
• Lou Pecora (Naval 

Research Laboratory)

• Tom Murphy (UMD)

• Rajarshi Roy (UMD)

• Aaron Hagerstrom

(NIST)

• Abu Bakar Siddique 

(UNM)

Contributors and Co-Authors



Complex Networks

• Network is, in simplest form, a collection of points (vertices or nodes) joined together in pairs by
lines (links, edges or bonds). i.e. lattices, random graphs, small world networks, scale-free
networks. A network is mathematically expressed by an adjacency matrix.

• A complex network is a graph (network) with non-trivial topological features.

Network: Zachary's karate club
W. W. Zachary, An information flow model for conflict and fission in small groups, 
Journal of Anthropological Research 33, 452-473 (1977).
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Symmetries
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Symmetries and Clusters
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Synchronization

The dynamics of the network,

ሶ𝑥𝑖 = 𝐹 𝑥𝑖 + 𝜎෍

𝑗=1

𝑁

𝐴𝑖𝑗𝐻 𝑥𝑗

An alternate description in case of Laplacian coupling,

ሶ𝑥𝑖 = 𝐹 𝑥𝑖 + 𝜎෍

𝑗=1

𝑁

𝐿𝑖𝑗𝐻 𝑥𝑗
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Chaotic Systems
Sensitivity to Initial Conditions
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Synchronization of Chaos
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• From a large system of coupled differential equations (high-

dimensional) to a reduced set of equations(low-dimensional)

• We analyze local stability: why?

• Advantage: provides necessary and sufficient conditions

• Disadvantage: the approach relies on numerical calculations 

of the low-dimensional system

• However, under certain circumstances once the regions of 

stability for the low-dimensional systems are computed, they 

can be applied to several types of high-dimensional systems

• Typical example: Master Stability Functions

• Several types of limitations

Reduction approach 

to analyze stability



• Cij = 1, if node i and j are connected

• Assume all connections are identical, bidirectional

• Generalizations:

– Weighted connections

– Directional links (Cij ≠ Cji)

Representing Networks and 

Graphs

Generalizations:

Weighted connections

Directional links (Cij ≠ Cji)



Q1:  Can these equations synchronize?
(Do they admit a synchronous solution x1 = x2 = … xN?)

Q2:  Do these equations synchronize?
(... and is the synchronous solution stable?)

Coupled Dynamical Systems
Continuous-time:

Discrete-time:



Laplacian Coupling 

Matrix (row sum = 

0):

Synchronization of Coupled 

Systems



• From a large system of coupled differential equations (high-

dimensional) to a reduced set of equations(low-dimensional)

• We analyze local stability: why?

• Advantage: provides necessary and sufficient conditions

• Disadvantage: the approach relies on numerical calculations 

of the low-dimensional system

• However, under certain circumstances once the regions of 

stability for the low-dimensional systems are computed, they 

can be applied to several types of high-dimensional systems

• Typical example: Master Stability Functions

• Several types of limitations

Reduction approach 

to analyze stability



• GAP = Groups, Algorithms, Programming

(software for computational discrete algebra)

http://www.gap-system.org/

• Sage = Unified interface to 100’s of open-source 

mathematical software packages, including GAP

http://www.sagemath.org/

• Python = Open-source, multi-platform 

programming language

http://www.python.org/

(Free) Tools for Computing 

Symmetries

http://www.gap-system.org/
http://www.sagemath.org/
http://www.python.org/


Example Output (GAP/Sage)

G.order(), G.gens()= 8640 [(9,10), (7,8), (6,9), (4,6), (3,7), (2,4), (2,11), (1,5)]

node sync vectors:
Node 2

orb= [1, 5]
nodeSyncvec  [0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]
cycleSyncvec  [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
Node 1

orb= [2, 4, 11, 6, 9, 10]
nodeSyncvec  [1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1]
cycleSyncvec  [0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1]
Node 4

orb= [3, 7, 8]
nodeSyncvec  [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0]
cycleSyncvec  [0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0]



Cluster Synchronization
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Three randomly generated 
networks with varying amounts 
of symmetry and associated 
coupling matrices.



