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Outline of today’s presentation 

• Overview of Software Defined Radio and Cognitive Radio 

• Challenges and Motivations 

• Our Research Contributions 

• Conclusions 
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Introduction: Mobile Wireless 

Communication 
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Introduction: Software Defined Radio 

• Software defined radio (SDR) [1, 2] is a technology that has 

been proposed as a solution to seamlessly support the 

existing and upcoming wireless communication standards. 

• Main characteristics:  

– Flexible transmitter and receiver (transceiver) architecture, 

– Digital Signal processing is able to replace, as much as possible, 

analog processing to realize programmable radio functionalities, 

– Transceiver where the frequency band and radio channel 

bandwidth can be defined by software. 
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1. Mitola J., “The software radio architecture,” IEEE Communications Magazine,  vol. 33, no. 5, pp. 

26-38, May 1995. 

2. Buracchini E., “The software radio concept,” IEEE Communications Magazine, vol. 38, no. 9, pp. 
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Introduction: Channelization 

• Channelization is the process of extraction of single or 

more than one channels (frequency bands) of interest 

from the wideband input signal [4, 5].  
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4. Lee Pucker, “Channelization techniques for software defined radio,” in Proceedings of Spectrum 

Signal Processing Inc., Burnaby, B.C, Canada. 

5. Hentschel T., “Channelization for software defined base stations,” Annales des 

Telecommunications, vol. 57, no. 5-6, pp. 386-420, March 2002. 

Block diagram of channelization in SDR receivers 

Input Signal
Channel Filter/

Filter Bank

Extracted 
Channels at 

Output

It is the most computationally intensive block in the DFE – 

Operates at the highest sampling frequency. 



• SDR based cognitive radio (CR) targets the opportunistic 

usage of the radio frequency spectrum.  

• Proposed to solve ‘spectrum scarcity’ due to existing static 

spectrum allocation scheme. 

• CRs have the ability to sense and detect the current 

spectrum utilization, and change their behavioral and 

transmission characteristics dynamically so as to achieve 

efficient spectrum access.  
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6. Mitola J., Maguire G. Q., “Cognitive radio: Making software radios more personal,” IEEE Personal 

Commununications, vol. 6, no. 4, pp. 13–18, August 1999. 

7. Mitola J., “Cognitive radio for flexible mobile multimedia communications,” IEEE International 
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17 November 1999. 

8. Haykin S., “Cognitive radio: Brain-empowered wireless communications,” IEEE Journal on  

Selected Areas in Communications, vol. 23, no. 2, pp. 201- 220, February 2005. 

Cognitive Radios - Opportunistic Spectrum Utilization 
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Spectrum Opportunities for cognitive radios – Time-

varying spectral scenario 

Cognitive radios (secondary users/unlicensed users) utilize free 

bands (vacant bands /white spaces/holes) for communication in an 

opportunistic fashion when primary users (licensed users) are not 

using those bands. 



Spectrum Sensing 

• Spectrum sensing in CRs - the presence and (or) absence 

of signals of licensed users (called primary users) is 

detected in the wideband input frequency range in order to 

allow opportunistic access of the vacant frequency bands 

to the unlicensed users (called secondary users or 

cognitive radio users) [9]. 
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9. Ghasemi A., Sousa E.S., “Spectrum sensing in cognitive radio networks: requirements, 

challenges and design trade-offs,” IEEE Communications Magazine, vol. 46, no. 4, pp. 32-39, 

April 2008. 



Introduction: Channelization and 

Spectrum Sensing in CRs 

• Spectrum sensing is often done prior to channelization. 
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10. Yucek T., Arslan H., “A survey of spectrum sensing algorithms for cognitive radio applications,” 

IEEE Communications Surveys & Tutorials, vol. 11, no. 1, pp. 116-130, First Quarter 2009. 

