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 Motivation

— Deployment Scenarios and Applications require high performance but
constrained HW

— Heterogeneous manycore systems are complex

* Heterogeneous Manycore

* Wireless, 3D and Photonics
* EDA challenges
* Scalable ML-Based EDA

* Heterogeneous manycore for ML

* Heterogeneity enables efficient power management
* NoC and VFI
 Evolution of DoC
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Why Many-Core Chips?

* Explosive computational power

« Scientific applications
» Weather prediction, Astrophysics
» Bioinformatics, forensics
» Language processing
* Consumer electronics
» Graphics, Animation

The era of single processor systems is over

6/7/22



The era of Many-Core systems

How to keep up with demands on

computational power? 0

 Can not scale clock frequency Adapteva’s

- Solution: Increase number of cores ~ EPIPhany
parallelism

= Mass Market production of Intel, AMD
dual-core and quad-core CPUs

= Custom Systems-on-Chip (SoCs)

» Many Core chips from Tilera for Single-chip
networking, cloud computing and gfm”guter
multimedia applications. Intel 80 core

processor

‘Number of cores will double every 18 months’
- Prof. A. Agarwal, MIT, founder of Tilera Corporation

6/7/22



Big Data Revolution

Machine Learning Graph Analytics Genomics

Highly compute- and data-intensive!
High performance and low-power platforms are needed to enable them




Traditional Hardware for Big Data Applications

\_

J

_/

Multi-core CPUs

applications!

GPUs are great for . .
data-parallel

CPU + External GPU Systems

« Move the GPUs on to the chip!
 Higher data compute + lower power using Network-on-Chip

(NoCQ)

Bring GPUs
closer to the
CPUs

—

Off-Chip Interconnects
are Costly! Delay +
Energy

-

\_

NVIDIA Tegra Xavier (9 \

CPUs + 512 GPUs)

[Credit: NVIDIA] )

Heterogeneous CPU-GPU Systems



Motivation: Communication Backbone

* Massive multicore processors are enablers for ICT innovations
* Need for holistic power optimization and management

* Energy across the layers

“We need research on how to minimize
communication, since energy is largely spent in
moving data”

“21st Century Computer Architecture” commissioned by the Computing
Community Consortium

NSF Workshop on Cross-Layer Power Optimization and Management (Feb ‘12)
NSF Workshop on achieving ultra-low latencies in wireless networks (March ‘15)

RI7/29



Moore’s Law:

PicolJoules

20mm

Moving a bit across die

10000

1000

100

10

Intranode/SMP Intranode/MPI

Communication

On-chip / CMP
communication

On-Chip:
Not Scaling

Source:
Exascale Roadmap
Meeting, Dec. 2009

Global on-chip movement of data is very power hungry!!



Novel Interconnect Paradigms for Multicore designs

Optical Interconnects

Wireless/RF
Interconnects

Three Dimensional
Integration

40umx100pm
-- l".) s ‘

High Bandwidth and

Low Energy Dissipation

6/7/22 9



Why not Mesh?

* Mesh has multi-hop nature
- Higher latency and energy for bigger system sizes

« Skewed traffic in heterogeneous architectures with CPU + GPU
- Many-to-few-many communication around the LLCs

- Few links become traffic hotspots and create bandwidth bottlenecks in Mesh
for heterogeneous architectures

 This necessitates the investigation of more complex NoC designs
- Needs to account for specific traffic characteristics and system requirements

._’._’._’.".

—
Normal Links

Heavily

1
- Utilized Links
— R
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Designing better NoC: Natural Complex Networks

= Natural Complex Networks
=  Brain
=  Microbes
=  Social Networks

=  Small-World/Exponential graphs
= Attacks

= Scale-free graphs
= Random Failures

6/7/22



Small World and NoC

6,1 6,3 6,5
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Umit Ogras and Radu Marculescu, “It’s a Small World After All”: NoC Performance Optimization
Via Long-Range Link Insertion”, TVLSI, vol. 14, No. 7, July 2006
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Power-Law based Small World Network

= Power-law based connectivity

= Many short-range local links
= Conventional Wireline links

= Afew long-range shortcuts

= Utilize emerging interconnects

How to efficiently distribute the shortcuts?

