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What’s the problem?

Complex systems - such as computer networks - have observables that
yield multivariate time series data

Chaotic behaviour is actually normal (to an extent)

So: How does one detect significant system events and how does one
distinguish them from normal behaviour?

What if we don’t know very well in advance what effect the event will
have on the observables?
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2011

<
m
>
Pyl

PRESENTATION

The University of Auckland | New Zealand

Scenario: Computer networks
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Scenario: Computer networks

Internal
network

ooon

Gateway router
(DMZ)

Normal traffic across router:

¢ Chaotic: many different packet sizes, protocols,
addresses, ports...

« But: patterns exist (e.g., repeated HTTP
connections to same web site, e-mail polls, other
handshakes)

» Very complex multivariate statistics
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Scenario: Computer networks

Network events

oooo

Upstream
router 1

Internal
network

ooon —

Gateway router N\ Upstream
(DMZ) N\ router 2
e (D)DoS attacks N
N
« Port scans
o SPAM/SPIM nooo
» Link failures / service outages Upstream

 Other things we don’t know about? router 3
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Other examples

Industrial process data (e.g., sensor data in smelter processes)

2011

<
m
>
Pyl

Medical data (e.g., ECG/EEG/BP data)

PRESENTATION
[ ]

Traffic monitoring

Airline data

Need to detect anomalies in order to find out what causes them

The University of Auckland | New Zealand
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Conventional approaches

E.g., monitor packet rate/interarrival times - not useful if router hits
saturation during normal operation

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz



Conventional approaches

e Monitor packet size distribution - complex diagram (histogram), fluctuates
significantly with time, does not detect some events (e.g., port scans or
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link failures may go undetected)
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Conventional approaches

Monitor individual protocols, ports, or payload - generally too selective
and complex to monitor - information is hard to aggregate and events are
easily missed (especially new ones)

Currently one of the more popular techniques, though

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz



Conventional approaches
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Most if not all conventional approaches are complex and rather
narrowband
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e Focus is on a single observable, not aggregate
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e Patterns do not play a major role
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Patterns

IP network traffic contains patterns
E.g., handshakes, request/response packets in protocols such as HTTP etc.

E.g., certain ports and IP addresses are seen more often than others, and
tend to occur in close temporal proximity

Permits a certain degree of predictability (low entropy)

In other words: certain possible patterns occur much more often than
others

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz
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Entropy monitoring

Entropy = information rate (f.t.p.o.t.t.*)

Postulate: Entropy of network traffic changes as patterns in the traffic
change

Network events cause change in patterns and hence change the observed
entropy

Not in itself a new concept:

- Kulkarni, Bush, and Evans (2002): approximate entropy by LZ
compression

- Feinstein, Schnackenberg, Balupari, and Kindred (2003): use Shannon
entropy

- Wagner and Plattner (2005): also use compression-based monitoring

*for the purposes of this talk

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz
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Entropy measurement

Kulkarni, Bush, and Evans (2002): Quality of entropy-based
detection depends on having a good entropy measure

Fundamental problem: computability
We can’t measure, but we can estimate

Classical estimators: Statistical/Shannon (bad), but also Lempel-
Ziv algorithms (better, 1976 production complexity, LZ77, LZ78)

Fundamental problem: Overestimation or time/space complexity

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz
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Possible alternative: T-Entropy

e Entropy measure developed by Mark Titchener in the late 1990’s

o Based on the duality between finite strings and a family of recursively
constructed variable-length code sets called T-codes

e Can be implemented to run in O(N log N) [Speidel and Yang 2005]

 Seems to be more sensitive for short strings than LZ-based estimators but

correlates well with the latter

[Speidel 2009]
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T-entropy: conceptual overview

T-decomposition —
— T-code decoding tree

x=1011101101010101

duality
C; = weighted \ common part of
number of steps longest codewords

needed to build x

C; = log of # of internal
nodes in tree

“linearization” wrt. |x| via inverse logarithmic integral

Gradient Al;/ A|x|
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Network event detection:
Methodology in principle

header payload
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Observe packets, e.g., at border
gateway

Map packet properties (e.g., length,
port, interarrival time, protocol,
src/dest address) into binary 8-bit
symbols (one or several per packet)

Aggregate several hundred or more
successive mapped packets into a
symbol string (sliding window)

Measure average T-entropy of that
string

Repeat for sliding window over time
and plot T-entropy values against
time

sliding window

Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz
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Experimental results

Three hour IP datagram traces from U of Auckland’s DMZ gateway
Typical datagram rate about 8000 datagrams per second

Processing time for a three hour trace file: 45 minutes on a normal state-
of-the-art PC (2006)

Various mappings and filters were applied

The ones shown here today use the full IPv4 information + 48 bytes of the
payload and use a 5000 packet window shifting by 0.675 seconds at a time

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz
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Average T-entropy [bits/byte]
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Our first stab at the data with a 500 packet window...