11. Farhang-Boroujeny B., “Filter bank spectrum sensing for cognitive radios,” IEEE Transactions on 

Signal Processing, vol. 56, no. 5, pp. 1801-1811, May 2008. 
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Block diagram of channelization and spectrum sensing in cognitive radios 

• Digital filters and filter banks have potential applications in spectrum 

sensing and channelization.  [10, 11].  



Spectrum Sensing and Channelization in Military Radio 

time, t1 

time, t2 

fa1 fb1 fc1 fd1 fe1 

fa1 fb1 fc1 fd1 fe1 

 In military communications, the wideband signal will have time-varying 
frequency bands scattered across the spectrum. The locations of 
channels and channel bandwidths will change dynamically.  

The channelizer must be dynamically reconfigured to continue reception.  
Therefore, the center frequencies of the bandpass filter should be 
dynamically tuned to the new center frequencies with minimum 
computational overhead (low power) and high speed.  

This problem is not adequately addressed in the literature. Also real-time 
and accurate estimation of spectrum is an open research issue.  
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Channelization and Spectrum sensing in CRs 

Introduction: Channelization and 

Spectrum Sensing in CRs 



Filter banks for Spectrum Sensing & 

Channelization 

15 

SINGAPORE 

Filter Bank Complexity 
Group 

Delay 

Non-

uniform 

bandwidth 

subbands 

Control over 

bandwidth and 

location of 

each subband 

Per Channel 

approach 
Very high Low Yes Yes 

DFTFB [12] Low Low No No 

MPRFB [13] High Low Yes No 

FFB [14] Very low Very high No No 

• DFTFB: Discrete Fourier transform (DFT) based filter bank. 

• MPRFB: Modulated perfect reconstruction filter bank. 

• FFB: Fast filter bank. 

12. Vaidyanathan P. P., “Multirate digital filters, filter banks, polyphase networks, and applications: a 

tutorial,” Proceedings of the IEEE, vol. 78, no. 1, pp. 56-93, January 1990. 

13. Abu-Al-Saud W.A., Stuber G. L., “Efficient wideband channelizer for software radio systems using 

modulated PR filter banks,” IEEE Transactions on Signal Processing, vol. 52, no. 10, pp. 2807–

2820, October 2004. 

14. Lim Y.C., Farhang-Boroujeny B., “Fast filter bank (FFB),” IEEE Transactions on Circuits and 

Systems II: Analog and Digital Signal Processing, vol. 39, no. 5, pp. 316-318, May 1992. 



Challenges and Motivations 

• Channelizer is the most computationally intensive part of the 

digital front-end in SDR/CR receivers. 

• Channelizers in SDR/CR receivers have stringent area, power 

and cost specifications – Mobile handset constraints. 

• In multi-standard scenarios, the conventional technique of 

switching the operation among distinct receivers for different 

standards is not an efficient approach. 

• Reliable and fast spectrum sensing techniques with low 

implementation complexities are desired in CR receivers. 
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Our Selected Contributions 

 

 
1. Coefficient Decimation Method (CDM) for 

Realizing Very Low Complexity Variable 

(Reconfigurable) Digital Filters 
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Coefficient Decimation Method (CDM) 
Filter coefficients    :   h0   h1    h2    h3    h4    h5    h6    h7   h8 … hN 

 CDM-I by M=2        :   h0   0     h2    0      h4    0     h6   0    h8 … hN 

 CDM-II by M=2       :   h0   h2    h4   h6   h8 … hN 

 

•In CDM-I, if              denotes Fourier transform (FT) of the modal 

(prototype) filter coefficients, then FT of the modified filter 

coefficients is [16] 
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16. R. Mahesh, A. P. Vinod, “Coefficient decimation approach for realizing reconfigurable finite 

impulse response filters,” IEEE International Symposium on Circuits and Systems, ISCAS 2008, 

pp. 81-84, Seattle, USA, 18-21 May 2008. 

