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• Motivation
‒ Deployment Scenarios and Applications require high performance but 

constrained HW 
‒ Heterogeneous manycore systems are complex

• Heterogeneous Manycore
• Wireless, 3D and Photonics
• EDA challenges
• Scalable ML-Based EDA
• Heterogeneous manycore for ML

• Heterogeneity enables efficient power management
• NoC and VFI
• Evolution of DoC
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Why Many-Core Chips?

• Explosive computational power
• Scientific applications
Ø Weather prediction, Astrophysics
Ø Bioinformatics, forensics
Ø Language processing

• Consumer electronics 
Ø Graphics, Animation

The era of single processor systems is over
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The era of Many-Core systems

How to keep up with demands on 
computational power?
• Can not scale clock frequency
• Solution: Increase number of cores 

parallelism
§Mass Market production of Intel, AMD 

dual-core and quad-core CPUs
§Custom Systems-on-Chip (SoCs)

• Many Core chips from Tilera for 
networking, cloud computing and 
multimedia applications.

Adapteva’s
Epiphany

‘Number of cores will double every 18 months’
- Prof. A. Agarwal, MIT, founder of Tilera Corporation

Single-chip 
Cloud 
Computer

Intel 80 core 
processor



Big Data Revolution

5

GenomicsGraph AnalyticsMachine Learning

Highly compute- and data-intensive!
High performance and low-power platforms are needed to enable them



Traditional Hardware for Big Data Applications
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• Move the GPUs on to the chip!

• Higher data compute + lower power using Network-on-Chip 
(NoC)

CPU

In
te
rc
on

ne
ct

CPU
CPU
CPU
CPU

Multi-core CPUs

GPUs are great for 
data-parallel 
applications!

Off-Chip Interconnects 
are Costly! Delay + 

Energy

PCIe

CPU + External GPU Systems

Bring GPUs 
closer to the 

CPUs

Multi-Core CPU

Heterogeneous CPU-GPU Systems

[Credit: NVIDIA]

NVIDIA Tegra Xavier (9 
CPUs + 512 GPUs)



Motivation: Communication Backbone
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• Massive multicore processors are enablers for ICT innovations 

• Need for holistic power optimization and management

• Energy across the layers

“We need research on how to minimize 
communication, since energy is largely spent in 

moving data”

“21st Century Computer Architecture" commissioned by the Computing
Community Consortium

NSF Workshop on Cross-Layer Power Optimization and Management (Feb ‘12)
NSF Workshop on achieving ultra-low latencies in wireless networks (March ‘15)
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Moving a bit across die

Moore’s Law:

Global on-chip movement of data is very power hungry!!

20
m

m

20mm
On-Chip: 
Not Scaling

Source:
Exascale Roadmap
Meeting, Dec. 2009
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Wireless/RF
Interconnects

Optical Interconnects

Three Dimensional
Integration

Novel Interconnect Paradigms for Multicore designs

High Bandwidth and 

Low Energy Dissipation



Why not Mesh?
• Mesh has multi-hop nature
– Higher latency and energy for bigger system sizes

• Skewed traffic in heterogeneous architectures with CPU + GPU
– Many-to-few-many communication around the LLCs
– Few links become traffic hotspots and create bandwidth bottlenecks in Mesh 

for heterogeneous architectures 

• This necessitates the investigation of more complex NoC designs
– Needs to account for specific traffic characteristics and system requirements

10
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Designing better NoC: Natural Complex Networks

§ Natural Complex Networks
§ Brain
§ Microbes
§ Social Networks

§ Small-World/Exponential graphs
§ Attacks

§ Scale-free graphs
§ Random Failures
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Small World and NoC

Umit Ogras and Radu Marculescu, “It’s a Small World After All”: NoC Performance Optimization 
Via Long-Range Link Insertion”, TVLSI, vol. 14, No. 7, July 2006
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Power-Law based Small World Network

§ Power-law based connectivity

§ Many short-range local links
§ Conventional Wireline links

§ A few long-range shortcuts
§ Utilize emerging interconnects 

How to efficiently distribute the shortcuts?
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WiNoC Configuration

§ Wireless links more efficient for long range communication
§ Add few long-range shortcuts

§ Hybrid wired-wireless NoC design 

S. Deb, A. Ganguly, P. P. Pande, B. Belzer and D. Heo, "Wireless NoC as Interconnection Backbone for Multicore 
Chips: Promises and Challenges," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, 
no. 2, pp. 228-239, June 2012.



