
Dependable and Resilient Cloud Computing

Vincenzo Piuri
Università degli Studi di Milano, Italy

vincenzo.piuri@unimi.it

Simon Fraser University
Vancouver, BC, Canada

25 April 2018

Based on joint work with: M. Albanese, S. Jajodia, R. Jhawar

Outline

• Motivation

• System overview

◦ Vulnerability and failure characteristics of Cloud infrastructures

◦ Security and fault tolerance of the mission

• Secure mission deployment and mission protection

• Fault tolerance of the mission

◦ Fault tolerance as a service

◦ Constraints-aware resource provisioning

◦ Adaptive resource management

2/57

Motivation (1)

• Cloud computing is becoming increasingly popular

+ Flexibility in obtaining and releasing computing resources

+ Lower entry and usage costs

+ Effective for applications with high scalability requirements

• Growing interest among users to leverage Cloud-based services
to execute critical missions

• Exacerbate the need to ensure high security and availability of the
system and the missions

3/57

Motivation (2)

• Cloud computing infrastructure is highly complex

− Vulnerable to various cyber-attacks and subject to failures

− Outside the control scope of the user’s organization

• Existing solutions individually focus on the security of the
infrastructure and the mission

− Do not take into account the interdependencies between them

• Fault tolerance methods are typically applied during development

− Unfeasible to combine failure behavior and system architecture in
the Cloud due to the abstraction layers

4/57

Motivation (3)

• User-centric approach to address the security and fault tolerance
issues

◦ Deploy missions so as to minimize their exposure to the
vulnerabilities in the Cloud

◦ Protect the hosts and network links used by the mission

◦ Deliver fault tolerance as a service to the mission

◦ Response to faults at run-time

◦ Response to security attacks at run-time

5/57

System Overview – Cloud Infrastructure

Data center 1

Data center 2

Internet

h1

h2 h3 h4 h5

h6Subnet 1

h7

h8

h9

h10

h11

Subnet 2

h12 h13 h14 h15

Subnet 3

Router A

Router B

• Redundant switches, routers and links for fault tolerance

• Security tools (e.g., intrusion detection, firewalls)

7/57

System Overview – Cloud Infrastructure

t1 t2

Data center 1

Data center 2

Internet

h1

h2 h3 h4 h5

h6Subnet 1

h7

h8

h9

h10

h11

Subnet 2

h12 h13 h14 h15

Subnet 3

Router A

Router B

• Hosts may be vulnerable to various cyber-attacks
(e.g., Subnet 1: compromised, Subnet 2: vulnerable, Subnet 3: highly secure)

7/57

System Overview – Cloud Infrastructure

t1 t2

Data center 1

Data center 2

Internet

h1

h2 h3 h4 h5

h6Subnet 1

h7

h8

h9

h10

h11

Subnet 2

h12 h13 h14 h15

Subnet 3

Router A

Router B

• Tasks may have vulnerability tolerance capability
(e.g., Task 1 can handle buffer overflow attacks using memory management
mechanisms)

7/57

Mission Deployment

8/57

Static Mission Deployment

• Each host h ∈H is associated with a vulnerability value Vh

• tol(t) provides an estimate of the maximum level of vulnerability
the task can be exposed to

• Task allocation problem with two sub-problems

◦ Map each task to an appropriate VM image in the repository

◦ Allocate VMs on suitable physical hosts in the Cloud

h1

h2

h3

h4

I1

I2

I3

I4

I5

t1

t2

t3

t4

t5

T VM Image Ha:T→H

9/57

Selecting VM Images

• Challenge: Develop techniques to assess security of VM images
at run-time and an automated security-driven search scheme to
deploy mission tasks

• VM images encapsulate the entire software stack and determine
the initial state of running VM instances

• Most Cloud IaaS require users to manually select VM images; in
public Cloud services, VM images have critical vulnerabilities

• Objective: Select VM images that satisfy both functional
requirements and security policy of mission tasks

10/57

Allocating VMs on Cloud Infrastructure (1)

• Challenge: Develop approximation algorithms to find suboptimal
allocation solution in a time-efficient manner

• Objective is to minimize exposure of mission tasks to the
vulnerabilities in the Cloud infrastructure