- Multi-band response with center frequencies at 2piK/M 



CDM: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN 

 

 

 

Frequency response: 
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CDM: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN 

CDM-I by M=2    :  h0   0     h2     0     h4   0    h6    0     h8   0     h10 … hN 

 
 

Frequency response: 
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CDM: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN 

CDM-I by M=2    :  h0   0     h2     0     h4   0    h6    0     h8   0     h10 … hN 

CDM-II by M=2   :  h0   h2    h4    h6    h8    h10 … hN 

 

Frequency response: 
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CDM: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN  

CDM-I by M=3    :  h0   0     0    h3    0    0    h6   0   0    h9   0   … hN 

 
 

Frequency response: 
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CDM: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN 

CDM-I by M=3    :  h0   0     0    h3    0    0    h6   0   0    h9   0   … hN 

CDM-II by M=3   :  h0   h3    h6    h9 … hN 

Frequency response: 
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We can obtain multi-

band (uniform 

bandwidth) magnitude 

responses as well as 

variable bandwidth 

frequency responses 

from a single fixed-

coefficient LPF using 

CDM I and II 

respectively. 



Contributions 

 

 

2. CDM based Filter Bank (CDFB) 
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Frequency Response Masking (FRM) for 

Designing Filters with sharp cut-off 

SINGAPORE 

15. Lim Y.C., “Frequency-response masking approach for the synthesis of sharp linear phase digital 

filters,” IEEE Transactions on Circuits and Systems, vol. 33, no. 4, pp. 357- 364, April 1986. 



CDM based Filter Bank (CDFB) 
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CDFB design procedure

Modal 
filter

design

CDM 
operations
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17. R. Mahesh, A. P. Vinod, “Low complexity flexible filter banks for uniform and non-uniform 

channelisation in software radios using coefficient decimation,” IET Circuits, Devices & Systems, 

vol. 5, no. 3, pp. 232-242, May 2011. 



CDFB: Design Example 
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Complementary filter response
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Masking Filter 1

Masking Filter 2
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CDFB vs DFTFB (Xilinx XC40150XV) 
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Design DFTFB CDFB 

Area (CLBs) Delay Area (CLBs) Delay 

FIR filter bank 2352/5184  32.7 1755/5184  20.5 

DFT 2350/5184  53.8 0/5184 0 

Full Design  4321/5184 51.6 2200/5184 25.4 

• CDFB offers area reduction of 49.09% and speed improvement of 50.78%  

over DFTFB. 



Contributions 

 

 

3. Decimation-Interpolation and 

Masking (DIM) based Channel Filter: 
Exploiting two degrees of freedom for 

enhancing filter programmability 
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Mode select for 

architectural 

reconfigurability 
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Architecture of modal filter. 

The reconfigurable channel filter. 

• Filter level reconfigurability: by changing I 

and D of the modal filter, to obtain D*I 

different subbands. (I=interpolation factor, 

D=decimation factor for CDM-II) 

• Architectural level reconfigurability: by 

selecting outputs Y1 and Y2 using Mux-3. 

• By exploiting both, we are able to obtain 

[D.I + (I+2)] distinct subbands [18]. 

DIM based Channel Filter 

31 

SINGAPORE 

18. Smitha K. G., A. P. Vinod, “A new low power reconfigurable decimation-interpolation and 

masking based filter architecture for channel adaptation in cognitive radio handsets,” 

Physical Communication, Elsevier, vol. 2, no. 1–2, pp. 47-57, March–June 2009. 



• Specifications of modal filter: passband edge 

fp = 0.1 and stopband edge fs = 0.125.  

• Following Nyquist criterion, we can note that 

the maximum value of D is 4, for normalized 

frequency range 0 to 0.5, where 0.5 = fsamp/2. 