How does it look in 3D?

• Physical design space is combinatorial by nature
• Placement of routers, cores and links ensures NoC 

performance level

15

Challenges: 1. How to place the routers, cores and links ?        
2. How to map the tasks?
3. How to explore optimized link placement efficiently?

Link Distribution

Routers Cores

Communication fabric: 
Network on chip



Machine learning in Design Optimization
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• Space of feasible NoC Designs is combinatorial
– Cannot perform exhaustive search, specifically for bigger system size

• Key Insight: Intelligent exploration of the design space to 

quickly find (near)-optimal SW-NoC design

• How to explore intelligently? via Machine Learning



Design Optimization: STAGE Algorithm
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Base	Search
Search	to	optimize	
original	objective,	O

Meta	Search
Search	to	optimize	
learned	evaluation	

function,	E

Good starting states 
to find better 

solutions

New training data to 
improve the evaluation 

function

»E is the search control knowledge that will improve based on 

our search experience

E is the search control knowledge that will improve 
based on the search experience via machine learning



3D NoC Optimization: STAGE Instantiation
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Base	Search
Search	to	optimize	
original	objective,	

O

Meta	Search

Search	to	optimize	
learned	evaluation	

function,	E

Good starting states 
to find better 

solutions

New training data to 
improve the evaluation 

function

• Regression learning algorithm 
– Need fast training time and testing time -- they contribute to the overall 

optimization time

• We employed Regression Tree Learner (via WEKA package)

– Regression tree training is fast; and allows us to learn accurate predictors 



Performance Evaluation: STAGE vs. SA and GA
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• STAGE converges faster than Simulated Annealing (SA) 
and Genetic Algorithm (GA)

• For a given time budget, solution quality of STAGE is better 
than SA or GA
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S. Das; J. R. Doppa; P. P. Pande; K. Chakrabarty, "Design-Space Exploration and Optimization of an Energy-
Efficient and Reliable 3D Small-world Network-on-Chip," TCAD, 2016.



Design Challenges: Heterogeneity

• Multiple Quality of Service (QoS) requirements

• Disparate natures of CPU and GPU 
architectures
– Conflict with one another
– CPU: Latency sensitive
– GPU: Throughput sensitive

20

Source: blogs.nvidia.com
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W. Choi et al., On-Chip Communication Network for Efficient Training of Deep Convolutional Networks on 
Heterogeneous Manycore Systems, in IEEE TC, vol. 67, no. 5, pp. 672-686, 2018.



6/7/22 21

Mesh:	Candidate	Solution	Tradeoffs
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• Emerging interconnects like wireless and Monolithic 3D (M3D)
– More dimensions to NoC design in future platforms

• Like increased heterogeneity in compute, increased 
heterogeneity in communication

– Wireless: Different data rates, power consumption than conventional 
wires; Heterogeneity among links

– M3D: Process Variations between layers; Heterogeneity among layers

Heterogeneity: Wireless, M3D

22

Second-layer

Second-layer

ILD (100nm SiO2)

Handle Bulk (75 μm)

MIV

Handle Bulk (75 μm)

Bonding Layer (2.5 μm BCB*)

Die Substrate (30 μm)
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TSV

ILD (100nm SiO2)

First-layer

*Benzocyclobutene (BCB)

TSV-based 3D IC Monolithic 3D IC



• Design complexity will increase in future architectures
– Increasing system size
– More heterogeneity

• Bigger search space
– Difficult to find good solutions

23

S. Das et al., “Monolithic 3D-enabled High Performance and Energy Efficient Network-on-Chip,” ICCD, 2017.
R.G. Kim et al., “Machine Learning and Manycore Systems Design: A Serendipitous Symbiosis,” IEEE Computer, 
2018.

System size increases 

⋅⋅⋅
CPU

CPU

FPGA

ASIC

GPU

GPU

GPU

GPU
Heterogeneity increases 

Heterogeneous NoC Design Optimization: Challenges



3D Heterogeneous Systems

• We can incorporate multiple 
types of cores or tiles into a 3D 
heterogeneous system
– CPU (latency centric)
– GPU (throughput centric)
– Last level cache (LLC): consists of 

L2 cache slice and access to main 
memory

• Connect tiles on the same die 
using a normal NoC

• Connect dies using TSVs
• Increase scalability and reduce 

network diameter

24

CPU TILE LLC TILEGPU TILE

CPU
L1

Router

GPU
L1

Router

Memory
Controller

L2 BANK

Router

DDR SDRAM
DDR SDRAM



CNN Training using 3D Heterogeneous Architectures

• We can utilize these 3D heterogeneous systems to speed up CNN training
– 30% less hops (2D Mesh vs 3D Mesh)

25

NoC Congestion!

