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Control of Networks (1)

Power Grid Dynamics: maintaining frequency of
generators in the presence of perturbations




Control of Networks (2)

Control of Mammalian Circadian
*Rhythm

*The dynamics is multistable
(both fixed points and limit cycles)

*Problem: moving from one
attractor to the basin of attraction
of another attractor
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Control of Networks (3)

Autophagy regulation

¢ Consider the Autophagic system in a single cell,
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One option: Optimal Control

Controllability

Consider the continuous
time system,

i)

x(t) = f(x, t) + Bu(¢)
K(tn) = Xp

X(tr) = Xy i

Time(t)



One option: Optimal Control

Control Energy '
Control Energy,
ty =
J = / u(t) T u(t)dt #
to —  Due to wy (i)
Le* ——  Due to us(f)
. --=-  Due to usg(f)
Optimal Control Input e |
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Optimal Control Input = u*(¢) ) Time(r !
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Optimal Control Energy.
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ISsues

*The dynamics of complex networks is nonlinear
Control of nonlinear systems is difficult!

*Optimal control strategies for nonlinear systems are
typically obtained numerically

‘Numerical optimal control solutions for large high-
dimensional nonlinear systems are computationally
expensive



Target Control of Networks
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A network is described by two sets:
® A set of nodes, V (often these coincide with the states), and
® A set of edges, £ (these are the linearized dynamical relations between
nodes)

There are three types of nodes:

Driver Nodes: These can be
directly influenced by our
control inputs, uy,

Target Nodes: These are nodes

Figure: A 10 Node Network with a desired final condition.
n m .

_ Neither: These are nodes that

Xi = Z X+ Z bik u are neither driven nor targeted.

j=1 k=1



Target Control of Networks
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A state, x;(t), i =1,...,n corresponds to a node v; € V.
We define our state vector as,

x(t)=1< . % (4)

The adjacency matrix, A = {a;;}, contains the edges € £ where if a;; # 0,
the state of v; affects v;.

x(t) = Ax(t) + Bu(t)



Target Control of Networks
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To start, we consider all nodes as target nodes.
We define the control energy as,

£= [ IuFor ®

to

The optimization problem is:

in J 1E 1ftf||u(f)||2dt
min = —C =<
u(t) 2 2 Jt,

such that x(t) = Ax(t) + Bu(t) (6)
x(tp) = xo0, Xx(tr) = x¢

J(x(t),u(t)) is the cost function, or penalty function.



Target Control of Networks
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The solution is,

u*(t) = BT AT (-0 -1 (7)

where,
tr
W _/ Altr—7) gRT AT (6—7) g G- (Xf B eA(rf—rg)xO)
to

W is the controllability Gramian.
More importantly, the minimum energy is,

Erin — / JJut ()] 2o o

=p'Ws



Target Control of Networks
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The controllability Gramian tends to be poorly conditioned when,
The time interval, tr — tp is ‘'small’, or

The percentage of nodes which are drivers is small.

Why does the condition of W matter?
Min-Max Theorem

1

Enn < =B WB < B0 (9)
18]
So,
1
Elmax) — 10
" (W) 1)

which can be prohibitively large.



Target Control of Networks
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We define an output,

y(t) = Cx(t). y(t) € RP*L. p<n (11)
which is a linear combination of the states.

The output can be used to target nodes by choosing C such that each row
has only one nonzero element.

Problem Statement for MEOCS:
1 1 [t
n J— “F— - t)||%dt
min 5 2/r0 [Ju(e)ll

(12)
such that x(t) = Ax(t) + Bu(t)

X(t0) = xo0. ¥(tr) = ¥y



Target Control of Networks
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The optimal control input,
-1
u(t) = BeA =t C T (CWCT) 3 (13)
The minimum energy is,
~1
Enin =87 (CWCT) 3= BTW; 13 (14)

where WFJ s a minor of W.

This method reduces the control space of the system.



Target Control of Networks
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Y, . The system on the left uses the

k K K MECS formulation to place each
. o g node at a final condition.  The
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=5 sy T curve is £ = 382.
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A four dimensional example:

Then,
W,=cwc’ = [ Woy W24]
= _

War  Wag

Cauchy Interlacing Theorem:
Proves that the minimum eigenvalue of the minor of a matrix is larger than
the minimum eigenvalue of the original matrix.
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When nodes are chosen by
degree, we see much less
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Energy vs. Distance in the Path Graph
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Control Energy increases exponentially with the distance




Single Target Control

Isaac Klickstein, Afroza Shirin,Francesco Sorrentino

In the case of single target control, i.e., target node = J, we
are interested in only the j element on the main diagonal of

the Gramian matrix, w; ;.

The single target minimum control energy is equal to

= p?
~wy,



The Lyapunov Equation
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The controllability Gramian matrix W(t;) satisfies the
Lyapunov equation:

W(t) = AW(t) + W(t)A + BBT
W(0) =0

One can find W(t;) by integrating the above equation
forward in time from =0 to t=t.