6/7/22



WiNoC Configuration
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= Wireless links more efficient for long range communication
= Add few long-range shortcuts
= Hybrid wired-wireless NoC design

S. Deb, A. Ganguly, P. P. Pande, B. Belzer and D. Heo, "Wireless NoC as Interconnection Backbone for Multicore
Chips: Promises and Challenges," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2,
no. 2, pp. 228-239, June 2012.
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How does it look in 3D?

Routers

= (£ &
— & —~
—~ = —>

Communication fabric:
Network on chip

(_Link Distribution

* Physical design space is combinatorial by nature

* Placement of routers, cores and links ensures NoC
performance level

4 )
Challenges: 1. How to place the routers, cores and links ?

2. How to map the tasks?

3. How to explore optimized link placement efficiently?
\_ J

15



Machine learning in Design Optimization

- Space of feasible NoC Designs is combinatorial

- Cannot perform exhaustive search, specifically for bigger system size

- Key Insight: Intelligent exploration of the design space to

quickly find (near)-optimal SW-NoC design

° How to explore intelligently? via Machine Learning

6/7/22



Design Optimization: STAGE Algorithm

New training data to
improve the evaluation
function

Base Search ( Meta Search

Search to optimize Search to Optim.ize

original objective, O learned evaluation
function, E

ood starting states
to find better
solutions

E is the search control knowledge that will improve
based on the search experience via machine learning

6/7/22



3D NoC Optimization: STAGE Instantiation

New training data to
improve the evaluation
function
Base Searc Meta Search w

Search to optimize Search to optimize
original objective, learned e?faluatlon

Good starting states
to find better
ti

* Regression learning algorithm

— Need fast training time and testing time -- they contribute to the overall

optimization time

« We employed Regression Tree Learner (via WEKA package)

- Regression tree training is fast; and allows us to learn accurate predictors

6/7/22



Performance Evaluation: STAGE vs. SA and GA

79
—STAGE SA —GA
77 -

71 A

B

Best cost, O, .,
~N
w

69

0 10 20 30 40 50
Time in minutes

* STAGE converges faster than Simulated Annealing (SA)
and Genetic Algorithm (GA)

* For a given time budget, solution quality of STAGE is better
than SA or GA

S. Das; J. R. Doppa; P. P. Pande; K. Chakrabarty, "Design-Space Exploration and Optimization of an Energy-
Efficient and Reliable 3D Small-world Network-on-Chip," TCAD, 2016.
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Design Challenges: Heterogeneity

« Multiple Quality of Service (QoS) requirements

« Disparate natures of CPU and GPU
architectures
- Conflict with one another
- CPU: Latency sensitive
- GPU: Throughput sensitive

=o--CPU-MC latency o-1/Throughput
1.8

=~

1.6
1.4 2 /
1.2
1 /-\ N
c4 C5

1 2 @G

CPU-MC LATENCY

Source: blogs.nvidia.com

W. Choi et al., On-Chip Communication Network for Efficient Training of Deep Convolutional Networks on
Heterogeneous Manycore Systems, in IEEE TC, vol. 67, no. 5, pp. 672-686, 2018.

20



Mesh: Candidate Solution Tradeoffs

Closer MC and CPU Placement Well distributed MC
Low CPU Latency for Master core High-Throughput

Unoptimized Placement (Random)

6/7/22 21



Heterogeneity: Wireless, M3D

ILD(100 nm SiO2
First-layer

o LD(IOOmSOZ
mirv .'I.':l':I'. Second-fayer

L

ocyclobutene (BCB)

Vertical
\Mteless link | Second-layer

Planar
Sub-THz wireless -: 1

links

TSV-based 3D IC Monolithic 3D IC

* Emerging interconnects like wireless and Monolithic 3D (M3D)
- More dimensions to NoC design in future platforms

* Like increased heterogeneity in compute, increased
heterogeneity in communication

- Wireless: Different data rates, power consumption than conventional
wires; Heterogeneity among links

M3D: Process Variations between layers; Heterogeneity among layers

22



Heterogeneous NoC Design Optimization: Challenges

* Design complexity will increase in future architectures

- Increasing system size
- More heterogeneity

* Bigger search space
- Difficult to find good solutions

System size increases Heterogeneity increases

ASIC

S. Das et al., “Monolithic 3D-enabled High Performance and Energy Efficient Network-on-Chip,” ICCD, 2017.
R.G. Kim et al., “Machine Learning and Manycore Systems Design: A Serendipitous Symbiosis,” IEEE Computer,
2018. 23




3D Heterogeneous Systems

* We can incorporate multiple

types of cores or tiles into a 3D Islim—— Ehnarlik —
heterogeneous system A s
- CPU (latency centric) =

- GPU (throughput centric) |__< gL =k /
- Last level cache (LLC): consists of e ,
L2 cache slice and access to main CPUTILE  GPUTILE  LLCTILE

4 f/
memory

\m

* Connect tiles on the same die @
using a normal NoC coucer |W o an
» Connect dies using TSVs e Comratar

* Increase scalability and reduce
network diameter

24



CNN Training using 3D Heterogeneous Architectures

CPU TILE GPU TILE MC TILE

Thermal hotspots !!