• Satisfy additional dependability constraints
(e.g., host’s capacity and task’s vulnerability tolerance constraint)

11/57

Allocating VMs on Cloud Infrastructure (2)

Root

(t1, h1) (t1, h4)

(t2, h1) (t2, h2) (t2, h3) (t2, h4) (t2, h4)(t2, h3)(t2, h2)(t2, h1)

h1 h2 h3 h4 h1 h2 h3 h4 h1 h2 h3 h4 h1 h2 h3 h4 h4h3h2h1h4h3h2h1h4h3h2h1h4h3h2h1

Root

Task t1

Task t2

Task t3

• Possible solution: Use A∗-based state-space search approach

• State is a possible choice for allocating a task on a host (ti,hj)

• Root state is the initial state where no task is allocated

• Operation generates child states for a given state s

• Goal state is a state in which all the tasks have been allocated (leaf)

• Solution path is the path from root state to any goal state

12/57

Allocating VMs on Cloud Infrastructure (3)

• Objective is to find the solution path with minimum vulnerability
value

• Cost function is the vulnerability measure of complete allocation
fvul(s) = gvul(s)+hvul(s)

• gvul(s) is the total minimum vulnerability due to task allocation
from the root state to the current state s

• hvul(s) is the lower-bound vulnerability estimate of the allocation
from the current state to any goal state

◦ hvul(s) is computed using an admissible heuristic

◦ Improves search performance while not compromising optimality

13/57

Dynamic Mission Deployment (1)

• Each task is associated with temporal constraints
(e.g., a task may only run after another task)

• Critical missions must complete within a certain amount of time

• Possible solution: Complex task scheduling solution that takes
into account the capability of the VM while computing the solution

19/57

Dynamic Mission Deployment (2)

• Challenge: Schedule mission tasks on the hosts

1 To minimize their exposure to the vulnerabilities in the network

2 To ensure their deadlines are met

task Mission execution timeline

t1

t2

t3

t4

0 1 2 3 4 5 6 7 8 9 10 time

s0 s1 s2 s3
task1

(3s)

task2 (2s)

task3 (3s)

task4

(4s)
∧

• Critical tasks (e.g., task t3) must be placed on highly reliable host

• Adopt scheduling schemes such as greedy heuristics, genetic
algorithms, tabu search, A∗ to solve the scheduling problem

20/57

Mission Protection

23/57

Static Network Hardening

• Challenge: Given a mission is deployed in the Cloud, protect
the resources used by the mission tasks

• In the static version, all the hosts and network links are protected
for the entire duration of mission execution

t1 t2

Internet

h1

h2 h3 h4 h5

h6Subnet 1

h7

h8

h9

h10

h11

Subnet 2

h12 h13 h14 h15

Subnet 3

Router A

Router B

• Possible solution: Build on top of previous work for network
hardening

24/57

Dynamic Mission Protection

• Challenge: At any point in time, find a cost-optimal time-varying
strategy to harden the resources not yet used by the mission

• Dynamic protection minimizes the disruption that hardening
strategy causes to legitimate users

• Possible solution: Efficient technique that analyzes huge streams
of security threats at real-time

• For example, use of attack graphs to track where the attacker is
going (the penetration path)

25/57

Fault Tolerance of the Mission

26/57

Fault Tolerance Support for Mission

• Realize the notion of Fault tolerance as a Service

• Fault tolerance mechanisms based on the virtualization
technology (e.g., checkpointing virtual machine instances)

+ introduce fault tolerance in a transparent manner

+ offers high level of generality

+ Possible to change fault tolerance properties based on business
needs

• Construct dependability mechanisms at runtime
◦ Mission centric Service Level Agreement (SLA)

27/57

Fault Tolerance as a Service

• Build and deliver the service by orchestrating a set of
micro-protocols

◦ Realize fault tolerance techniques as independent, stand-alone,
configurable modules (web services)

◦ Operate at the level of virtual machine instances

• VM instance replication technique

FTM

h1 h2 h3h3 h4

28/57

Fault Tolerance as a Service

• Build and deliver the service by orchestrating a set of
micro-protocols

◦ Realize fault tolerance techniques as independent, stand-alone,
configurable modules (web services)