Thermal Hotspots!
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3𝐷𝐻𝑒𝑡!"#$:	Thermal	Issues

3D-ICE 
Thermal 

Sim

Low	Temp	
(43ºC)

High	Temp	
(80ºC)

Thermal hotspots !!

• Ignoring thermal constraints leads to significant 
temperature hotspots



•Machine learning and big-data analytics can be deployed 
anywhere
– Cloud, automotive embedded system, IoT, etc.
– Each of these have drastically different design constraints 
– Demands for computing platforms with higher performance in 

highly constrained scenarios have led to more specialized systems
• NEED to abandon design solutions that consider only a single 

aspect and pursue designs that jointly consider power, reliability, 
and the performance of individual components

Multi-Objective Optimization (MOO) is Necessary!

27

Cloud: Performance and Thermals
Embedded System: Real-time 

constraints and Reliability



• Given:
– The mix of CPU/GPU/LLC tiles
– The number of planar links
– System configuration

• Optimize the placement of:
– CPU/GPU/MC tiles
– Planar Links

• Three objectives (Example)
– CPU Communication Objective
– GPU Communication Objective
– Thermal Objective

General Problem Formulation (MOO)

28

4 24 8 LLCCPU GPU

4 24 8

48
Link

System Configuration
3x3x4

Given system 
configuration. 

Optimize system 
for app
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Problem Formulation

• GPU Communication Objective:
– GPU communication is more reliant on network throughput
– minimize %𝑈 (Avg. link util.) and 𝜎 (Std. dev. Link util.)
– This also helps balance the MC-Core traffic!

• CPU Communication Objective:
– Observation: CPUs communicate with MCs and among 

themselves
– CPUs are sensitive to communication latency: minimize traffic-

weighted CPU-MC and CPU-CPU hop-count (𝐻)

• Thermal Objective:
– 3D systems have higher power densities that need to be 

accounted for.
– Estimate thermal effects using power and thermal resistivity (T)



3DHet: Optimizing 3D NoCs for Accelerating CNN Training

30

• Want to design the system while simultaneously 
looking at GPU, CPU, and Thermal objectives

• AMOSA (Archived Multi-Objective Simulated 
Annealing)

• Creates set of candidate solutions 𝐷∗

• 𝐷∗ = 𝐴𝑀𝑂𝑆𝐴 𝐷, 𝑂𝐵𝐽 = Ū 𝑑 , 𝜎 𝑑 , 𝐻 𝑑 , 𝑇 𝑑
s.t. ∀𝑖: 𝐿" ≤ 𝑘#$% (max # of links for a 

router)
∀𝑖, 𝑗 ∈ 𝑑: 𝑃𝑎𝑡ℎ 𝑖, 𝑗 = 1 (Comm. Path exists)

• Choose best solution based on detailed 
simulation

• <𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛&∈(∗𝐸𝐷𝑃 𝑑
• s.t. 𝑇 <𝑑 ≤ 𝑇′ (minimize EDP within temp. 

constraint)
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BK Joardar et al., “3D NoC-Enabled Heterogeneous Manycore Architectures for Accelerating CNN Training: 
Performance and Thermal Trade-offs,” in NOCS, 2017.
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3𝐷𝐻𝑒𝑡!"#$: Optimizing performance

Performance-only
optimized 3D NoCs

(3DMeshperf /3DHetperf)

3DMeshperf  or 3DHetperfRandom starting network

𝒇(µ, 𝝈,𝑯)
MOO Solver

Constraints
e.g., kmax
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3𝐷𝐻𝑒𝑡*+"#,: Balancing performance and thermal

3DMeshtherm  or 3DHetthermRandom starting network

𝒇(µ, 𝝈,𝑯, 𝑻)
MOO Solver

Constraints
e.g., kmax

Performance-Thermal joint
optimized 3D NoC
(3DMeshtherm /3DHettherm)
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3DHetperf 3DHettherm

• Much lower hotspots observed 
• GPUs pushed down towards the sink
• Approximately 18ᵒC	improvement	in	maximum	
temperature	compared	to	3DHetperf

𝟑𝑫𝑯𝒆𝒕𝒑𝒆𝒓𝒇 vs.	𝟑𝑫𝑯𝒆𝒕𝒕𝒉𝒆𝒓𝒎:	Thermal

Low	Temp	
(43ºC)