[ ]

v

v
L2 BANK
v

r
Memory
_ —

» We can utilize these 3D heterogeneous systems to speed up CNN training
- 30% less hops (2D Mesh vs 3D Mesh)

25



3DHet,,r: Thermal Issues

* lIgnoring thermal constraints leads to significant
temperature hotspots

Thermal hotspots !!

a // G/

L6/
LG/ LT LY,

LG/&ET (G, High Temp
/G 7/ M7/ G 3D-ICE (802C)
Thermal
Sim
Low Temp

(432C)
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Multi-Objective Optimization (MOO) is Necessary!

* Machine learning and big-data analytics can be deployed
anywhere
- Cloud, automotive embedded system, loT, etc.
- Each of these have drastically different design constraints

- Demands for computing platforms with higher performance in
highly constrained scenarios have led to more specialized systems

« NEED to abandon design solutions that consider only a single
aspect and pursue designs that jointly consider power, reliability,
and the performance of individual components

O

Embedded System: Real-time
Cloud: Performance and Thermals constraints and Reliability

27



General Problem Formulation (MOO)

* Given:
- The mix of CPU/GPU/LLC files
- The number of planar links
- System configuration

* Optimize the placement of:
- CPU/GPU/MC tiles
- Planar Links

* Three objectives (Example)
- CPU Communication Objective
- GPU Communication Objective System Configuration
- Thermal Objective 3x3x4

Given system
configuration.
Optimize system4
for app

28



Problem Formulation

* GPU Communication Objective:
- GPU communication is more reliant on network throughput
- minimize U (Avg. link util.) and ¢ (Std. dev. Link util.)
- This also helps balance the MC-Core traffic!

* CPU Communication Objective:

- Observation: CPUs communicate with MCs and among
themselves

- CPUs are sensitive to communication latency: minimize traffic-
weighted CPU-MC and CPU-CPU hop-count (H)

* Thermal Objective:

- 3D systems have higher power densities that need to be
accounted for.

- Estimate thermal effects using power and thermal resistivity (T)

29



3DHet: Optimizing 3D NoCs for Accelerating CNN Training

30

» Want to design the system while simultaneously
looking at GPU, CPU, and Thermal objectives

 AMOSA (Archived Multi-Objective Simulated
Annealing)

* Creates set of candidate solutions D* 0
* D" = AMOSA(D,0B] = {U(d),o(d),H(d),T(d)})

s.t. Vi: L; < k4, (Mmax # of links for a 5
router) d

Vi,j € d: Path(i,j) = 1 (Comm. Path exists)

Objective n+1

10 20 30
Objective n

» Choose best solution based on detailed
simulation

» d = argmingep-EDP(d)

e s.t. T(d) < T’ (minimize EDP within temp.
constraint)

BK Joardar et al., “3D NoC-Enabled Heterogeneous Manycore Architectures for Accelerating CNN Training:
Performance and Thermal Trade-offs,” in NOCS, 2017.

30



3DHet,.,r: Optimizing performance

Random starting network Constraints 3DMesh,.,; or 3DHet ,.rz
7C77C7 €8+ Kmax
Vo o Y] l
LCJLET LG/
TG 7 G 77T MOO Solver
LG7.G7.G67 H
f(wo H)

Performance-only
optimized 3D NoCs Cavyavyas
(3DMesh,,.;/3DHet,,, )
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3DHet,...m: Balancing performance and thermal

Random starting network

AV gAY,

&yLLT LG/
AW A& JAV,

AW JAW AW

LG 7L8/7LG/
(A V/AVJaV,

Va5
Vav YavYav,
G7La7 (57

6/7/22

Constraints
e'g'l kmax

l

MOO Solver

f(uw,o,H,T)

Performance-Thermal joint

optimized 3D NoC

(3DMesh,,,,.,/3DHet,,...)