• I = 4 for illustration.  
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Architectural level reconfigurability 

DIM based Channel Filter: Design 

Example 

I D fp fs 

[fmp , fms] of  

 masking  

filter 

[fmcp , fmcs] of 

complementary 

masking filter 

1 3 1 0.366 0.375 [0.366,0.5] [0.3,0.375] 

2 3 2 0.4 0.417 [0.4, 0.5] [0.266, 0.418] 

3 3 3 0.433 0.4583 [0.433,0.5] [0.233,0.458] 

4 4 1 0.275 0.281 [0.275,0.468] [0.225,0.281] 

5 4 2 0.3 0.3125 [0.3,0.438] [0.2,0.3125] 

6 4 3 0.325 0.344 [0.325,0.4062] [0.175,0.344] 

I D fp fs 

[fmp , fms] of  

 masking filter 
Nmask 

1 1 1 0.1 0.125 [0.1,0.5] 7 

2 1 2 0.2 0.25 [0.2,0.5] 10 

3 1 3 0.3 0.375 [0.3,0.5] 15 

4 1 4 0.4 0.5 [0.4,0.5] 32 

5 2 1 0.05 0.0625 [0.05, 0.4375] 8 

6 2 2 0.1 0.125 [0.1,0.5] 7 

7 2 3 0.15 0.1875 [0.15,0.3125] 19 

8 2 4 0.2 0.25 [0.2,0.5] 10 

9 3 1 0.033 0.0416 [0.033,0.2917] 12 

10 3 2 0.066 0.0833 [0.066,0.25] 17 

11 3 3 0.1 0.125 [0.1,0.5] 7 

12 3 4 0.133 0.166 [0.133 0.166] 99 

13 4 1 0.025 0.0313 [0.025,0.2188] 16 

14 4 2 0.05 0.0625 [0.05, 0.4375 8 

15 4 3 0.075 0.0938 [0.075,0.3125] 13 

16 4 4 0.1 0.125 [0.1,0.5] 6 

Filter level reconfigurability 
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DIM based Channel Filter: Design 

Example 

Per Channel 

approach 

DIM based 

channel filter 

Gate count 533,451 476,636 

Total power (mW) 421.3 396.5 

Total delay (ns) 16.71 17.035 

• The decimation-interpolation and masking based channel filter 

offers gate count reduction of 10.65% and power reduction of 

5.89% over the PC approach architecture. The real advantage is 

in it’s high frequency response flexibility! 

Implementation Results 



Contributions 

 

 

4. CDM-FRM based Filter Bank      

(CDM-FRM FB) 
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• Stage 1 consists of prototype filter Ha and complementary filter Hc. 

• The CDM-II decimation factor DII for prototype filter is varied from DIImin to DIImax. 

• Interpolation factor M is fixed. 

CDM-FRM FB: Stage 1 

Frequency

Frequency

Frequency

DII = DIImin

DII = DIImax

DIImin < DII < DIImax

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

CDM-II 
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19. S. J. Darak, A. P. Vinod and E. M-K. Lai, “A low complexity reconfigurable non-uniform filter bank 

for channelization in multi-standard wireless communication receivers,” Journal of Signal 

Processing Systems, Springer, vol. 68, no. 1, pp. 95-111, July 2012. 



CDM-FRM FB: Stage 1 
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Frequency

Frequency

Frequency

DII = DIImin

DII = DIImax

DIImin < DII < DIImax
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0 2 4 6 8

Frequency

Frequency

Frequency

DII = DIImin

DII = DIImax

DIImin < DII < DIImax

1 3 5 7

1 3 5 7
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• Stage 2 consists of two banks of fixed-coefficient masking filters, Bank 1 and Bank 2.  

• Masking filters extract the desired subband by masking the other subbands. 

• The number of masking filters are optimized using CDM-I. 

CDM-FRM FB: Stage 2 
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CDM-FRM FB 



CDM-FRM FB: Stage 2 
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• Single fixed-coefficient masking filter 

is used to extract bands 0, 4 and 8 as 

shown in figure. 