Windows Messaging Service spam
SYN flood attack
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Experimental results

«Observation 1: Data is noisy!

«Observation 2: Depth of entropy drops depends on size of window - the
longer the window, the shallower the drops

«Observation 3: The longer the window, the less noise we get

«Question: Can we define a kind of SNR (signal-to-noise ratio) and try to
optimize the window size?

The University of Auckland | New Zealand
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Findings:

e Window size of

~/ approx. 5000 maximizes
i ] SNR in this sample
i ) » Optimal window
i 8620050722 ] size is event duration
 trace20050805 dependent

| | | |
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How do we know that the drops
are caused by the events?

Need to show that the events are both necessary and sufficient to
cause entropy drops

Can show necessity by removing event-related packets

Can show sufficiency by artificially inserting synthetic events into
the traces (simulation)

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz
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Entropy - filtered
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Average T-entropy [bits/byte]
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Entropy - filtered
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Average T-entropy [bits/byte]
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Some of the other stories
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T-entropy sensitivity
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Comparison - T-entropy vs. LZ77
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Comparison - T-entropy vs. Shannon
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Observations
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e T-entropy suffers least from overestimation and has a denser range
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e LZ production complexity does slightly better than T-entropy but
practical algorithms are slow
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« Combination of different measures may be useful in event
classification
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Observations

Monitoring just a subset of data from IP headers can mean high or
low “normal” entropy

May monitor for drops OR rises depending on “normal” entropy

“Normal” entropy seems to be site-dependent

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz
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IP datagrams and entropy

Entropy in TCP/IP traffic is contributed by several sources:
IP header, usually 20 bytes

TCP/UDP header, usually 20 bytes TCP, 4 bytes UDP

Payload (packet content), first N bytes captured by tcpdump utility

TCP packet encapsulated inside IP datagram

UDP packet encapsulated inside IP datagram

May want to use all or just part of the header and packet information

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz
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Entropy sources in IP headers

Total length of datagram (16 bits)

Source IP address (32 bits)
Destination IP address (32 bits)

Entropies typically observed at a gateway router in “normal” traffic:

high
A

low

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz
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Entropy sources in TCP/UDP

headers

Source port Destination port
Own sequence number |
IAcknowledgement number |

000000

Checksum

Entropies typically observed at a gateway router in “normal” traffic:

high
\
w— == == =TCP only

UDP checksum covers header only

low

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz

UDP has a 16 bit length field before the checksum &



Future work
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e At some observation sites, sampling all packets is not feasible
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e Need to look at flow records and sampled packets rather than full
records
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e This means throwing information away that may be useful
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Other applications

e Technique isn't restricted to networks

e Observation: most time-varying
observables of complex systems have a
pretty stable entropy as long as the
system itself is stable

e Can use entropy changes as indicators for
events

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz
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Example

MIMO communication system
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Multi-user, mobile, etc. - channel conditions fluctuate
naturally in complex way

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz
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Example

« How do we notice permanent changes
that may indicate deterioration in
equipment performance?
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Possible answer

e Monitor entropy of channel quality data from
feedback

e If entropy remains near-constant compared to
reference sample, it is usually reasonable to
assume that all is OK

e If entropy rises or falls significantly - something
is afoot!

Ulrich Speidel - Detecting Network Events via T-entropy - ulrich@cs.auckland.ac.nz
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For the conspiracy theorists...

e Entropy of pager messages of 9/11...

T-entropy of 100000 byte+ chunks of 9/11 pager messages

T-entropy [natsfbyte]

1

1 1 1 1
08:30:00 09:04:00 09:30:00 10:p0:00 10:

1 1 1
0:00 11:00:00 11:30:00

12:00:C

First plane hits

Second plane hits

AllL NY airports shut

Ulrich Speidel - Detecting NebWOWer wolenses IT-entropy
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Conclusions
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Duality between T-codes and strings opens up a number of areas of
application - network event monitoring is one of them
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Seems to be pretty useful in network event detection!
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e Theoretical results are slowly catching up
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