3DMesh;o,m or 3DHetorm

217
/Cr /M7 LC7
07 £,

‘M 7/ G/

M7/ G 7/ N7
‘ G/ G7/G7
7G7




3DHet,,r vs. 3DHet,c,n,: Thermal

3DHetperf 3DHettherm
/GJ7LG7 LG/ M7/ C 7
Va v a v yas .

LM77 £C7, High Temp

LM/ LG/ I (BOQC)
Low Temp

(432C)

SINK SINK

* Much lower hotspots observed
* GPUs pushed down towards the sink
» Approximately 18°C improvement in maximum

temperature compared to 3DHet,,,,
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perf vs. therm: NoC Hop-Count and Utilization

an@un
1.2 o 12 3DMesh,,,,, 3DHet,y,,.,..,

- S 1
5 -

o
808 o g-g 7
Q.
£ 0.6 g~ /
e O
N 04 5 0.2
€02 o
E o
S 05 1 15 2 25 3 35 4
= 3DMesh,,,  3DHet,.  3DHety,, Link utilization w.r.t. 3DMeshe.m

mean link utilization

* Average inter-router Hop count
* 3DHet reduces average inter-router hop count compared to 3D Mesh

* Link utilization
 More than 10% links in 3DMesh;perm @ igher link utilization than the
e meay link utilization.

mean while some carry greater tha
e Traffic more evenly distributed in proposed .compared to
3DMeshyerm, hence higher throughput

Possible bottlenecks
during execution
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3D Heterogeneous NoC Design: ML revisited?

* Popular MOO algorithms like NSGA-Il and AMOSA can
find Pareto front

- HOWEVER, as design complexity increases, they will

take longer and longer to find near-optimal solutions
- Increasing system size
- More heterogeneity

ASIC

System size increases Heterogeneity increases
ML inspired techniques should be used

S. Das et al., “Monolithic 3D-enabled High Performance and Energy Efficient Network-on-Chip,” ICCD, 2017.
R.G. Kim et al., “Machine Learning and Manycore Systems Design: A Serendipitous Symbiosis,” IEEE Computer,
2018. 35




MOO-STAGE: ML to solve MOO problems

fox)

New search trajectory to
improve the evaluation function
(" localSearch \ [ MetaSearch

Search guided by {0;, 0, ..., 0,} Learn evaluation function and Improves
from starting state search for promising starting states PHV
A possible

E s Evaluation e >
o= Function mdodibed .
\ j { ° Goy solution
Good starting states to : Poteptial
find better solutions ° s:aitmg ! >
states Si(x)

Power

The hypervolume

Throughput

Pareto Hypervolume (PHV)

« Pareto Hyper Volume (PHV) measures solution quality

« Key Idea: Learn evaluation function to find better
solutions in less time

B. K. Joardar et. al., "Learning-Based Application-Agnostic 3D NoC Design for Heterogeneous Manycore Systems,"
in IEEE TC, vol. 68, no. 6, pp. 852-866, 1 June 2019

J.A. Boyan and A.W. Moore, “Learning Evaluation Functions to Improve Optimization by Local Search,” JMLR, 2000.
36




MOO-STAGE: Performance

——AMOSA ——MOO-STAGE 0 ——AMOSA ——MOO-STAGE
0.7 : — ¥ 4 8038 { Tunosa =93 hrs
[ — 1 \
06 [t ; ot F |
> - / w H—
T 0.5 /- i s 507 ]
Tmoo-staGe ! o ! s 4 = I
0'4 = 11 hrS : / % 2 0 6 1
! 2 2 ' T i
03 L Taviosa = 95 hrs a MOO-STAGE}
i w =11hrs
0.2 ! 0 0.5 !
0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time (hrs) Time (hrs) Time (hrs)

* 9x Speedup in optimization time

 Evaluation function (E) prediction error quickly moves
towards O

* Better pareto hypervolume (PHV) [higher] results in
lower thermal delay product (TDP)

B.K. Joardar, “Learning-based Application-Agnostic 3D NoC Design for Heterogeneous Manycore Systems, IEEE
TC, 2019. 37




MOO-STAGE: Performance (Cont)

