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Nanometer Issues
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The “Moore”, the Merrier!

hd

¢ More Moore
Nano-Patterning for Extreme Scaling

Lithography Aware Physical Design

¢ A different kind of “Moore”
3D Integration

New devices/material/...

= Need synergistic design and technology co-
optimization for cross-layer resilience



What is Double Patterning?
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Dealing with Overlay in LELE

minimum Stitch Insertion

2) A bit more overlap
margin for stitch,
but area increases
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Overlay Compensation [Yang+, ASPDAC10]
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A Graph-Partitioning Based, Multi-
YObjective Decomposer

Decomposition Graph Construction [Yang+, ASPDAC10]

Constraint:
(A, A) and (E, E) are repulsive pairs.

Theorem : Stitch minimization problem is equivalent to the
min-cut partitioning of the decomposition graph

Extensions of the framework: to incorporate other
constraints and costs into graph partitioning, e.g., balanced

~ density, overlay compensation, and so on
7




Overlay Compensation & Density Balancing
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Triple Patterning

hd
\ ¢+ What's triple patterning lithography (TPL)?
» Extension of double patterning concept
» QOriginal layout is divided into three masks
» Triple effective pitch

+ Why TPL?
» Delay of next generation lithography (EUV, E-beam)
> Resolve conflicts of DPL
» Achieve further feature-size scaling (14nm, 11nm)

Conflicts

a a




LAPD Another LAPD

hd

¢ Double/multiple patterning layout
compliance/decomposition

¢+ Still something could go wrong!

¢ Lithography Aware Physical Design
(LAPD) =

¢ Litho Hotspot Detection
¢ Litho Friendly Design

» Hotspot Avoiding/Correction
» Correct by Construction/Prescription

10 Correction



Lithography Hotspot Detection

Layout Litho simulations

¢ Lithographic hotspots
> What you see (at design) is NOT what you get (at fab)
» Hotspots mean poor printability
» Highly dependent on manufacturing conditions
» Exist after resolution enhancement techniques

¢ Litho-simulations are extremely CPU intensive
» Full-blown OPC could take a week

» Impossible to be used in inner design loop
11




Various Approaches

hd

[Xu+ ICCADO7]
[Yao+ ICCADOS,
[Khang SPIE06],
etc.

Pattern/Graph Matching

¢ Pros and cons

> Accurate and fast for known

patterns

> But too many possible
patterns to enumerate

» Sensitive to changing
manufacturing conditions

» High false-alarms

SVM [J. Wuu+ SPIEQ9]
[Drmanac+ DACO09]
Neural Network Model
[Norimasa+ SPIEQ7][Ding
+ ICICDT09]

Regression Model
[Torres+ SPIEQ9]

Data Mining/Machine Learning

¢ Pros and cons

¢+ Good to detect unknown or
unseen hotspots

¢ Accuracy may not be good for
“seen” patterns (cf. PM)

» Hard to trade-off accuracy and
false alarms

12



A New Meta-Classification Paradigm

hd
| Pattern Matching Methods Machine Learning Methods
Good for detecting previously Good for detecting new/previously
known types of hotspots unknown hotspots

A New Unified Formulation (EPIC)
Good for detecting all types of hotspots

with advantageous accuracy/false-alar
Meta-Classifier)

¢+ Meta-Classification combines the strength of different
types of hotspot detection techniques

[Ding et al, ASPDAC 2012]
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Components of Meta-Classifier Core

T
/ Meta-Classifier Core \
Critical Pattern/ || Base Weighting Functions
Feature Classifier || and Decision
Extraction Decision Parameters

¢ Base classifier results are first collected

+ Weighting functions to make the overall meta
decision (e.g., quadratic programming)

¢ Threshold with accuracy and false-alarm trade-off

14



False-alarm Rate and Accuracy
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AENEID Router [Ding+, DAC’11]
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‘ ‘ [ Routing Path

[Inltlallze Lagrangian Multlpller Prediction Kernel

l . Hotspot
D

E Solve the MCSP Problem etection Kernel

topping criteriz solution
Satisfied?

