.)+2aijr(xj—xl.)+Gl.ul., i=1,...,N;
j=1
J=i

Special case (Networks science): network with uniform coupling and linearly
iInterconnected identical nodes

N
X, =f(xi)+czaijf(xj -x)+u, i1=1,.,N.

J=1
J=i

24



THE UNIVERSITY OF

SYDNEY

Pendulum Model

Coupled Pendulums are modelled by

m6, +y.6,+bsinb =7 +7,sin(wt + @) + Ebl.j(ﬁj -6)
=

J=i
2 coupled pendulums Coupled pendulums can be
represented by a 2 node arranged in network
network with 1 link structure such as a 2-D
fii | attice o
| ) NP
Iy . C)U A (2.4) (3.4) d‘lﬂ) dﬁﬂ)
m C)O 3 (2,3) (3.3) d4,3) (5.3)
.—. C>(1,1) C>(2,1) C>(3,1) C>(4,1) C>(5,1)
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Laplacian Matrix -A

Outer coupling matrix 4 represents the topology of the network

(a,, a, - ay)
a, a, - a
21 22 N
A=| . o 2,
\dn1 dna T Ay
N
a, = —E a,
=
J=i

where a; > 0, if there is a connection between nodes i and j,
otherwise, «; =0,
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Control of Structure

System links

Control links

Uncontrolled Locally connected Controlled Small-world

Ref: S.H. Strogatz, “Exploring complex networks,” Nature, vol. 410, pp.
268-276, 2001
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Design by Optimization (Liu, Hill and Zhao, IEEE TAC 2012)

N

%)= f(x@)+cy aTx,()+u, i=12,.,N, (5)

j=1

where u, € R" is the controller for the ith node with the following form

U, = —yE b.Ix;. (6)

¥ >0 s the control gain, and B & RY*" is controller outer coupling
matrix representing the topological structure of the network controller to

be designed. Suppose B has the same properties as A excepted for the
assumption of irreducibility.

28
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Theorem 1. Consider the network. If there exists a solution d~ of the
following mixed-integer nonlinear optimization problem satisfying 7 < 4.

min d = yEl_‘i e’
s.t. A, (cA+ yzi e‘’h’h ) =a,

e €{0,1}, i=12,....M°
y>0

then the control problem is solvable, and synchronization of the network
(5) is achieved under the controller (6).

29
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Sync by Switching Control

N
%)= f @)+ a,x () +u’™ i=12,..,N,
j=1

(1)

where u”"" is the switching controller with the following form

N
7 =Yg 3. b7 Tx (1), i=1,2,...,N,

=

Solved by convex combination and optimization approach.
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Other Ideas

» Our view of control “is autistic”; for massive systems get
cognitive overload

» Maybe just viewing the problem as computation reduction
IS Inadequate

» Will need more than just using structure better

» In global control used ‘indicators’ and switching, c.f.
economic control

» We also use learning from past experiences

31
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» Hewitt: ['ve been
training extremely
hard, putting in a lot
of hours on the court
...... (BBC Sports)

» An example of
“Learning by doing”

» Fast responses
needed

32



Learning-based Control

) Improves its performance based on past
experiences (Fu, 1969; Farrell and Baker, 1993)

. Effectively recall and reuse the learned
knowledge

. Use stability robustness to handle mismatch

. Can be used to reduce space for optimization

33
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Locally Valid Models

» Systems locally identified in state-space

Periodic input signal
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Nonlinearity to be learned. Nodes partially excited in a RBF network. Local learning.

* Deterministic learning
(Wang and Hill, IEEE TNN, 2006.)
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The New England 39-bus Power System

Voltage control

Aim: Maintain steady
voltages at all buses.

Control devices: Tap

changers, capacitors,
load shedding
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Coordinate via MPC
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MCVC System:
e Off-line global search
e On-line flexible control

e On-line learning

Objective functions:

Power System

On-line Multi-Objective CVC System

Some Possible Faults

¥
Global Search: v
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S o o 4 e o e e — e — — e — s ]
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I £ Database | Short term !
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2
Local Search: c v .

. = . Mid-term
1.Get available controllers, | S Multiple
2.Searching neighborhood f Criteria

6 Decision Short term
Making
_______ Off-line Searching

On-line Adaptive Control
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Case Study

Case1: Tripping Generator 32
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Case Study

Control Scenario

Time | Event

30s Line3-2 tripping

60s G36 tripping

180s | Line3-2 and G36 reconnection
540s | Line3-2 and G36 tripping together
660s | Line3-2 and G36 reconnection
1140s | Line3-2 and G36 tripping together

System performance:

bus voltages (p.u.)

1.05

Case2: Tripping Generator 36 and Line 2-3
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Challenges of Complexity

» Massive amounts of data

» Checking properties on such a scale — certificates
» Optimizing on such a scale

» Planning vs self-organisation

» Local vs global control

» Security (cyber-physical)

41



But the data?

» Collecting lots of data, but: “We need to work out what to do
with it” (Senior engineer in SGSC)

So need methods to manage ‘big data’, software on a large
scale.