MOO-STAGE speed- up over AMOSA

Applications Twoobi|_ 35+ Four-onl

Average

v |
[ | 'S w
J Z (| 7 |

1.5
1.3
1.5
2
1.3
1.5
1.2
1.2
1.5

5
5.8
6
8
5.8
5
5
6.4
5
5.84

Rodinia Benchmark Suite

12.5
9.4
13.7
7.2
10
14.2
10
11.4
7.5
11.4
10.7

« MOO-STAGE speed-
up over AMOSA
Improves as
objectives increase

« AMOSA never found
the best solution
like MOO-STAGE for
three- and four-
objectives
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ReRAM vs GPU for deep learning

OARY =

3€93 ueaus

1T uesws =

1se3 a-

3823 D-DOA |
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3893 g-3STUN |
3893 D-3ISTUN |
3s@3 o-3syu
3893 ISNXSTY

utTeIy ¥-3STup

l1=l11+l1  1=l1+];;

 ReRAMs more efficient for matrix multiplications

* High performance

* 0O(1) time complexity
* Energy efficient
* Low area

L. Song et al., "Pipelayer: A pipelined ReRAM-based accelerator for deep learning", HPCA, 2017.
D. Fujiki, S. Mahlke, and R. Das, “In-Memory Data Parallel Processor,”. In Proc. of ASPLOS, 2018. NY, USA, 1-14.
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 Temperature dependence
— Change in resistance

Challenges with existing architectures

Low Precision
— Accuracy Loss

— Unstable training

Lack of Normalization
— Requires full-precision

— Thermal noise
— Low noise margin

x -

HIEREERIE
w.r N L w.

N EREERE;
T M T (T M T
.f b : \.f
) )
XTERNAL 10 INTERFACE.

= CHIP (NODE)

IR —Input Register

OR —Output Register
MP —Max Pool Unit

S+A —Shift and Add

o —Sigmoid Unit

XB —Memristor Crossbar
S+H —Sample and Hold
DAC - Digital to Analog
ADC - Analog to Digital

.................................

.............................

...-.................................\‘\

EU
=
(s

XB

In Situ Multiply Accumulate
Q

S+H

(=)
7] (IR ADC

/ADg|
ADC|

A. Shafiee et al., "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in
Crossbars," 2016 ACM/IEEE 43rd ISCA, Seoul, 2016, pp. 14-26.
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Low precision and lack of Normalization

Frequency

>
80% . I b .
60% én I qg’- 40% ‘E ED
[+
40% "1 S 20% &F
20%
0% [ 0%
0 ¢ pi o = o ° N ] S o
E 2 & = = b2 = = = =
Gradient values Gradient values
No Normalization support With Normalization support

Whew = Woig — AU * M'

e Gradients too small without normalization

* Low precision cannot represent too small/large values
* Gradients rounded to zero
* No (or minimal) weight update
* No meaningful learning
Slide 41 of 28



Thermal challenges

—a—Goy —@=Gopp

e * Resistance changes
o 3.5E-08 with temperature
o 3E-08 i ]
2 25608 * Reduces noise margin
S 2e08
2 1.5E-08
S 1e-08
SE-09 | o e——o—t—o—o—¢
0
300 310 320 330 340 350 360 370 380 390 400
Temperature (K) Frod— 1 Gl Froq - 10 MHz
* T e
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5 O o c 2 ' c2
to misinterpretation : o-jj_n;rAG 3 S
* Noise increases with Yl b 5 ARl
o 5000 10000 0 5000 10000
fre quency Samples Samples
. ' \ 2
Z. He et. al., "Noise Injection Adaption: End-to-End Grms = frms = Gf(4KBT T 2qV) - &)
ReRAM Crossbar Non-ideal Effect Adaption for Vv V2 3

Neural Network Mapping," 2019 DAC, Las Vegas,
NV, USA, 2019, pp. 1-6



AccuReD: ReRAM /GPU-based heterogeneous
architecture

[ Heat Sink ] oufeftAM tl:l;et
Za IRegigter[ Sgldd&

Vi f | [ ) (Smed
5z SAAS ﬁ ) VA
83 | - 4 ReRAM cluster --
"D o 7 7 7 4
— '_// | 7 7| 11 X (x8 | R
% AT wemory | [A00oAC 2628
32 | £ || controller Stochastic rounding

* Normalization:

Full precision GPUs

e Low Precision:

Stochastic rounding

* Temperature:

Thermal reference cell
Performance-Thermal aware

mapping
M3D inteeration

B NoC router | Vertical links

32-bit input

@ 32-bit
32- blt
Adder

16-bit output

All-Zeros
<:| (16-bit)

