Biomedica recuperate	al circuits and sy neuromuscular	stems to functions
Mohamad Canadian R	Sawan, P. Eng., Ph.D., esearch Chair on Smart Medical	FCAE, Devices
PolyS Dept. of El	TIM Neurotechnology Laborator c. Eng., École Polytechnique de Mo m. sawan @polymtl.ca	y Intréal
F	PART I	Poly Stim
	IEEE CASS DLP January 2004	ÉCOLE POLYTECHNIQUE

	Main technological breakthrough of FES based SMDs
	1947, transistor allows circuit designs suitable for implants.
•	1952, first external pacemaker which was the size of a table radio of the time and was powered by 110 VAC.
•	1957, electrical stimulation in the inner ear of the acoustic nerve in a totally deaf human was reported.
	1960, totally implanted pacemaker (Buffalo).
	1961, peroneal nerve stimulator for foot drop in hemiplegics.
+	1968, implantation of an electrodes array on the visual cortex.
	1980, first microchip was used to design small pacemakers.
+	1984, FDA approved the first cochlear implant for adults
•	1991, recording of neural activities
•	1992+, FES is widely used in several applications.

The bladder controller: Dual-s	stimulator
Selective timulation allows improvement This technique diplexes high and low free to activate both categories of sacral nen	nt in voiding; equency stimuli ve fibres:
 HF stimuli for somatic fibres which innervate LF stimuli for parasympathetic fibres which in detrusor. 	the sphincter. nnervate the
	Π
10	Poly

- 1960s, few groups began to investigate the possibilities of exploiting the phenomenon of creating points of lights;
- 1990s, Researchers at NIH demonstrate that intra cortex stimulation allows to generate phosphenes; Progress in microelectronics and microfabrication motivate researchers to explore several approaches;
- Dobelle institute, New York, early in 2000 presented a patient holding a PC which drives a percutaneous connector toward the skull to extracortical visual region;
- We start this project in 1996
- Early 2000, a prototype has been completed to prove the feasibility of a visual cortical stimulator
 Miniaturized implant version is being achieved.
 Pol
- POLY 15

		1000000	
Stimulation Module (4 x 4 Matrix)	TEST		
Downlink	structures	12 12 12 12 12 1	
 > 1 Mbps @ 13.56 MHz, Duty Cycle = 500 kbps @ 13.56 MHz, Duty Cycle > 	67% 85%	tentententen Lintententen Automisi	
Uplink : 200 kb/s			
Power: <1mW/SM @ 1MHz > 100 mW load capability; P (err) < 10	CTRL	ELECTRODES	-MOR
Sufficient for 1000 stimulation sites		CONVICTIO	R
 256 stimulation patterns @ 50 Hz. 		+	
- term	- Ente		1.
the second secon	C = Almaint ST-RD	anna an an Anna an An Martaire an Anna an An	8
	Desi Durun word	เงงบนการแบบทุ่งถาวแบบทา	d i

Foly

