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Introduction of NIl

< National Institute of Informatics
e Chiyoda-ku, Tokyo, Japan.
- Fairly new government-funded research lab.

e Offers graduate courses & degrees through The
Graduate University for Advanced Studies.

WA - 60+ faculty in “informatics”. quantum computing,
discrete algorithms, machine learning, computer
networks, computer vision, image & video processing.

« Foreigner-friendly, actively seeking int’l collaborations.
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Turing Test

e Alan Turing introduced test in 1950.

e Q: can a person engage in natural language
conversation, and not be able to tell if participant is
computer or human?

A. Turing, “Computing Machinery and Intelligence”, Mind, (236): 433-460, Oct, 1950.
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Immersive Experience Test

e Q: can a person engage in natural inter-personal
Interaction, and not be able to tell if participant is
rendered images or actual human?

Large display
w/ HQ
life-size images

Loss/delay tolerant
Gaze-c.orrected multiview transmission
View

Multiview video coding &
View Synthesis

/Motion Parallax:\ Natural visual media

Fast view-switching interaction
via
S head tracking )
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Background to Depth Map Encoding

< Multiview Imaging:

= Closely spaced cameras taking pictures simultaneously.

e Besides captured texture maps, depth maps can also be
captured / estimated.

e Texture / depth maps enable synthesis of intermediate
views using Depth-Image-Based Rendering (DIBR).

e Also called “Image / video + depth” format.

e Depth Map Compression Problem:

< How to efficiently encode depth maps in a rate-distortion
optimal way?
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1-slide Summary of Contributions

e Key Observation:
e Depth map is:
< NOT for direct observation.
= For interpolation of intermediate views via DIBR.

e Can manipulate depth values WITHOUT directly
causing visual distortion.

e Key ldea: sparse transform coding

1. Define per-pixel sensitivity for depth map
according to its effect on DIBR.

2. Find sparse rep. in transform domain for
compression gain, given per-pixel sensitivity.
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Related Work

e Depth Map Specific Compression

Depth characteristics: smooth surface & sharp edges.
Edge encoding + adaptive wavelet [Maitre TIP’08].

Diff: We manipulate depth value directly for
compression gain.

e Depth Map Distortion Analysis

Depth err — position err — copy wrong texture pixel.

New metric for block-by-block mode selection [Kim
ICIP’09].

Diff. We manipulate depth values given defined error
sensitivity for sparsity in trans. coding.
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Related Work

" Signal manipulation in decoded JPEG
7 e Indep. DCT block transform — high freq. boundaries.

< Signal in guan bins w/o HF via POCS [Rosenholtz
CSVT’92].

= Diff: We manipulate depth values in pixel domain, to
maximize sparsity in trans. coding.

« Signal manipulation in LBT coding
= distortion vs. |,-norm of trans. coeff. [Winken ICIP’10].
= Diff: diff. DCRs for diff. depth pixels due to DIBR.

= Diff: sparsity in trans. domain — |, minimization.
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Don’t Care Region (DCR)

 \Whatis DCR?

< DCR of pixel (i,J)) = range of depth values, s.t. err
of synth pixel value < pre-defined threshold.
= |ntuition: DCRs larger in smooth textural regions.

e Note: unigue to depth maps, not done in
literature!

e Key Questions:

Pixel Value vs. Pixel Position for Example DCR
300

1. How to formally define DCR?

2. Given DCR, how to find sparse rep in
compressed domain?
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captured

Don’t Care Region

i 1 synthesize

e System Setup:

captured

= Two horizontally shifted cameras.

e Interpolate middle view w/ middle depth map only.
e Encode middle depth map only.

e Derive ground truth depth map:

= Synthesize middle view with left & right texture maps:

1 1 : :
mld( Jd) Ieft(|_|_d J) 2|right(l_dij)

Pixel Value vs. Pixel Position for Example DCR
300
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e Ground truth is depth value w/ smallest err:
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Don’t Care Region

e Derive DCR:
e Define threshold T.

- Find (i) and g(i,)) around ground truth d i)
_ _ ..
f(i, j)=min{d} BT

min d _Imln <T
- o L (0 35€)= o0 1)
g(i, j=max{d} >— e@ho

Pixel Value vs. Pixel Position for Example DCR
300 T T

250 -

= Large threshold T,

200 -

= |large search space for sparse rep. in transform
domain.

pixel value
o
o

= |arge errin synthesized distortion.
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Problem Formulation

signal in
transform domain
e Given DCRR,

e find s in R with sparse rep. a in ttansform domain:

S—— ~—  orthogonal
within defined DCR: mi nHa

s.t. a — CI)S transform
f <s <gi’j/> seR

. IO
EER signal in

= |, norm is # of non-zero coeff’s. el eemelh

=[{i:a =0

@

lo

e Combinatorial, difficult to solve.
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linear objective function

Surrogate Objective

lo

= Given |, is hard, solve |, (surrogate) instead.

1 :Z‘a“ st. a=dS

. \
2, Y fii<s;<0;; linear constraints
= Efficiently solved via linear programming.
= |, is quite different from |, , so weighted |,?
a.
| = 1/|a| |fa =0,
a Il = 2. vilas
= |1
Jes

= Problem: don’t know weights 1/]a;]’s a priori.
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Surrogate Objective

e SolI'n: iterative algorithm*
1.