<:| 16-bit
LFSR

Vdd,

N:1
Current
Mirror

i

Iref

array

B. K. Joardar, J. R. Doppa, P. P. Pande, H. Li and K. Chakrabarty,

"AccuReD: High Accuracy Training of CNNs on ReRAM/GPU

Heterogeneous 3-D Architecture,"

in IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 40, no. 5, pp.
971-984, May 2021

"High-Throughput Training of Deep CNNs on ReRAM-Based
Heterogeneous Architectures via Optimized Normalization Layers," in
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 41, no. 5, pp. 1537-1549, May 2022

B. K. Joardar, A. Deshwal, J. R. Doppa, P. P. Pande and K. Chakrabarty,




Performance and Accuracy

M AccuReD ®m GPU
= AccuReD

ound

Q.

2

9 10

Q

o

. I I NpNeise
O [ ] [ ] [ ] [ ]

Lenet VGG-11 VGG-19 ResNet-18
Epoch

* AccuReD achieves GPU-level accuracy
* Normalization, performance-thermal aware mapping, M3D

e Up to 15X speed-up compared to GPUs

* ReRAMs are more efficient as dot-product accelerators

Slide 44 of 28



Manycore design using TSV

* Conventional hardware design is planar
e Sub-optimal power-performance
* Planar logic blocks stacked physically to create 3D



Manycore design using M3D

>

(~¥100nm)

=

|
AN

$_! ’ < W

) <L : fl> ://—Zk_l_ii
= Al LA I AI

e M3D enables 3D hardware blocks

* Less area, power
e Better performance

* Logic blocks can span multiple tiers
* How to optimize the placements?

B. Gopireddy and J. Torrellas, “Designing vertical processors in monolithic 3D,” in Proc. 46th Int. Symp. Computer
Architecture (ISCA), Phoenix, AZ, USA, Jun. 2019, pp. 643-656.



NoC Design Using M3D

Routers extended over multiple tiers

+— SP = Shortest path for CPU/GPU Cores
dastinatt AL Router
s source-destination — link
= pair (0, 59)
l' ------------------ ]
i & [ - Inter-layer
v AL Destination, di‘:)l;c"ic t ATTEIEratD
[ ' '
B C® | (100nm)
B | }sP= 3 hops e
© 2 i — | SR . Shared
'E : () @ : multiple tiers Memory Extended over
= | : Memory multiple tiers
Source

Associated SW-graph -Il MIV-based
Vertical connections

M3D-enabled SWNoC

» Routers extended over multi-tiers

» Lower average hop count, shorter communication paths
MIVs more energy-efficient than TSVs

D. Lee et al., “Performance and Thermal Tradeoffs for Energy-Efficient Monolithic 3D Network-on-Chip,” ACM

TODAES, 2018.
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MOO-STAGE for M3D

9 WTSV-Het ™ M3D-Het
0

8 ™
o ~
27
3 3
2 6 %
(%) ]

5

4

BP LV LUD NW NN PF  Average

Applications

* Design space of M3D larger than TSV
 More design options

* MOO-STAGE performs even better
* 5.48X speed-up in TSV

e 7.38X speed-up in M3D
 AMOSA needs even more time to find good solutions



M3D vs TSV: Performance

B TSV-Het  ® M3D-Het

1
v
o E
S F 09
©
£ S
s o 0.8
z 9
Ll
0.7
LUD NW NN
Appllcatlons

e M3D-Het is 12.3% faster than TSV-Het

* M3D-based designs have lower wirelengths
* Lower critical path delays

* Higher clock frequency can be used

B. Gopireddy and J. Torrellas, “Designing vertical processors in monolithic 3D,” in Proc. 46th Int. Symp. Comput.
Archit., Phoenix, AZ, USA, Jun. 2019, pp. 643-656.



M3D vs TSV: Temperature

v 90 M TSV-Het ®m M3D-Het
2
©
E’_A 80
£ 70
w —
j =
s r
BP LV LUD NW NN PF
Applications
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 M3D-Het is 19°C cooler than TSV-Het
 M3D-based designs are power efficient
* Lower wirelength
* Fewer number of buffers
* Absence of bonding material
 Smaller dimensions

S. K. Samal et. al., "Fast and accurate thermal modeling and optimization for monolithic 3D ICs," 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, 2014, pp. 1-6.