◦ Operate at the level of virtual machine instances

• VM instance replication technique

FTM

h1 h2 h3 h4h4h1 h3

28/57

Fault Tolerance as a Service

• Build and deliver the service by orchestrating a set of
micro-protocols

◦ Realize fault tolerance techniques as independent, stand-alone,
configurable modules (web services)

◦ Operate at the level of virtual machine instances

• Failure detection using hearbeat test

28/57

Fault Tolerance Manager

30/57

Fault Tolerance Manager – Framework Overview

31/57

Configuration of a Dependability Solution (1)

• Based on the affect of failures on mission’s tasks

• Using Fault trees and Markov chains

ToR–Top of Rack Switch AggS–Aggregate Switch
AccR–Access Router LB–Load Balancer

32/57

Configuration of a Dependability Solution (2)

• Analyze the properties of typical dependability mechanisms

• For example, semi-active replication

• Primary, Backup (λ – failure rate, µ – recovery rate, k – constant)

1,1 1,0 0,0

2λ

kµ

λ

kµ

(1− k)µ (1− k)µ

33/57

Matching and Comparison Process

• Represent fault tolerance properties of ft_sols using p=(s, p̂,A)

◦ s denotes the ft_sol

◦ p̂ represents the high level abstract properties such as reliability
and availability

◦ A denotes the set of structural, functional and operational attributes

• Based on the mission’s fault tolerance requirements

◦ for each ft_sol s∈S in the system, first shortlist S′⊂S that satisfy
abstract property requirements v̂c(a)�v̂i(a)

◦ for each ft_sol in S′, compare vc(a)�vi(a) attribute values to obtain a
set S′′ of candidate ft_sols

35/57

Replica Placement Constraints

• Location and performance requirements of replicas can be
specified using constraints

◦ Global constraints – Resource Capacity

◦ Infrastructure oriented constraints – Forbid, Count

◦ Application oriented constraints – Restrict, Distribute, Latency

37/57

Resource Capacity Constraint

• To avoid inconsistent system state

• Resources consumed by all VM instances on a single host cannot
exceed a specified threshold of host’s capacity

∀h ∈H , d ∈D , ∑
v∈V |p(v)=h

v[d] ≤ (h[d]∗ threshold[d])

38/57

Forbid Constraint

• To dedicate hosts for system-level services (e.g., AC engine,
Reference Monitor)

• Prevents VM instance v from being allocated on physical host h

∀v ∈ V , h ∈H , (v,h) ∈ Forbid =⇒ p(v) 6= h

• Forbid={(v,h8),(v,h3),(v,h10)}
h1

h5h2

h4h3

h10

h7

h6

h9h8

39/57

Count Constraint

• To avoid performance degradation due to co-hosted VM instances

• Limits the number of VM instances on a given host

∀v ∈ V , h ∈H , |{v ∈ V |p(v) = h}| ≤ counth

• Counth≤3

40/57

Count Constraint

• To avoid performance degradation due to co-hosted VM instances

• Limits the number of VM instances on a given host

∀v ∈ V , h ∈H , |{v ∈ V |p(v) = h}| ≤ counth

• Counth≤3

40/57

Restrict Constraint

• To support security and privacy policies and government enforced
obligations

• Place VM instances only a specified group of physical hosts

∀vi ∈ V , Hj ∈ 2Hj , (vi,Hj) ∈ Restr =⇒ p(vi) ∈ Hj

• Restr={(v1,{h1, . . . ,h5}),(v2,{h1, . . . ,h5}),v3,{h1, . . . ,h5})}

v1

v2v3

h1

h5h2

h4h3

h1

h5h2

h4h3

h10

h7

h6

h9h8

41/57

Distribute Constraint

• To avoid single points of failure among replicated applications

• Two VM instances are never located on the same physical host

∀vi,vj ∈ V , h ∈H , (vi,vj) ∈ Distr =⇒ p(vi) 6= p(vj)

• Distr={(v1,v2),(v1,v3)}

v1

v2v3

h1

h5h2

h4h3

h1

h5h2

h4h3

h10

h7

h6

h9h8

42/57

Distribute Constraint

• To avoid single points of failure among replicated applications

• Two VM instances are never located on the same physical host

∀vi,vj ∈ V , h ∈H , (vi,vj) ∈ Distr =⇒ p(vi) 6= p(vj)

