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Introduction of NII

• National Institute of Informatics
• Chiyoda-ku, Tokyo, Japan.
• Fairly new government-funded research lab.
• Offers graduate courses & degrees through The 

Graduate University for Advanced Studies.
• 60+ faculty in “informatics”: quantum computing, 

discrete algorithms,  machine learning, computer 
networks, computer vision, image & video processing.

• Foreigner-friendly, actively seeking int’l collaborations.
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Turing Test

• Alan Turing introduced test in 1950.
• Q:  can a person engage in natural language 

conversation, and not be able to tell if participant is 
computer or human? 
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A. Turing, “Computing Machinery and Intelligence”, Mind, (236): 433–460, Oct, 1950.



Immersive Experience Test

• Q:  can a person engage in natural inter-personal 
interaction, and not be able to tell if participant is 
rendered images or actual human? 
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Background to Depth Map Encoding

• Multiview Imaging:
• Closely spaced cameras taking pictures simultaneously.
• Besides captured texture maps, depth maps can also be 

captured / estimated.
• Texture  / depth maps enable synthesis of intermediate 

views using Depth-Image-Based Rendering (DIBR).
• Also called “Image / video + depth” format.

• Depth Map Compression Problem: 
• How to efficiently encode depth maps in a rate-distortion 

optimal way?
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1-slide Summary of Contributions

• Key Observation:
• Depth map is:

• NOT for direct observation.
• For interpolation of intermediate views via DIBR.

• Can manipulate depth values WITHOUT directly 
causing visual distortion.

• Key Idea:  sparse transform coding
1. Define per-pixel sensitivity for depth map 

according to its effect on DIBR.
2. Find sparse rep. in transform domain for 

compression gain, given per-pixel sensitivity.
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Related Work

• Depth Map Specific Compression
• Depth characteristics:  smooth surface & sharp edges.
• Edge encoding + adaptive wavelet [Maitre TIP’08].
• Diff:  We manipulate depth value directly for 

compression gain.

• Depth Map Distortion Analysis
• Depth err → position err → copy wrong texture pixel.
• New metric for block-by-block mode selection [Kim 

ICIP’09].
• Diff: We manipulate depth values given defined error 

sensitivity for sparsity in trans. coding.
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Related Work

• Signal manipulation in decoded JPEG
• Indep. DCT block transform → high freq. boundaries.
• Signal in quan bins w/o HF via POCS [Rosenholtz 

CSVT’92].
• Diff: We manipulate depth values in pixel domain, to 

maximize sparsity in trans. coding.

• Signal manipulation in LBT coding
• distortion vs. l1-norm of trans. coeff. [Winken ICIP’10].
• Diff: diff. DCRs for diff. depth pixels due to DIBR.
• Diff: sparsity in trans. domain → l0 minimization.
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Don’t Care Region (DCR)

• What is DCR?
• DCR of pixel (i,j) = range of depth values, s.t. err 

of synth pixel value ≤ pre-defined threshold.
• Intuition: DCRs larger in smooth textural regions.
• Note: unique to depth maps, not done in 

literature!

• Key Questions:
1. How to formally define DCR?
2. Given DCR, how to find sparse rep in 

compressed domain?
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Don’t Care Region

• System Setup:
• Two horizontally shifted cameras.
• Interpolate middle view w/ middle depth map only.
• Encode middle depth map only.

• Derive ground truth depth map:
• Synthesize middle view with left & right texture maps:

• Ground truth is depth value w/ smallest err:
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Don’t Care Region

• Derive DCR:
• Define threshold T.
• Find f(i,j) and g(i,j) around ground truth dmin(i,j):

• Large threshold T, 
• large search space for sparse rep. in transform 

domain.
• large err in synthesized distortion.
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Problem Formulation

• Given DCR R,
• find s in R with sparse rep. a in transform domain:

• l0 norm is # of non-zero coeff’s.

• Combinatorial, difficult to solve.
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Surrogate Objective

• Given l0 is hard, solve l1 (surrogate) instead.

• Efficiently solved via linear programming.
• l1 is quite different from l0 , so weighted l1?

• Problem:  don’t know weights 1/|ai|’s a priori.
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Surrogate Objective

• Sol’n:  iterative algorithm*
1. Init weights wi = 1.
2. Solve l1 minimization for sol’n ai‘s.
3. Set weights wi = 1/|ai|.
4. Repeat step 2 and 3 till convergence.

• Actually, want sparse quantized coeff.
• Quant coeff =

• Non-zero quant coeff only if 
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*Candes et al., “Enhancing sparsity by reweighted l1 minimization,” JFAA, 12/2008.
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Surrogate Objective

• Define shrinkage coeff:

• Define new obj. func: 

• Write αi in linear form:
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Experimental Results #1

• Independent JPEG grroup’s cjpegcjpeg
version 8a.

• Multiview seq. teddyteddy from Middlebury.
• Optimize 8x8 pixel block at a time.
• Fixed Threshold T, opt all blocks of depth 

map and vary QP.
• Texture maps not compressed.
• Observations:

1. As T increases, RD performance improves.
2. Up to 2.5dB improvement of ground truth.
3. No annoying visual artifacts due to 

sparse representation.
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Experimental Results #2

• Multiview seq. bullbull from Middlebury.

• Observations:
1. As T increases, RD performance improves, 

but improvement tails off faster.
2. Up to 1.5dB improvement of ground truth.
3. No annoying visual artifacts due to 

sparse representation.
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Soft Thresholding

• Problems with Hard Thresholding (DCR):
1. Optimize for 1 depth map.
2. Iterative LP still computation expensive.

• Define per-pixel penalty function.
• Promote sparsity using weighted l2-norm.

• Unconstrained quadratic programs.
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Define Per-pixel Penalty Function

• Define quadratic penalty function:

• Synthesized distortion sensitive to depth 
pixel  → sharper parabola.
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Objective Function

• Sum of l0-norm + weighted penalties (transform domain):

• Replace l0-norm with weighted l2-norm:

• Unconstrained quadratic program, solvable via set of 
linear equations.
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Iterative Quadratic Minimization

1. Init weights                           , where       is coeff of ground truth 
depth signal.

2. Find optimal         using surrogate objective.
3. Set weight        to                             if             and          o.w. 

4. Repeat until convergence.

• Initialize weights using depth signal.
• Discount contribution to weighted l2-norm if quantized to 0.
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Conclusion & Future Work

• Depth map compression for DIBR.
• Fixed transform, signal manipulation approach:

1. Define error sensitivity for each depth pixel,
2. Find most sparse rep. in compressed domain given 

defined per-pixel error sensitivity.

• Solve weighted l1, l2 surrogate of l0-norm minimization.
• Significant RD improvement in synthesized view.

• Future Work:
1. Motion-compensated video?
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Quantization Effects on DCR

• Quant. in non-zero coeff not accounted for.
• Quant. can force LP-solved sol’n outside DCR.
• Heuristic:  1 more LP to force sol’n inside DCR.
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