• Similarly , masking filters H3(z) and 

H4(z) are used to extract subbands 

from the complementary response. 

0 2 4 6 8
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Stage 2 - Bank 1 

Frequency responses of Stage 2 - Bank 1 
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( z ) 

H 2 
( z ) 
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( d ) 
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Per Channel 

approach 
DFTFB CDM-FRM FB 

Number of occupied 

slices 14334 11865 10157 

Power (mW) 1473 709 690 

Post-PAR minimum 

period (ns) 11.533 26.549 30.12 

• Number of slices occupied by the CDM-FRM FB is 29.14% lower than that 

of the PC approach and 14.4% lower than that of the DFTFB. 

• Power consumption of the CDM-FRM FB is 53.16% lower than that of the 

PC approach and 2.68% lower than that of the DFTFB. 

CDM-FRM FB: Implementation Results 



Contributions 

 

 

5. Improved Coefficient Decimation 

Method (ICDM) for variable filters and 

filter banks with enhanced flexibility  
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Recap: Coefficient Decimation Method 

(CDM) 

Filter coefficients    :   h0   h1    h2    h3    h4    h5    h6    h7   h8 … hN 

 CDM-I by M=2        :   h0   0     h2    0      h4    0     h6   0    h8 … hN 

 CDM-II by M=2       :   h0   h2    h4   h6   h8 … hN 

 

•In CDM-I, if              denotes Fourier transform (FT) of the modal 

(prototype) filter coefficients, then FT of the modified filter 

coefficients is 
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16. R. Mahesh, A. P. Vinod, “Coefficient decimation approach for realizing reconfigurable finite 

impulse response filters,” IEEE International Symposium on Circuits and Systems, ISCAS 2008, 

pp. 81-84, Seattle, USA, 18-21 May 2008. 



Modified Coefficient Decimation 

Method (MCDM) 

Filter coefficients    :   h0   h1    h2    h3    h4    h5    h6    h7   h8 … hN 

 MCDM-I by M=2     :   h0   0    -h2    0      h4   0   -h6   0    h8 … hN 

 MCDM-II by M=2    :   h0  -h2    h4   -h6  h8 … hN 

 

•In MCDM-I, if              denotes FT of the modal filter coefficients, 

then FT of the modified filter coefficients is [23] 
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23. Abhishek Ambede, Smitha K. G., A. P. Vinod, “A modified coefficient decimation method to realize 

low complexity FIR filters with enhanced frequency response flexibility and passband resolution,” 

2012 35th International Conference on Telecommunications and Signal  Processing, TSP 2012, 

pp. 658-661, Prague, Czech Republic, 3-4 July 2012. 



Improved Coefficient Decimation 

Method (ICDM): CDM + MCDM 

Filter coefficients    :   h0   h1    h2    h3    h4    h5    h6    h7   h8 … hN 

 CDM-I by M=2        :   h0   0     h2    0      h4    0     h6   0    h8 … hN 

 CDM-II by M=2       :   h0   h2    h4   h6   h8 … hN 

 MCDM-I by M=2     :   h0   0    -h2    0       h4    0  -h6   0    h8 … hN 

 MCDM-II by M=2    :   h0  -h2    h4   -h6   h8 … hN 
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24. Abhishek Ambede, Smitha K. G., A. P. Vinod, “An improved coefficient decimation based 

reconfigurable low complexity FIR channel filter for cognitive radios,” 2012 12th International 

Symposium on Communications and Information Technologies, ISCIT 2012, pp.22-27, Gold Coast, 

Australia, 2-5 October 2012 



ICDM 

• ICDM = CDM + MCDM 

 

• ICDM-I = CDM-I + MCDM-I 

– Different multi-band frequency responses with a center frequency 

resolution of π/M can be obtained, where M = decimation factor. 