• Distr={(v1,v2),(v1,v3)}

v1

v2v3

h1

h5h2

h4h3

h1

h5h2

h4h3

h10

h7

h6

h9h8

42/57

Distribute Constraint

• To avoid single points of failure among replicated applications

• Two VM instances are never located on the same physical host

∀vi,vj ∈ V , h ∈H , (vi,vj) ∈ Distr =⇒ p(vi) 6= p(vj)

• Distr={(v1,v2),(v1,v3)}

v1

v2v3

h1

h5h2

h4h3

h1

h5h2

h4h3

h10

h7

h6

h9h8

42/57

Distribute Constraint

• To avoid single points of failure among replicated applications

• Two VM instances are never located on the same physical host

∀vi,vj ∈ V , h ∈H , (vi,vj) ∈ Distr =⇒ p(vi) 6= p(vj)

• Distr={(v1,v2),(v1,v3)}

v1

v2v3

h1

h5h2

h4h3

h1

h5h2

h4h3

h10

h7

h6

h9h8

42/57

Latency Constraint

• To maintain performance of user’s application

• Allocate VM instances such that network delay between them
is less than a specified value

∀vi,vj ∈V : (vi,vj,Tmax)∈MaxLatency =⇒ latency(p(vi),p(vj))≤ Tmax

v1

v2v3

5 4

h1

h5h2

h4h3

h1

h5h2

h4h3

5

4 3

3

3

3
4

4

h10

h7

h6

h9h8

4

4

3

4
4

3
4

3
8

8

43/57

Latency Constraint

• To maintain performance of user’s application

• Allocate VM instances such that network delay between them
is less than a specified value

∀vi,vj ∈V : (vi,vj,Tmax)∈MaxLatency =⇒ latency(p(vi),p(vj))≤ Tmax

v1

v2v3

5 4

h1

h5h2

h4h3

h1

h5h2

h4h3

5

4 3

3

3

3
4

4

h10

h7

h6

h9h8

4

4

3

4
4

3
4

3
8

8

43/57

Latency Constraint

• To maintain performance of user’s application

• Allocate VM instances such that network delay between them
is less than a specified value

∀vi,vj ∈V : (vi,vj,Tmax)∈MaxLatency =⇒ latency(p(vi),p(vj))≤ Tmax

v1

v2v3

5 4

h1

h5h2

h4h3

h1

h5h2

h4h3

5

4 3

3

3

3
4

4

h10

h7

h6

h9h8

4

4

3

4
4

3
4

3
8

8

43/57

VM Provisioning (1)

• A two-stage, host-centric greedy heuristic

• Build a priority queue to select least-used cluster

• Consider hosts in the order of their identifiers

• Use vector dot-product method to allocate VM instances

• The vector dot-product values are 0.165 and 0.127 respectively

44/57

Fault Tolerance at Runtime (1)

• Fault tolerance policy of a mission may not be satisfied when the
system’s working status changes

• Static allocation schemes are computationally expensive

=⇒ Dynamically adapt the current allocation to the new working status
of the Cloud by means of a heuristic

◦ Online fault tolerance controller for the mission

◦ Uses monitoring information (e.g., bandwidth availability, resource
status) and virtualization technology constructs

◦ Applies fewer actions to respond to the incidents
(instead of computing an allocation from scratch)

◦ Performs incremental allocation

46/57

Fault Tolerance at Runtime (2)

• High availability and performance are competing attributes

=⇒ Balance availability and performance while generating a new
configuration for a given mission

47/57

Adaptive Resource Management (1)

• Heuristics-based solution to minimize the performance and
availability degradation of the mission due to the changes in the
working status of the system

• Realized as an online fault tolerance controller that uses three
activities to change the current allocation status of the mission

◦ Launch(t,h): Create new replicas of a task – instantiate VM v,
hosting task replica t, on the host h

◦ Migrate(t,hi,hj): Change the current location of a task replica as a
response to performance or availability degradation – move task t
from host hi to host hj

◦ Delete(t,h): Reduce the replication level of a task – remove task t
from host h

48/57

Adaptive Resource Management (2)

• A task can be allocated on host h ∈H if the constraints
(restriction, distribution, capacity and allowed latency) are satisfied