• C = coupling matrix in “node” coordinate 

system

• T = unitary transformation matrix to 

convert to IRR coordinate system

• B = TCT–1 = block-diagononalized form

Stability of Synchronization
linearizing about cluster states



Variational equations about the synchronized solutions

𝛿 ሶ𝑥 𝑡 = ෍

𝑚=1

𝑀

𝐸 𝑚 ⊗𝐷𝐹 𝑠𝑚 𝑡 + 𝜎𝐴 ෍

𝑚=1

𝑀

𝐸 𝑚 ⊗𝐷𝐻 𝑠𝑚 𝑡 𝛿𝑥 𝑡

Where the Nn-dimensional vector 𝛿𝑥 𝑡 = 𝛿𝑥1 𝑡 𝑇 , 𝛿𝑥2 𝑡 𝑇 , … , 𝛿𝑥𝑁 𝑡 𝑇 𝑇 and 𝐸 𝑚 is an N-
dimensional diagonal matrix such that

𝐸𝑖𝑖
𝑚

= ቊ
1, 𝑖𝑓 𝑖 ∈ 𝐶𝑚
0, otherwise

And, 𝐶𝑚 be the set of nodes in the m-th cluster with synchronous motion 𝑠𝑚 𝑡 .

Define a transformed coupling matrix 𝐵 = 𝑇𝐴𝑇−1, where 𝑇 is the transformation matrix.

Cluster Synchronization (contd.)
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Applying 𝑇 to variational equation we get

ሶ𝜂 𝑡 = ෍

𝑚=1

𝑀

𝐽 𝑚 ⊗𝐷𝐹 𝑠𝑚 𝑡 + 𝜎𝐵 ⊗ 𝐼𝑁 ෍

𝑚=1

𝑀

𝐽 𝑚 ⊗𝐷𝐻 𝑠𝑚 𝑡 𝜂 𝑡

Where 𝜂 𝑡 = 𝑇⊗ 𝛿𝑥 𝑡 and 𝐽 𝑚 is the transformed 𝐸 𝑚 . 

We can write the block diagonal 𝐵 as a direct sum,

𝐵 = ⨁𝑙=1
𝐿 𝐼𝑑 𝑙 ⊗𝐶𝑙, 

where 𝐶𝑙 is a (generally complex) 𝑝𝑙 × 𝑝𝑙 matrix with 𝑝𝑙 = the multiplicity of the 𝑙th IRR in the 
permutation representation 𝑅𝑔 , 𝐿 = the number of IRRs present and 𝑑 𝑙 = the dimension of the 
𝑙th IRR, so that σ𝑙=1

𝐿 𝑑 𝑙 𝑝𝑙 = 𝑁.

Cluster Synchronization (contd.)

11/30/2016 Symmetry and Complex Networks 18



Cluster Synchronization in 

Experiment
• 11 nodes

• 49 links

• 32 

symmetries

• 5 clusters:
– Blue (2)

– Red (2)

– Green (2)

– Magenta (4)

– White (1)



• Pay attention to the magenta cluster:

Isolated Desynchronization

a = 0.7π a = 1.4π



Synchronization Error

a



Intertwined Clusters

a
• Red and blue clusters are inter-dependent

• (sub-group decomposition)



Transverse Lyapunov Exponent
(linearizing about cluster synchrony)



• N= 25 nodes (oscillators)

• 10,000 realizations of each type

• Calculate # of symmetries, clusters

Symmetries and Clusters 

in Random Networks

Random Scale-free Tree Scale-free γ

A.-L. Barabasi and R. Albert, 
“Emergence of scaling in random 
networks," Science 286, 509-512 (1999).