 

• ICDM-II = CDM-II + MCDM-II 

– Variable lowpass and highpass frequency responses can be 

obtained.  
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Contributions 

 

 

6. ICDM-I based Channel Filter 
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ICDM-I: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN 

 

 

 

Frequency response: 
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ICDM-I: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN 

CDM-I by M=2    :  h0   0     h2     0     h4   0    h6    0     h8   0     h10 … hN 

 
 

Frequency response: 
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ICDM-I: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN  

CDM-I by M=2    :  h0   0     h2     0     h4   0    h6    0     h8   0     h10 … hN 

MCDM-I by M=2 :  h0   0    -h2    0      h4   0   -h6    0     h8   0   -h10 … hN 

 

Frequency response: 
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ICDM-I: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN  

CDM-I by M=3    :  h0   0     0    h3    0    0    h6   0   0    h9   0   … hN 

 
 

Frequency response: 
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ICDM-I: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN  

CDM-I by M=3    :  h0   0     0    h3    0    0    h6   0   0    h9   0   … hN 

MCDM-I by M=3 :  h0   0     0   -h3    0    0    h6   0   0   -h9   0   … hN 

 

Frequency response: 
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ICDM-I: Illustrative Example 
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ICDM-I vs CDM-I 

  CDM-I ICDM-I 

Modal filter order required Higher Lower 

No. of coefficient multiplications 

(Implementation complexity) 
Higher Lower 

Center frequency resolution of 

subbands (flexibility) 
2π/M π/M 

Stopband attenuation performance 

(for same order modal filter) 
Lower SA Greater SA 
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Contributions 

 

 

7. ICDM-I based FB 
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ICDM-I based FB 
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ICDM-I based FB design procedure

Modal 
filter

design

ICDM-I 
operations

Uniform 
subbands 
at output

Spectral 
subtraction

Complementary 
filter operation

Masking 
filters

25. Abhishek Ambede, Smitha K. G., A. P. Vinod, “A New Low Complexity Uniform Filter Bank based 

on the Improved Coefficient Decimation Method,” Radioengineering Journal, vol. 22, no. 1, pp. 34-

43, April 2013. 



ICDM-I based FB: Design Example 
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ICDM-I based FB block diagram
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ICDM-I based FB: Implementation 

Results 

  DFTFB CDFB ICDM-I based FB 

Number of occupied slices 20433 7032 5943 

Power (mW) 499 268 206 

Post-PAR minimum period 

(ns) 4.344 16.172 15.617 
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• Number of slices occupied by the proposed ICDM-I based FB is 70.92% 

lower than that of the DFTFB and 15.49% lower than that of the CDFB. 

• Power consumption of the proposed ICDM-I based FB is 58.72% lower 

than that of the DFTFB and 23.13% lower than that of the CDFB. 



Contributions 

 

 

8. ICDM-II based Channel Filter and FB 
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ICDM-II: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN  

 

 

 

Frequency response: 
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ICDM-II: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN 

CDM-I by M=2    :  h0   0     h2     0     h4   0    h6    0     h8   0     h10 … hN 

CDM-II by M=2   :  h0   h2    h4    h6    h8    h10 … hN 

 

Frequency response: 
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ICDM-II: Illustrative Example 

Filter coefficients:  h0   h1    h2    h3    h4    h5    h6    h7   h8   h9   h10 … hN  

MCDM-I by M=4 :  h0   0     0    0   -h4   0    0     0   h8   0    0   … hN 

MCDM-II by M=4:  h0   -h4    h8 … hN 

 

Frequency response: 
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ICDM-II: Spectral Subtraction 
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(a) Frequency response after CDM-II by M=2 (b) Frequency response of modal filter 

Resultant 

frequency 

response               

[(a) - (b)] 
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ICDM-II: Spectral Subtraction 
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(c) Frequency response after MCDM-II by M=4 (d) Frequency response after MCDM-II by M=1 

Resultant 

frequency 

response               

[(c) - (d)] 