M3D-based PIM
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* Good for memory intensive applications
 Memory closer to computation
* Conventional TSV-PIM limited to one logic layer
 DRAM retention falls drastically beyond 85°C
* Higher refresh rates offset any benefit

 M3D allows stacking multiple logic layers



M3D-PIM: Thermal and Performance
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 M3D allows up to four logic layers
* Not possible using TSV

* Up to 7X speed-up for k-mer counting
* Evaluated using real-world gene sequences



Heterogeneous NoC and Power Management

= Enabling architecture for cross-layer power management
= Less utilization of wireline links
= Enables more opportunity for DVFS

= \oltage/Frequency Islands

= Communication between islands using wireless, 3D or
Photonics

= Better energy and thermal profiles
= No latency penalty compared to a standard mesh
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VFl-based design

VFI, VFl, wireless links for
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Courtesy: Prof. Radu Marculescu, CMU

ireless shortcuts can be used for inter-VFI control and communication
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VFI & NoC

Globally asynchronous,
ocally synchronous (GALS)
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VFI & NoC (Cont’d)
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Why use VFIs?

» Take advantage of the natural partitioning and mapping in

applications
 Similar characteristics in groups of cores

* Greater scalability compared with fine-grained solutions
* Less voltage regulators
* Less inter-(voltage/clock) domain interfaces

9 March 2019 57



Heterogeneous NoC-Enabled VFI Design

= VFI clustering based on computation footprint or
communication or hybrid.

= Long-range wireless links or 3D interconnects for inter-
VFI| data exchange.

= Router connectivity changes
= Distributed between inter- and intra-cluster

R. G. Kim, W. Choi, Z. Chen, P. P. Pande, D. Marculescu and R. Marculescu, "Wireless NoC and Dynamic VFI
Codesign: Energy Efficiency Without Performance Penalty," in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 7, pp. 2488-2501, July 2016.
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Challenges in VFI

« How do you dynamically select the voltage and
frequency for the VFI?

* Given
- System with K VFls
- Voltage and Frequency (V/F) control knobs to the K VFIs
- Set of applications

 Find a set of policies {my,..., mx} that controls the V/F
knobs
- Minimize energy consumption
- Achieve performance constraint p%
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Imitation Learning

« Learn a policy by imitating an expert =* (Oracle)
- Step 1: Oracle Construction

Input State Output Actions

lllllllllllllllllllllllllllllllllll

Util Avg Comm Avg |: VFI, V/F
Util Max Comm Max | :

llllllllllllllllllllllll

- V/F Prev : : VFI, V/F

Imitation Imitation
Learner Policy (m)

RG Kim et al., “Imitation Learning for Dynamic VFI Control in Large-Scale Manycore
Systems,” IEEE Transactions on VLS| Systems, vol. 25, no. 9, pp. 2458-2471, 2017.
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Potential of more ML
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« M3D properties enable solutions not possible in TSV

- More flexibility BUT higher complexity and difficulty in
choosing appropriate designs

* NoC design needs to be rethought for inclusion of
other emerging tech.
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ML for ML
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Evolution of NoC to DoC

In the future, the DoC can, in principle,

Conventional Data interact w/ conventional DC

Center (DC) 3D DoC
\ /’\\ ,‘s\
\~/, \\,/' \~I,
Existing Internet connection

-~ Network of DoCs (future, based on proposed work)

Size: tens of thousands sq. feet

Power: Mega Watts, Cooling cost: Huge

sers: millions (mostly HPC)

aintenance Cost (wiring, utility service providers)

Size: tens of cm?
Power: 100 Watts, Cooling cost: minimal
Users: 1-10 (mostly personal/mobile computing)
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Conclusion

* Finding optimal designs is getting more difficult due to greater
system complexities:
* More cores (System size)
* More core types (Heterogeneity)
* Emerging interconnects (3D: TSV, M3D, Wireless, NFIC)
* Application-specific HW and deployment scenarios (loT, datacenter, etc.)

Need ML-based EDA techniques
* Conventional techniques can’t keep up

Altogether, emerging interconnect-based heterogeneous manycore
systems show promise
* Higher performance, Lower Thermals

Heterogeneous architecture for ML

Evolution of DoC

6/7/22



Acknowledgements

# Collaborators
* Radu Marculescu, CMU
Diana Marculescu, CMU
Deukhyoun Heo, WSU
Janardhan Rao (Jana) Doppa, WSU
Krishnendu Chakrabarty, Duke University
* Paul Bogdan, USC
€ Graduate students

€ Funding from NSF and DOD and
Boeing

65



Thank you
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