;'/iUpdate Layout Fragmentation Database:

— Update Lithography Cost : litho(e) f

Update Lagrangian Multiplier

¢ Using the machine learning models, we built a new
detailed router AENEID to avoid hotspot patterns

16



Machine Learning for Placement
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‘ [ Circuit Netlist |
¢+ Data mining and extraction - * -
. 2. Single GP lIteration <
based on not just graph but
also physical information 0 no
¢+ We can extract data-path yes
like structures even for 3. High-Dimensional Data Extraction N
“random” logics y .
o _ 4. Cluster Classification and Evaluation 1. Trained
¢+ Use them to explicitly guide 7 Data
p|acement 5. ILP Based Bi’i-stack Selection s
¢ Very gOOd results obtained 6. Datapath Aware Single GP lteration |«

cf. other leading placers like
simPL, NTUPlace, mPL,
CAPO

[Ward+, DAC’ 12]
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Abstraction to Logic Synthesis & Above?

hd

¢+ Can we further extend the abstraction up to logic
synthesis?

» Not just lithography hotspot, but other hotspots such
as reliability metrics including BTI, oxide breakdown

¢+ Machine learning to raise the abstraction
¢ NSF/SRC FRS program (started April 1, 2003)

» E.g., Deming Chen and | have a collaborative project
across lower level PD to high level synthesis

¢+ NSF/SRC/DFG Cross-Layer Resilience
Workshop in Austin, July 11 and 12

18



Extreme Scaling and Beyond
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¢

)

>

)

¢ Vertically — 3D IC integration



' Thermal/Mechanical Stress

hd
Material CTE in 10°/K at 20°C
Si 3 CTE : Coefficient of thermal expansion
W 4.5
Cu 17

TSV: 250 °C ~400 °C process (Higher than operating temperature)
Since Cu has larger CTE than Si = tensile stress in Si near TSV.

< Tensile stress >

Cu TSV

Silicon

FEA simulation structure of a single TSV
# variables: 400K, Memory: 2GB
runtime: 40min

20



Stress => Variability/Reliability
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Lateral Linear Superposition [ECTC'11, DAC11]
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¢ Full-chip stress analysis considering multiple TSVs
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Chip-Package Co-Analysis of Stress

hd
+ FEA simulation structures oum
—
Back metal —» «5Um underfill . H-bump 20um¢
substrate TSV 30um I I TSV 30um I
BEOL device layer device layer
(a) TSV only (b) TSV + p-bump
. H-bump  20um ¢
30umI
layer
underfill 100um
(c) TSV + pkg-bump (d) TSV + p-bump + pkg-bump

» All structures undergo AT = -250°C of thermal load
(Annealing/reflow 275°C — room temperature 25°C)

[Jung et al, DAC’12]



(Lateral &) Vertical Superposition
Y

¢ Stress components are added up “vertically”

stress (MPa)
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' Interactive Stress & Modeling

hd
¢ Linear superposition:

> Consider the stress contribution of TSV separately
> May not be accurate enough for very dense TSVs with BCB liner

¢+ Semi-analytical model developed [Li and Pan, DAC’13]
> Still run fast
> Can reduce the error by 50%
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Reliability/Variability Impact of Stress

1. Von Mises

Reliability

2. Crack: Energy
release rate (ERR)

3. Mobility/ V,,
variation of MOS

* \/on Mises Yield is
function of stress tensor

(MPa)
l 350

320
290
260

230
200

h170
o B

(a) Von Mises stress with TSV array

(b) Von Mises stress with three TSVs

.

J

» TSV stress affects
ERR of TSV structure

—> aggravate crack
shrinking

:initial crack
ngth

rack front

(a) Side view
liner

substrate

(b) Top view

» TSV stress changes
mobility of hole/electron
- timing, V, variation

/

(b) Electron mobility variation

.