High	Temp	
(80ºC)
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𝒑𝒆𝒓𝒇 vs.	𝒕𝒉𝒆𝒓𝒎:	NoC	Hop-Count	and	Utilization
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• Average inter-router Hop count
• 3DHet reduces average inter-router hop count compared to 3D Mesh

• Link utilization 
• More than 10% links in 3DMeshtherm have 2X higher link utilization than the 

mean while some carry greater than 3X the mean link utilization.
• Traffic more evenly distributed in proposed 3DHettherm compared to 

3DMeshtherm, hence higher throughput
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• Popular MOO algorithms like NSGA-II and AMOSA can 
find Pareto front 

• HOWEVER, as design complexity increases, they will 
take longer and longer to find near-optimal solutions

– Increasing system size
– More heterogeneity

35

S. Das et al., “Monolithic 3D-enabled High Performance and Energy Efficient Network-on-Chip,” ICCD, 2017.
R.G. Kim et al., “Machine Learning and Manycore Systems Design: A Serendipitous Symbiosis,” IEEE Computer, 
2018.

System size increases 

⋅⋅⋅
CPU

CPU

FPGA

ASIC

GPU

GPU

GPU

GPU
Heterogeneity increases 

ML inspired techniques should be used

3D Heterogeneous NoC Design: ML revisited?



• Pareto Hyper Volume (PHV) measures solution quality
• Key Idea: Learn evaluation function to find better 

solutions in less time

MOO-STAGE: ML to solve MOO problems

36

B. K. Joardar et. al., "Learning-Based Application-Agnostic 3D NoC Design for Heterogeneous Manycore Systems,"
in IEEE TC, vol. 68, no. 6, pp. 852-866, 1 June 2019
J.A. Boyan and A.W. Moore, “Learning Evaluation Functions to Improve Optimization by Local Search,” JMLR, 2000.

Good starting states to 
find better solutions

New search trajectory to 
improve the evaluation function

Meta Search 
Learn evaluation function and 

search for promising starting states

Local Search 
Search guided by 𝑂", 𝑂$, … , 𝑂&

from starting state

Potential 
starting 
states

Evaluation 
Function

Good
Poor
Poor…

Pareto Hypervolume (PHV)

Power

Th
ro

ug
hp

ut

A possible 
solution

Improves 
PHV



• 9x Speedup in optimization time

• Evaluation function (E) prediction error quickly moves 
towards 0

• Better pareto hypervolume (PHV) [higher] results in 
lower thermal delay product (TDP)

MOO-STAGE: Performance

37
B.K. Joardar, “Learning-based Application-Agnostic 3D NoC Design for Heterogeneous Manycore Systems, IEEE
TC, 2019.
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• MOO-STAGE speed-
up over AMOSA 
improves as 
objectives increase

• AMOSA never found 
the best solution 
like MOO-STAGE for 
three- and four-
objectives

MOO-STAGE: Performance (Cont)

38

Applications Two-obj Three-obj Four-obj
BP 1.5 6.4 12.5

BFS 2 5 9.4
CDN 1.5 5.8 13.7
GAU 1.3 6 7.2
HS 1.5 8 10

LEN 2 5.8 14.2
LUD 1.3 5 10
NW 1.5 5 11.4
KNN 1.2 6.4 7.5
PF 1.2 5 11.4

Average 1.5 5.84 10.7

MOO-STAGE speed-up over AMOSA 

Rodinia Benchmark Suite



L. Song et al., "PipeLayer: A pipelined ReRAM-based accelerator for deep learning", HPCA, 2017.
D. Fujiki, S. Mahlke, and R. Das, “In-Memory Data Parallel Processor,”. In Proc. of ASPLOS, 2018. NY, USA, 1-14.