Infinite Path Graph
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For the Path Graph, the Lyapunov equation becomes

"Li)?;,j(f) 2])"(,()3]( )‘|‘ fwz 1]( )"‘fwz—l—l j(f)
—|—fu)@j 1()‘|_fu)’z,j—|—1()_|_5205307
—00 < 1,] < 00

Initial condition Is zero



Solution to the homogeneous equation
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Wi (t) = =2pw; j(t) + fwi-1,;(t) + fwiza,;(t)
+ fw; j—1(t) + fwi 1 (7)
—00 < 1,] < 00

We apply a two-variable discrete-time Fourier transform:
Wy (1) = z eruiel v, (t)
ij

We obtain the following decoupled equation:
Wy (t) = (—2p 4+ 2f cosu + 2f cosv)wy ,(t)

with solution

Wy o (f) _ 6—2pt€2ft Cos u.€2ft COS ku . (0)



Solution (continues)
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Performing the inverse discrete-time Fourier transform:

1 T pT ' o
w; (f) _ €—2pt Z E / / e—Iu(z—a)e—Ib(j—,d)
a,f3 S Jm

% €2ft COs u.€2ft COS U Jo Iy

= Ze—%m_a(z O 5(2ft)wa.5(0)

o,

Where the Modified Bessel Function of the First Kind,
1

I(z) = o

/ e 5% cos(6)db
Jo



Solution to the non-homogeneous Ed.
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The driver nodes are defined by the set of integers (the
non-homogeneous term):

g = Z 0i k0] k

keD

Now considering only one driver node at the origin of the
infinite chain, i.e., D = {0},

t
w (1) = /O L2V (2f7)dr
—0o0 < 1,] <00

For the single target problem (£ is now the control distance)

t
Wy o(1) :/ e_ngI,?(QfT)d’r.
J0o



Infinite chain: scalin
with control distance
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Upper bound for arbitrary networks

Single driver - single target

(a) ER Network, 300
nodes

(b) Scale Free network,
300 nodes

(c) A 3-regular graph,
300 nodes

(d) Northern European
power grid



Linearization and Optimal Control

For nonlinear systems the optimal control solution of the minimum
energy problem is typically nonloncal

This means that the optimal path from a to b goes through regions of
state space that are far away fromaand b

Result: the optimal control solution cannot be applied to nonlinear
linearized systems as the optimal solution would leave the area of validity
of the linearization, the “valid linearization region”

Sun, Nishikawa, Motter, PRL, 2014

Moreover, current approaches to optimally control nonlinear systems
are mostly computational, e.g., GPOPS by Aniel Rao

These approaches are computationally expensive when the dimension
of the system (network) is large



Locally Optimal Control Strategy
(‘LOCS’)
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Our first result determines the set of final conditions that guarantee the
locality of the minimum energy controlled state trajectory of a linear
dynamical system.

All the minimum energy control trajectories are included in an hyper-
ellipsoid that can be parametrized by time and space

The hyper-ellipsoid represents the set of states reachable with an energy
amount E(t).

By restricting the amount of energy available, E(tf ), we can determine a
set of final conditions, S(tf ) such that the state trajectory remains local.



Locally Optimal Control Strategy
(‘LOCS’)
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Visualizing the ellipsoid by varying trand E. The
dynamics are linear, two dimensional with equations:

x1(8) = x2(6) + u(t)

X, (t)
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Locally Optimal Control Strategy
(‘LOCS’)
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By intersecting the minimum energy ellipsoid with the valid linearization region,
we can compute optimal control trajectories that are valid and remain local

T T
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The red line plots the zero-input evolution of the
system until it reaches the boundary of the valid
linear region (VLR).

The green line depicts the region within the VLR of
all states that, if assigned to be the final state for
the minimum control action, the trajectory will
remain within the VLR for all times.



Locally Optimal Control Strategy
(‘LOCS’)
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Optimal control of a nonlinear network (to some nonlocal
point) can be achieved by performing a sequence of local
optimal controls.

Our algorithm is based on the following steps:

1) Linearize equations

2) Define small error set

3) Find minimum energy solution that touches the small-
error-set

4) Repeat(with properly chosen intermediate targets)



lterating LOCS: a 2D system
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Example: Lotka-Volterra dynamics
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Mammalian Circadian Rhythm
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New England Power grid after
fallure and recovery of a line
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Conclusions

We consider control of large dimensional dynamical networks
with applications to biological, technological, ecological systems
and so on

By choosing targets, the control energy can be reduced
exponentially with respect to the size of the target set.

Upper bounds to the minimum control energy can be obtained
by considering the infinite path graph for which an analytical
solution is available

Optimal control of a nonlinear network (to some nonlocal point)
can be achieved by performing a sequence of local optimal
controls
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