[J. Mitra et al., ECTC’11]

[M. Jung et al., ICCAD11]

[J. Yang et al., DAC’10]




From Stress to Reliability

Y

~+ Von Mises Reliability Metric
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¢ Physical meaning
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If o, > yielding strength,
deformation will be permanent
and non-reversible

Yielding strength
- Cu: 225 ~ 600 MPa
- Si: 7,000 MPa



Wide 1/0 3D DRAM
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underneath TSV arrays 200um apart from TSV arrays

von Mises stress distribution (MPa)
780-810 810-840 840-870 870-900 900-930
(@) 30 114 52 220 608

(b) 182 842 0 0 0
[Jung et al, DAC’12]




TSV Interfacial Crack
hd

Id: initial crack length liner

crack front

substrate

(a) Side view (b) Top view

« Cu shrinks faster than Si under negative thermal load (AT = -250°C)
« Model through Energy Release Rate (ERR)

« Full chip model with design-of-experiments of different layout styles
and multiple TSV structures

[Jung et al, ICCAD’11]



Full-Chip Crack Analysis and Study

¢ Regular vs. irregular TSV arrays
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Stress Effect on Mobility & Current

hd

' CMOS (Stress: 200MPa, R=r) [Yang+, DAC’ 10]

NMOS: 0.5 Ap (Alds:+1.5%)
PMOS: 0.6Ap (Alds:+1.8%)

Cmos I \
1

NMOS: 0.75Ap (Alds:+2.25%)
PMOS: -0.1Ap(Alds:-0.3%)

Cmos I \

NMOS: Ap(Alds:+3%)
PMOS: -Ap(Alds:-3%) FS corner

Cmos I]

Cell characterizations
based on distance and
orientation are needed

31



Stress Aware Design FIOW [vang+, bac' 10;

hd
‘ Pre-placed TSV location )l Stress estimation induced by TSVs

\ 4

Mobility change (Ap/M) calculation

A 4
> Cell characterization with mobility
(Cell name change in Verilog)

Verilog netlist

\ 4

Stress aware Verilog netlist

\ 4

Verilog, SPEF merging for 3D STA

L7l Ll e 3D Timing Analysis with
timing with different : -
1 PrimeTime
mobility

\ 4

Critical gate selection

A

Optimized layout TSV stress aware layout
with TSV stress optimization




Stress-Aware ECO

Y
Original cell placement After cell perturbation

Rising critical
optimization
with
hole contour

Falling critical
optimization
with
electron contour
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Nanophotonics On-chip Integration

hd

Electro-Optical Electro-Optical
Interconnect Interconnect

Planning Synthesis

¢+ Holistic Optical Interconnect Planning and Synthesis
» Co-design and optimization with electrical interconnect

» Optical interconnect library (OIL) ) [Ding+, DAC'09,
SLIP’09, and available http://iwww.cerc.utexas.edu/~ding/oil.htm]

» WDM, partitioning, routing, ...
+ Nanophotonics is a very active field
¢+ Many new research problems for CAD community!




Case Study 1: O-Router [Ding et al, DAC’09]
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- wafer-to-wafer TSV

uﬁ = optical and electrical

data conversion

Metal L ayers

dedjeated photonic layer

optical wavegui
Metal L ayers pin4ﬂ %
pin3ﬂ ‘ Si

DN
e
Metak'L ayers

(b)
¢+ Objectives: performance (throughput, latency, power),

cost ($3, economics)

¢ Constraints (SNR, signal integrity, reliability, system-level
regs.)

pinl




Case Study 2: GLOW [Ding et al, ASPDAC’12]

hd

‘ Global router for low-power thermal-reliable optical
Interconnect synthesis using Wavelength Division
Multiplexing (WDM)

Minimize Power /Synthesis Engine \/ Max{inter. Delay} <= A
- GLOW for On-Chip =
g;a;;’:)dr'v'”g Optical/Electrical e 1aX{SNRL <= B
 Interconnect /iMin{Ther. Reliability} >= C

l

Circuit implementation

Min{Pathend power} >= D
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Conclusion

hd

‘ Optical lithography still pushing ahead for 14nm,
11nm, 7nm =>» extreme scaling

Multiple patterning, EUV, DSA, and hybrid lithography

Design enablement with lithography capability co-
optimization from mask to physical synthesis (and

logic/high-level synthesis?)
Cross-layer resilience
Horizontal scaling = Vertical scaling: 3D-IC
Reliability/Variability issues
New material/devices = new CAD paradigms and
tools
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