ICDM-II based Channel Filter and FB 
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ICDM-II based channel filter/ FB design procedure

Modal 
filter

design

ICDM-II 
operations

Uniform and 
non-uniform 

subbands 
at output

Spectral 
subtraction

26. Abhishek Ambede, Smitha K. G., A. P. Vinod, “A low complexity uniform and non-uniform digital 

filter bank based on an improved coefficient decimation method for multi-standard communication 

channelizers,” Circuits, Systems, and Signal Processing (CSSP), Springer, DOI: 10.1007/s00034-

012-9532-9, Published online in December 2012. 
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ICDM-II based Channel Filter: Design 

Example 

65 

SINGAPORE 

Modal 

Filter 

ICDM-II by 

M=1 to M=5 
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Bluetooth: MCDM-II
by M=1

Zigbee: CDM-II by M=4

ICDM-II based Channel Filter: Design 

Example 
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Input signal during time interval t1 – t2 Input signal during time interval t2 – t3 

ICDM-II 

frequency 

responses 

required to 

extract above 

channels 
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4MHz bandwidth Zigbee channel
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1MHz bandwidth Bluetooth channel



ICDM-II based Channel Filter: Design 

Example 

CDM-II based 

channel filter 

ICDM-II based 

channel filter 

Largest decimation factor 

required Mmax  
10 5 

Worst case TBW 

increment 

10 times that of the 

modal filter’s TBW 

5 times that of the 

modal filter’s TBW 

Worst case SA reduction 
10 times that of  modal 

filter’s SA  

5 times that of  modal 

filter’s SA 
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• The order of the modal filter in the proposed ICDM-II based channel 

filter is 57.14% lower than that of the modal filter in the CDM-II based 

channel filter. 

24. Abhishek Ambede, Smitha K. G., A. P. Vinod, “An improved coefficient decimation based 

reconfigurable low complexity FIR channel filter for cognitive radios,” 2012 12th International 

Symposium on Communications and Information Technologies, ISCIT 2012, pp.22-27, Gold Coast, 

Australia, 2-5 October 2012 



ICDM-II based FB: Design Example 
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Frequency responses obtained by performing ICDM-II using M=1 to M=6 
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ICDM-II based FB: Design Example 

69 

SINGAPORE 

Input signal containing  

WCDMA, Zigbee and 

Bluetooth channels 

ICDM-II frequency 

responses required to 

extract above channels 
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Frequency response obtained after CDM-II with M=5 (for extracting WCDMA channel)

Frequency response obtained after MCDM-II with M=5 (for extracting Zigbee channel, Bluetooth CH 1)

Frequency response obtained after MCDM-II with M=6 (for extracting Bluetooth CH 1)

Frequency response obtained after MCDM-II with M=1 (for extracting Zigbee channel, Bluetooth CH 2)
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PDFB               

[27] 
ICDM-II based FB 

Largest decimation factor 

required Mmax  
12 6 

Worst case TBW 

increment 

12 times that of the 

modal filter’s TBW 

6 times that of the 

modal filter’s TBW 

Worst case SA reduction 
12 times that of  

modal filter’s SA  

6 times that of  modal 

filter’s SA 

• The order of the modal filter in the proposed ICDM-II based FB is 

95.67% lower than that of the modal filter in the CDM-II based PDFB. 



Conclusions 

• A coefficient decimation method (CDM) and an improved 

coefficient decimation method (ICDM) to obtain different 

lowpass, highpass and multiband frequency responses 

using a single lowpass prototype filter have been 

proposed.  

• Low complexity channel filters and filter banks (FBs) based 

on FRM, CDM and ICDM have been proposed for uniform 

as well as non-uniform multi-standard channelization. 
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Conclusions 

• The proposed techniques are characterized by low 

complexities and high flexibilities when compared with the 

other methods in literature. 

• Proposed filter banks also have potential applications in  

spectrum sensing and other areas (example: biomedical 

signal processing). 
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