Init weights w, = 1.

. Solve |, minimization for sol’n a;s.

2

3.
° 4

4

. Repeat step 2 and 3 till convergence.

Set weights w, = 1/]a,].

a‘i
sl EQJ < Actually, want sparse quantized coeff.

*Candes et al., “Enhancing sparsity by reweighted |, minimization,” JFAA, 12/2008.

t ff = a.
Quant coe round[')

a.
Non-zero quant coeff only if —| > 0.5
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Surrogate Objective

a

Q

20.5}

Recall:
non-zero quant coeff only if

e Define shrinkage coeft:
d;

o; = max —-0.5,0
lals

e Define new obj. func: min Zwiai
i

N

linear objective function

= Write «;in linear form:

aizﬁ—O.S a=a®s

f <$ ;i <0,

i,j — Vi

/

linear constraints
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Experimental Results #1

Synthesized PSNR vs. Coding Rate for teddy

e Independent JPEG grroup’s cjpeg
version 8a.

< Multiview seq. teddy from Middlebury.

e Optimize 8x8 pixel block at a time.

« Fixed Threshold T, opt all blocks of depth
map and vary QP.

- Texture maps not compressed.

e (Observations:

1. AsTincreases, RD performance improves.
2. Up to 2.5dB improvement of ground truth.

3. No annoying visual artifacts due to
sparse representation.
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Experimental Results #2

Synthesized PSNR vs. Coding Rate for bull
33 1 ‘

< Multiview seq. bull from Middlebury.

32

e (Observations:

| 1. AsTincreases, RD performance improves,
e | e Tos but improvement tails off faster.

Up to 1.5dB improvement of ground truth.

3. No annoying visual artifacts due to
sparse representation.
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Soft Thresholding

e Problems with Hard Thresholding (DCR):
1. Optimize for 1 depth map.

2. lIterative LP still computation expensive.

e Define per-pixel penalty function.

e Promote sparsity using weighted 12-norm.

< Unconstrained quadratic programes.
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synthesized view distortion

Define Per-pixel Penalty Function

Syn. View Distortion vs. Disparity for Teddy

150

X data
O mono data
O gt
100 f| - -~ penalty
X
50 ke
B 2 B
Q@'x X Ly XX
xx XQ@@@@ X
0 i
75 80 85 90 95

disparity value

e Define quadratic penalty function:

(}/)as +bs. +c

« Synthesized distortion sensitive to depth
pixel — sharper parabola.

E, (k;m,n)=|I,(m+D,(m,n)+k,n)-1,(m,n)

RN

error '
left texture map right texture map
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Objective Function

< Sum of [0-norm + weighted penalties (transform domain):
S = Z ;.

¥ T AZ 0; (¢i_10‘)

trans. coeff. quadratic
e Replace I0-norm with weighted 12-norm: penalty func.

depth signal / basis func.

N1 PN min|c

e Unconstrained quadratic program, solvable via set of
linear equations.
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lterative Quadratic Minimization

2 -1

1. Initweights W, = Ua}‘ +62), where ait Is coeff of ground truth

depth signal.

Find optimal a° using surrogate objective.

- 0 2 -1 . a_o _1
Set weight «° to Gaio +52) if %] 05 and .5 ow.
I

4. Repeat until convergence.
« Initialize weights using depth signal.
e Discount contribution to weighted I12-norm if quantized to 0.
*Daubechies et al., “Iteratively reweighted least squares minimization for sparse recovery,” 27

Comm. Pure Appl. Math, 20009.



synthesized view PSNR

Experimental Results

Synthesized View PSNR vs. Coding Rate for Teddy

30
‘ R e
P -’
295F I A S Stan
” ’ ’
9‘ ’/ : /'
I, ’,,6 ’,
29t 3 L et
’
’
28.5——A0’—‘ S RS 5 SATES SIS S
/‘x’ x t
Lo T | ™ =g H
x
28 -©-1=0.05
-©-1=0.01
- A~ 1=0.005
27.5 | | | I T
6 8 10 12 14 16 18

size of left depth map in kbytes

Independent JPEG grroup’s cjped
version 8a.

Multiview seq. teddy from Middlebury.
Optimize 8x8 pixel block at a time.
Texture maps not compressed.
Observations:

1. Up to 1.5dB improvement of ground truth.

2. No annoying visual artifacts due to
sparse representation.
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Conclusion & Future Work

e Depth map compression for DIBR.

e Fixed transform, signal manipulation approach:
1. Define error sensitivity for each depth pixel,

2. Find most sparse rep. in compressed domain given
defined per-pixel error sensitivity.

e Solve weighted I1, 12 surrogate of 10-norm minimization.

= Significant RD improvement in synthesized view.

e Future Work:

1. Motion-compensated video?
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Quantization Effects on DCR

Wia, = Quant. in non-zero coeff not accounted for.

e Quant. can force LP-solved sol’n outside DCR.

l L I e Heuristic: 1 more LP to force sol’n inside DCR.
) ai SZ
0.5Q]

Ny
w ¢ grid 1
A grid?2 01

a.
round ('j

Q .

quantization error
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