Steps
- Using graphical methods (Shvartzshnaider, NICTA)
- Learning in data mining

ldeas to compress hierarchially, turn into indicators etc

42
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And the modelling

» [dentify the graphs

» Taxonomies of nodes, links, ‘motifs’

» Metrics, indicators

» On-line vs off-line versions

Lots of work here before we can begin analysis!
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Stability challenges

» Robustness to all the uncertainty

» Dependence on structure
- find the vulnerable points for collapse

- backbone networks vs weakly connected clusters for diverse
generation

» How to guarantee stability from local checks

- certificates (with some exchange)
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“Smart Grid” as control engineering

» Large network of sensors

» Massive amounts of data, i.e. measurements, availability etc

» Distributed control operating at many levels

» But for SGSC have 2 x 10'2 possible links

» Architectures?
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Control challenge

» Limitations of a centralised system

» Need distributed artificial intelligence
- Avoids data overloads at critical places

Implements in-time control where needed

Robustness

Can achieve scaling (non-coop game ideas)

Question of granularity

- Question of cyber security

» Anyway have an end-to-end optimal adaptive distributed control problem:
a huge optimisation again

47
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More monitoring, computing and control
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Ref: A.Ipakchi and F.Albuyeh, IEEE Power & Energy Magazine, Special Issue on the Next-Generation Grid, Vol.7, No.2, 2009
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Centralized vs decentralized

» Current power systems have a lot of decentralized control:
- Voltage regulators
- Power system stabilzers
- AGC (frequency, line flows)
- Sync

» For transmission, centralized monitoring via SCADA

» Centralized for balancing, i.e. dispatch, and advanced recovery

» Look for clever local controllers ' talking to each other locally,
e.g. STATCOMSs, Ron Hui's ‘electric springs
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Mean-field type control

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

Decentralized Charging Control for Large Populations
of Plug-in Electric Vehicles

Zhongjing Ma Duncan Callaway Ian Hiskens

More specifically, subject to a collection of charging
strategies u, we suppose that the cost function of agent n,
denoted by J"(u), is specified as,

T-1

T2y {p(n)u? +0(uy — avg(ut))g} @)

t=0

where r; = d‘—”ﬁgﬁﬁl and the tracking parameter 4 is a
non-negative constant. It follows from (4) that each agent’s
optimal charging strategy must achieve a trade-off between ssh
the total electricity cost p(.)u™ and the cost incurred in s , , , , ,
deviating from the average behavior of the PEV population . qust 150 16 ey g0 12
(u™ —avg(u))?. The examples in Section IV illustrate that

the small tracking costs are more than compensated by cost Fig. 4. Convergence of decentralized charging process for a homogeneous

savings that arise from valley filling. PEV population with § = 0.015.

Nomnalized power (kW)

51



THE UNIVERSITY OF

SYDNEY

Self-organising traffic control

» Anecdotally: London cab drivers found traffic worked better sometimes
when lights failed

» Study (Xia and Hill, 2009) shows using cellular automaton model (lattice,
road segments) and rules for drivers for traffic lights and self-organising

» Results: Three phases of traffic flow:

1. Average travel time fixed, regardless of car density; SO best in most
cases

2. Flow almost unchanged as density increases; traffic lights achieves
higher flow

3. Flow degrades as traffic jams; both control strategies have similar
results
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Network Security - planning

» Anticipated set of contingencies

» Anticipated set of operating conditions

» Given set of control actions

» System can achieve an acceptable state

Establish margins of security
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Security control

» Something has gone wrong, e.g. storm, failure

» Lots of data, e.g. alarms, phone calls

» Diagnose what state the system is in, e.g. locate fault, area of
outage

» Assess security level, e.g. any potential problems

» Plan and schedule the response, e.g. restore, repair
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Questions — security

» Information architectures, i.e star vs mesh etc for control
and cyber-security?

» Cyber-physical security —outsmart intruders? Remember
Stuxnet

» Physical security was never completely solved, i.e.
cascading collapse — put the two problems together!!???
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Interdependent networks
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Control Challenge

» A multi-level version of distributed adaptive control

» Attends to local and system control needs

» Reconfigurability plus tuning, i.e. can attack problems as
they arise in staged response

Call it global control
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Basic idea

» Large numbers of local controllers act independently (non-cooperative
games, Nash equilibria etc)

» Clusters which can cooperate
» Local controllers handle all routine things

» Higher levels handle slower loops and emergencies (swap local for
system priorities)

All this has to be done dynamically.

Research needed.
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Global Contro — traffic approach
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SYDNEY Global Control Framework — power systems

(Leung, Hill and Zhang, 2009)
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Conclusions

» Massive networks a new frontier for decision and control

» Network science ideas useful

» ‘Smart’ = cognitive ability (planning, awareness, attention, memory,
action, learning)

» Problems of scaling solutions, granularity

» Merging control, computer , telecomms and network sciences

» How to KIS? New ideas
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Convergence of Networks

Slide from Paul de Martini, CISCO -
presented NICTA

Individual & Organization
Governments
Communities & Markets

Data, Voice & Video
Protection & Controls
Security

Electric Trans & Dist
Water Trans & Dist
Gas Trans & Dist