Slide 39 of 28

ReRAM	vs	GPU	for	deep	learning

• ReRAMs more efficient for matrix multiplications
• High performance

• O(1) time complexity
• Energy efficient
• Low area

C11

C12 C22

C21 V1

V2



Slide 40 of 28

Challenges	with	existing	architectures

• Low Precision
– Accuracy Loss
– Unstable training

• Lack of Normalization
– Requires full-precision

• Temperature dependence
– Change in resistance
– Thermal noise
– Low noise margin

A. Shafiee et al., "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in 
Crossbars," 2016 ACM/IEEE 43rd ISCA, Seoul, 2016, pp. 14-26.
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Low	precision	and	lack	of	Normalization

No Normalization support With Normalization support

𝑤4"5 = 𝑤678 − α ∗ ∆𝑤

• Gradients too small without normalization
• Low precision cannot represent too small/large values

• Gradients rounded to zero
• No (or minimal) weight update

• No meaningful learning



• Resistance changes 
with temperature

• Reduces noise margin

• Thermal noise can lead 
to misinterpretation

• Noise increases with 
frequency

Thermal	challenges

Z. He et. al., "Noise Injection Adaption: End-to-End 
ReRAM Crossbar Non-ideal Effect Adaption for 
Neural Network Mapping," 2019 DAC, Las Vegas, 
NV, USA, 2019, pp. 1-6



AccuReD:	ReRAM/GPU-based	heterogeneous	
architecture

• Normalization:
• Full precision GPUs

• Low Precision:
• Stochastic rounding

• Temperature:
• Thermal reference cell
• Performance-Thermal aware 

mapping
• M3D integration

• B. K. Joardar, J. R. Doppa, P. P. Pande, H. Li and K. Chakrabarty, 
"AccuReD: High Accuracy Training of CNNs on ReRAM/GPU 
Heterogeneous 3-D Architecture," in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 40, no. 5, pp. 
971-984, May 2021

• B. K. Joardar, A. Deshwal, J. R. Doppa, P. P. Pande and K. Chakrabarty, 
"High-Throughput Training of Deep CNNs on ReRAM-Based 
Heterogeneous Architectures via Optimized Normalization Layers," in 
IEEE Transactions on Computer-Aided Design of Integrated Circuits 
and Systems, vol. 41, no. 5, pp. 1537-1549, May 2022
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Performance	and	Accuracy

• AccuReD achieves GPU-level accuracy
• Normalization, performance-thermal aware mapping, M3D

• Up to 15X speed-up compared to GPUs
• ReRAMs are more efficient as dot-product accelerators
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Manycore	design	using	TSV

• Conventional hardware design is planar
• Sub-optimal power-performance

• Planar logic blocks stacked physically to create 3D



B. Gopireddy and J. Torrellas, “Designing vertical processors in monolithic 3D,” in Proc. 46th Int. Symp. Computer 
Architecture (ISCA), Phoenix, AZ, USA, Jun. 2019, pp. 643–656.

Manycore	design	using	M3D

• M3D enables 3D hardware blocks
• Less area, power
• Better performance

• Logic blocks can span multiple tiers
• How to optimize the placements?



• Routers extended over multi-tiers

• Lower average hop count, shorter communication paths

• MIVs more energy-efficient than TSVs

NoC Design Using M3D
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D. Lee et al., “Performance and Thermal Tradeoffs for Energy-Efficient Monolithic 3D Network-on-Chip,” ACM
TODAES, 2018.



MOO-STAGE	for	M3D

• Design space of M3D larger than TSV
• More design options

• MOO-STAGE performs even better 
• 5.48X speed-up in TSV
• 7.38X speed-up in M3D
• AMOSA needs even more time to find good solutions
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M3D	vs	TSV:	Performance

• M3D-Het is 12.3% faster than TSV-Het
• M3D-based designs have lower wirelengths

• Lower critical path delays
• Higher clock frequency can be used

B. Gopireddy and J. Torrellas, “Designing vertical processors in monolithic 3D,” in Proc. 46th Int. Symp. Comput. 
Archit., Phoenix, AZ, USA, Jun. 2019, pp. 643–656.



S. K. Samal et. al., "Fast and accurate thermal modeling and optimization for monolithic 3D ICs," 2014 51st 
ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, 2014, pp. 1-6.
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M3D	vs	TSV:	Temperature

• M3D-Het is 19ᵒC cooler than TSV-Het
• M3D-based designs are power efficient

• Lower wirelength 
• Fewer number of buffers

• Absence of bonding material
• Smaller dimensions

TSV M3D



M3D-based	PIM
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• Good for memory intensive applications
• Memory closer to computation

• Conventional TSV-PIM limited to one logic layer
• DRAM retention falls drastically beyond 85ᵒC

• Higher refresh rates offset any benefit
• M3D allows stacking multiple logic layers
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M3D-PIM:	Thermal	and	Performance

• M3D allows up to four logic layers
• Not possible using TSV

• Up to 7X speed-up for k-mer counting
• Evaluated using real-world gene sequences
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Heterogeneous NoC and Power Management

§ Enabling architecture for cross-layer power management
§ Less utilization of wireline links