• Implement task allocation as the bin-packing problem
(bins≡hosts and items≡VMs)

• The function map : V →H performs tentative search

49/57

Adaptive Resource Management (3)

When availability of the mission is less than the desired one

50/57

Adaptive Resource Management (3)

1 Identify task replica failures

50/57

Adaptive Resource Management (3)

2 Launch new replicas at the same deployment level until current
replication level is equal to original replication level and
performance goals are satisfied

50/57

Adaptive Resource Management (3)

3 If availability goals are still not satisfied

3.1 Move the task replicas to higher deployment levels

50/57

Adaptive Resource Management (3)

3 If availability goals are still not satisfied

3.2 If the performance conditions conflict, starting from higher
deployment levels, move gradually to lower levels and launch
replicas where availability and performance goals are fulfilled

50/57

Adaptive Resource Management (4)

When performance of the mission is less than the desired one

• Identify the tasks with affected response time

• Delete task replicas in the same deployment level without violating
availability goals

• If expected performance is still lower than the desired one

◦ Move task replicas to lower deployment level

◦ If availability conditions conflict, traverse from lowest deployment
level, move gradually to higher levels and decrease replication level
until availability and performance goals are fulfilled

51/57

Conclusions

• Mission-centric techniques to improve the security and fault
tolerance in Cloud computing

• Secure mission deployment techniques (allocation and
scheduling)

• Static and dynamic mission protection by network hardening

• Provide complementary fault tolerance support to the mission as a
service

54/57

Publications

Chapters in Books

• R. Jhawar, V. Piuri, “Dependability-oriented Resource Management Schemes
For Cloud Computing Data Centers,” in Handbook on Data Centers, S.U. Khan,
A.Y. Zomaya (eds.), Springer, 2015 (to appear)

• M. Albanese, S. Jajodia, R. Jhawar, V. Piuri, “Securing Mission-Centric
Operations in the Cloud,” in Secure Cloud Computing, S. Jajodia, K. Kant, P.
Samarati, V. Swarup, C. Wang (eds.), Springer, pp. 239-260, 2014

International Journals Articles

• R. Jhawar, V. Piuri, M. Santambrogio, “Fault Tolerance Management in Cloud
Computing: A System-Level Perspective,” in IEEE Systems Journal, pp.288-297,
June, 2013

• C. A. Ardagna, R. Jhawar, V. Piuri, “Dependability Certification of Services: A
Model-Based Approach,” in Springer Computing Journal, pp.1-28, October 2013

55/57

Publications

International Conferences and Workshops

• R. Jhawar and V. Piuri, “Adaptive Resource Management for Balancing
Availability and Performance in Cloud Computing,” in Proc. of 10th Int’l
Conference on Security and Cryptography, Reykjavik, Iceland, July 29-31, 2013

• M. Albanese, S. Jajodia, R. Jhawar, V. Piuri, “Secure Mission Deployment in
Vulnerable Networks,” IEEE Workshop on Reliability and Security Data Analysis,
Budapest, Hungary, June 24-27, 2013

• R. Jhawar, V. Piuri, and P. Samarati, “Supporting Security Requirements for
Resource Management in Cloud Computing,” in Proc. of the 15th IEEE Int’l
Conference on Computational Science and Engineering, Paphos, Cyprus,
December 5-7, 2012

• R. Jhawar, and V. Piuri, “Fault Tolerance Management in IaaS Clouds,” in Proc.
of the 1st IEEE-AESS Conference in Europe about Space and Satellite
Telecommunications, Rome, Italy, October 2-5, 2012

56/57

Publications

• C.A. Ardagna, E. Damiani, R. Jhawar, and V. Piuri, “A Model-Based Approach to
Reliability Certification of Services,” in Proc. of the 6th IEEE Int’l Conference on
Digital Ecosystem Technologies - Complex Environment Engineering, Campione
d’Italia, Italy, June, 2012

• R. Jhawar, V. Piuri, and M. Santambrogio, “A Comprehensive Conceptual
System-Level Approach to Fault Tolerance in Cloud Computing,” in 2012 IEEE
Int’l Systems Conference, Vancouver, BC, Canada, March 19-22, 2012

57/57