K-I Goh, B Kahng, and D Kim, “Universal 
behavior of load distribution in scale-free 
networks,“ Phys. Rev. Lett. 87, 278701 (2001).

ndelete= 20



Symmetries, clusters and subgroup 

decompositions seem to be universal 

across many network models

Symmetry Statistics



Power Network of Nepal



• 4096 

symmetries

• 132 Nodes

• 20 clusters

• 90 trivial 

clusters

• 10 subgroups

Mesa Del Sol Electrical Network



Symmetries & Clusters in Larger 

Networks
MacArthur et al., “On automorphism groups of networks,"  Discrete Appl. Math. 156, 3525 (2008).

Number of 

Symmetries 

> 88% of nodes are in clusters in all above networks

Number of 

Edges 

Number of 

Nodes 



Case of Laplacian coupling

The equations allow a fully synchronous solution:    
x1=x2=…=xN

Other solutions may emerge where nodes are synchronized in 
clusters

How can we find them?
How can we study stability?



An example: 

a simple 5-node network

The figure on the right 
shows all of the 
synchronization patterns 
that may emerge

Symmetry patterns    Laplacian patterns



The A patterns

The A patterns are those that would be possible if 
the coupling matrix was the adjacency matrix

They can be obtained by progressively breaking 
up the maximal symmetry pattern (A1) up to the 
trivial pattern (A5)

They can be found by using computational group 
theory routines that generate all of the subgroups 
of the automorphism group



The L patterns

For each A pattern, several L patterns 
can be generated by merging the 
nodes in different clusters (merging 
not allowed by the symmetries) – a 
test is needed

In this particular example, the test 
reduces to checking whether node 5 
can be included in an other existing 
cluster

Symmetry patterns    Laplacian patterns



Cluster merges
1) Observation: when clusters are synchronized, the diagonal feedback 

terms for each node cancel with the coupling terms from nodes in the 
same cluster.

2) To test for a merge, remove the inter-cluster couplings and adjust the 
diagonal entries accordingly → obtain a new coupling matrix

3) Compute the subgroups of the new coupling matrix.

4) If any of these subgroups includes nodes originally belonging to 
different clusters, then their dynamics is flow-invariant in the 
synchronized state and the cluster merging is possible.

Example: Pattern A4



Check to see if dynamics allow the new synchronized cluster

L

1

0

2

3

4
1

0

2

3

4

Leq

[0,2,4] is a symmetry cluster of Leq

Original Laplacian
Dynamically equivalent 

Laplacian



Counter example: Not all combined clusters will work.

1

0

2

3

4

Combine clusters from different 

original clusters
dynamically equivalent network



Observations: beyond synchronization

Our routine, based on computational group theory,  provides all of the 
possible patterns that can be observed for a given network topology

The routine’s input is the network coupling matrix (either adjacency or 
Laplacian) and its output is a list of all the patterns that can emerge – some 
patterns are allowed, while others are not!

We are able to answer these questions: is this pattern at all possible for this 
network? What are (all) the patterns that are compatible with a given 
network?

Our work has immediate practical relevance: for example to technological 
networks, neuronal networks, genetic networks, for which certain patterns 
may be good and others may be bad. 

Up to this point, our approach is purely topological, not dynamical.



The role of dynamics: stability
In Pecora & Carroll “Master stability functions for synchronized coupled 
systems”, PRL (1998), the stability problem for the fully synchronous 
pattern (L1) was studied

In Pecora, Sorrentino, Hagerstrom, Murphy, and Roy, “Cluster 
Synchronization and Isolated Desynchronization in Complex Networks with 
Symmetries”, Nature Communications (2014), we studied the stability 
problem for the maximal symmetry pattern (A1)

We are currently studying stability of the remaining patterns in a low-
dimensional form

Q1: Which ones of the topologically valid patterns are stable?

Q2: Can we reduce the dimensionality of these stability problems?