§ Enables more opportunity for DVFS
§ Voltage/Frequency Islands

§ Communication between islands using wireless, 3D or 
Photonics

§ Better energy and thermal profiles
§ No latency penalty compared to a standard mesh
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VFI-based design

Courtesy: Prof. Radu Marculescu, CMU

Wireless shortcuts can be used for inter-VFI control and communication
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VFI & NoC

Clock 
domain 2

VFI 2 (V2, f2)

Clock 
domain 1

Volt./Freq.  Island VFI 1
(V1, f1)

Globally asynchronous, 
locally synchronous (GALS)



29 March 2019 56

Voltage/Freq.  Island VFI 1
(V1, f1, Vt1) VFI 2

(V2, f2, Vt2)

VFI 3
(V3, f3, Vt3)

Mixed clock / mixed 
voltage FIFO

Crossbar
Switch

FIFO
OC

FI
FO

OC

FIFO
OC

OC
FIFO

PE
FIFO

Crossbar
Switch

FI
FO

OC

FIFO
OC

FIFO
OC

OC
FIFO

PE
FIFO

Clock Domain 1 Clock Domain 2Output controller Mixed clock FIFO

VFI & NoC (Cont’d)
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Why use VFIs?

• Take advantage of the natural partitioning and mapping in 
applications

• Similar characteristics in groups of cores

• Greater scalability compared with fine-grained solutions
• Less voltage regulators
• Less inter-(voltage/clock) domain interfaces



29 March 2019 58

Heterogeneous NoC-Enabled VFI Design

§ VFI clustering based on computation footprint or 
communication or hybrid.

§ Long-range wireless links or 3D interconnects for inter-
VFI data exchange. 

§ Router connectivity changes
§ Distributed between inter- and intra-cluster

R. G. Kim, W. Choi, Z. Chen, P. P. Pande, D. Marculescu and R. Marculescu, "Wireless NoC and Dynamic VFI
Codesign: Energy Efficiency Without Performance Penalty," in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 7, pp. 2488-2501, July 2016.



Challenges in VFI

• How do you dynamically select the voltage and 
frequency for the VFI?

• Given
– System with K VFIs
– Voltage and Frequency (V/F) control knobs to the K VFIs
– Set of applications

• Find a set of policies 𝜋', … , 𝜋( that controls the V/F 
knobs
– Minimize energy consumption
– Achieve performance constraint 𝑝%

59



Imitation Learning

• Learn a policy by imitating an expert 𝜋∗ (Oracle)
– Step 1: Oracle Construction
– Step 2: Learning DVFI control policy via Imitation 

learning techniques (e.g., DAgger)

RG Kim et al., “Imitation Learning for Dynamic VFI Control in Large-Scale Manycore 
Systems,” IEEE Transactions on VLSI Systems, vol. 25, no. 9, pp. 2458-2471, 2017.

60



• M3D properties enable solutions not possible in TSV
– More flexibility BUT higher complexity and difficulty in 

choosing appropriate designs

• NoC design needs to be rethought for inclusion of 
other emerging tech.

Potential of more ML

61
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ML for ML

Machine 
Learning

Improved Deep 
Neural Nets

Workload 
characteristics

Existing Machine 
Learning frameworks

Better design choices 
(NoC design, Power 

management)

New hardware 
architectures for deeper 
and more complex DNNs
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Size:   tens of thousands sq. feet
Power: Mega Watts, Cooling cost: Huge
Users: millions (mostly HPC)
Maintenance Cost (wiring, utility service providers) 

Size:   tens of cm2

Power: 100 Watts, Cooling cost: minimal 
Users: 1-10 (mostly personal/mobile computing)

3D DoC

Network of DoCs (future, based on proposed work)

In the future, the DoC can, in principle, 
interact w/ conventional DC

Existing Internet connection/VPN

Conventional Data 
Center (DC)

Evolution	of	NoC	to	DoC



Conclusion
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• Finding optimal designs is getting more difficult due to greater 
system complexities:

• More cores (System size)
• More core types (Heterogeneity)
• Emerging interconnects (3D: TSV, M3D, Wireless, NFIC)
• Application-specific HW and deployment scenarios (IoT, datacenter, etc.)

• Need ML-based EDA techniques
• Conventional techniques can’t keep up

• Altogether, emerging interconnect-based heterogeneous manycore 
systems show promise

• Higher performance, Lower Thermals

• Heterogeneous architecture for ML
• Evolution of DoC
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Thank you


