Entropy-based event detection

Ulrich Speidel
Department of Computer Science
The University of Auckland

ulrich@cs.auckland.ac.nz

Joint work with Raimund Eimann

What's the problem?

- Complex systems such as computer networks have observables that yield multivariate time series data
- Chaotic behaviour is actually normal (to an extent)
- So: How does one detect significant system events and how does one distinguish them from normal behaviour?
- What if we don't know very well in advance what effect the event will have on the observables?

Scenario: Computer networks

Scenario: Computer networks

Scenario: Computer networks

Other examples

- Industrial process data (e.g., sensor data in smelter processes)
- Medical data (e.g., ECG/EEG/BP data)
- Traffic monitoring
- Airline data

Need to detect anomalies in order to find out what causes them

• E.g., monitor packet rate/interarrival times - not useful if router hits saturation during normal operation

 Monitor packet size distribution - complex diagram (histogram), fluctuates significantly with time, does not detect some events (e.g., port scans or link failures may go undetected)

- Monitor individual protocols, ports, or payload generally too selective and complex to monitor - information is hard to aggregate and events are easily missed (especially new ones)
- Currently one of the more popular techniques, though

Most if not all conventional approaches are complex and rather narrowband

• Focus is on a single observable, not aggregate

Patterns do not play a major role

Patterns

- IP network traffic contains patterns
- E.g., handshakes, request/response packets in protocols such as HTTP etc.
- E.g., certain ports and IP addresses are seen more often than others, and tend to occur in close temporal proximity
- Permits a certain degree of predictability (low entropy)
- In other words: certain possible patterns occur much more often than others

Entropy monitoring

- Entropy = information rate (f.t.p.o.t.t.*)
- Postulate: Entropy of network traffic changes as patterns in the traffic change
- Network events cause change in patterns and hence change the observed entropy
- Not in itself a new concept:
 - Kulkarni, Bush, and Evans (2002): approximate entropy by LZ compression
 - Feinstein, Schnackenberg, Balupari, and Kindred (2003): use Shannon entropy
 - Wagner and Plattner (2005): also use compression-based monitoring

^{*}for the purposes of this talk

Entropy measurement

- Kulkarni, Bush, and Evans (2002): Quality of entropy-based detection depends on having a good entropy measure
- Fundamental problem: computability
- We can't measure, but we can estimate
- Classical estimators: Statistical/Shannon (bad), but also Lempel-Ziv algorithms (better, 1976 production complexity, LZ77, LZ78)
- Fundamental problem: Overestimation or time/space complexity

Possible alternative: T-Entropy

- Entropy measure developed by Mark Titchener in the late 1990's
- Based on the duality between finite strings and a family of recursively constructed variable-length code sets called *T-codes*
- Can be implemented to run in O(N log N) [Speidel and Yang 2005]
- Seems to be more sensitive for short strings than LZ-based estimators but

correlates well with the latter [Speidel 2009]

T-entropy: conceptual overview

Network event detection: Methodology in principle

Experimental results

- Three hour IP datagram traces from U of Auckland's DMZ gateway
- Typical datagram rate about 8000 datagrams per second
- Processing time for a three hour trace file: 45 minutes on a normal stateof-the-art PC (2006)
- Various mappings and filters were applied
- The ones shown here today use the *full IPv4 information + 48 bytes of the* payload and use a 5000 packet window shifting by 0.675 seconds at a time

Experimental results

Experimental results

- Observation 1: Data is noisy!
- •Observation 2: Depth of entropy drops depends on size of window the longer the window, the shallower the drops
- •Observation 3: The longer the window, the less noise we get
- •Question: Can we define a kind of SNR (signal-to-noise ratio) and try to optimize the window size?

Findings:

- Window size of approx. 5000 maximizes
 SNR in this sample
- Optimal window size is event duration dependent

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz

YEAR

Before SNR optimization

YEAR

After SNR optimization

How do we know that the drops are caused by the events?

- Need to show that the events are both necessary and sufficient to cause entropy drops
- Can show necessity by removing event-related packets
- Can show sufficiency by artificially inserting synthetic events into the traces (simulation)

YEAR

Entropy - unfiltered

Entropy - filtered

YEAR

Entropy - unfiltered

YEAR

Entropy - filtered

Entropy - filtered

Some of the other stories

PRESENTATION

T-entropy sensitivity

Comparison - T-entropy vs. LZ77

201

PRESENTATION

Comparison - T-entropy vs. Shannon

PRESENTATION

Observations

- T-entropy suffers least from overestimation and has a denser range
- LZ production complexity does slightly better than T-entropy but practical algorithms are slow
- Combination of different measures may be useful in event classification

Observations

- Monitoring just a subset of data from IP headers can mean high or low "normal" entropy
- May monitor for drops OR rises depending on "normal" entropy
- "Normal" entropy seems to be site-dependent

IP datagrams and entropy

- Entropy in TCP/IP traffic is contributed by several sources:
- IP header, usually 20 bytes
- TCP/UDP header, usually 20 bytes TCP, 4 bytes UDP
- Payload (packet content), first N bytes captured by tcpdump utility

TCP packet encapsulated inside IP datagram

May want to use all or just part of the header and packet information

Entropy sources in IP headers

Entropies typically observed at a gateway router in "normal" traffic:

Entropy sources in TCP/UDP headers

Source port			Destination port
Own sequence number			
Acknowledgement number			
HdrLer	000000	Flags	Advertised window
Checksum			UrgPtr

Entropies typically observed at a gateway router in "normal" traffic:

Future work

- At some observation sites, sampling all packets is not feasible
- Need to look at flow records and sampled packets rather than full records
- This means throwing information away that may be useful

Other applications

Technique isn't restricted to networks

 Observation: most time-varying observables of complex systems have a pretty stable entropy as long as the system itself is stable

Can use entropy changes as indicators for events

Example

MIMO communication system

 Multi-user, mobile, etc. - channel conditions fluctuate naturally in complex way

Example

 How do we notice permanent changes that may indicate deterioration in equipment performance?

Possible answer

Monitor entropy of channel quality data from feedback

 If entropy remains near-constant compared to reference sample, it is usually reasonable to assume that all is OK

 If entropy rises or falls significantly - something is afoot!

For the conspiracy theorists...

Entropy of pager messages of 9/11...

Conclusions

- Duality between T-codes and strings opens up a number of areas of application network event monitoring is one of them
- Seems to be pretty useful in network event detection!
- Theoretical results are slowly catching up