2

Quotient networks

To each pattern corresponds a quotient network

In the quotient network, each cluster is represented by only one node

This is helpful because we can linearize about the quotient network dynamics and study stability

Example:

3

PROBLEM: not all the topologically valid patterns are also dynamically valid.
For example, under Laplacian coupling, it is possible that after a transient the blue 
and magenta clusters of the quotient network synchronize on the same time 
evolution. 





ORBITS:

Nodes 0,1,4,7. In what follows: 1,2,5,8.

Nodes 2,3. In what follows: 3,4

Nodes 6,8. In what follows: 7,9

RED AND BLUE CLUSTERS ARE INTERTWINED

Example: a 9-node “random” network



5



C is the Laplacian matrix corresponding to the N=9 node 

network in the previous slide, hence the fully synchronous 

pattern is a solution

We swipe σ while keeping β fixed.

Coupled map equations: 

Laplacian coupling



Stability of the fully sync state 
versus stability of the max 
symmetry solution 

The figure on the right is for initial conditions close to the fully sync solution
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x1=x8 x5=x10 x2=x3=x7=x9

x2=x3 ≠x7=x9 x2=x9 ≠x3=x7 x2=x7 ≠x3=x9

x2≠x3≠x7≠x9

MAX SYMMETRY

x1≠x8;x5≠x10

x2=x7 ≠x3≠x9 x2≠x7 ≠x3=x9

Hierarchy of the symmetry patterns
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x2=x3=x7=x9

x2=x3 ≠x7=x9 x2=x9 ≠x3=x7 x2=x7 ≠x3=x9

x2≠x3≠x7≠x9

x2=x7 ≠x3≠x9 x2≠x7 ≠x3=x9

Dynamically valid patterns



Stability of the lower-symmetry patterns

The block-diagonalized form for a given symmetry pattern can be 

obtained from that of another symmetry pattern 

EXAMPLE: (A3 →L3)
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Analyzing CS Pattern
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Patterns of clusters in a 
five-node network



Stability Analysis

Variational equation of the system equation,

𝛿 ሶ𝑥 𝑡 = ෍

𝑚=1

𝑀

𝐸 𝑚 ⊗𝐷𝐹 𝑠𝑚 𝑡 + 𝜎 ෍

𝑚=1

𝑀

𝐿𝐸 𝑚 ⊗𝐷𝐻 𝑠𝑚 𝑡 𝛿𝑥 𝑡
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Stability Analysis (Contd.)

Final variational equation for the L3 case,

ሶ𝜂 = ෍

𝑚=1

𝑀

𝐽 𝑚 ⊗𝐷𝐹 𝑠𝑚 + 𝜎𝐿′′𝐽 𝑚 ⊗𝐷𝐻 𝑠𝑚 𝜂
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Stability Analysis (Contd.)

The dynamics of the system is modeled by a map according to,

𝑥𝑖
𝑡+1 = 𝛽ℐ 𝑥𝑖

𝑡 + 𝜎෍
𝑗
𝐿𝑖𝑗 ℐ 𝑥𝑖

𝑡 + 𝛿 mod 2𝜋
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Reduction of the dimension of the 
three-dimensional synchronization
manifold.



Stability Analysis (Contd.)
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Experimental synchronization 
error for each synchronization 
pattern as a function of the 
parameter s for a five-node 
experimental system modeled



Stability Analysis (Contd.)
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Experimental phase space 
plots with lines connecting 
successive iterates. (A) Three 
clusters (A3). (B) Two clusters 
(L3). (C) One cluster (L1).



Experimental Validation
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Experimental patterns of light intensity of different 
clusters in the five-node network. (A to C)



Conclusions and open questions

• Symmetries are commonly found in many real networks

• The synchronization dynamics of these networks is influenced by their 
symmetries. In particular: the formation of synchronization clusters 
and their stability

• Given a network topology, several synchronization patterns are in 
general possible and in general they can be studied through a 
sequence of symmetry breaking bifurcation from a single maximally 
synchronous pattern
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