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includes 5 campuses, area of about 4 km?.
31 schools (departments)

63 undergraduate programs

250 masters-degree programs,
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28 post-Dr programs

11 state key laboratories / national eng.
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@® 2&AHY) of Electronic. Information &
Elect. Eng. (EIEE)

® Consists of 7 major disciplines, including:

* Electrical Eng.

* Electronic Science and Technology

* Information and Communication Eng.

* Control Science and Eng.

* Computer Science and Technology

* Software Eng.

* Instrument Science and Technology
® 120 professors; 180 associate professors.
® > 700 PhD students, >2000 MSC students,

>3500 BSC students.




= =g B Mz
By X ELdLY Part 1

SHANGHAI JIAO TONG UNIVERSI

saliency detection




’I%M ¥ 1. Introduction

® Motivation

Everyone knows what attention is...
——William James

® A computational approach to visual attention

® Fast selection for objects of interest in scenes



演示者
演示文稿备注
We begin with the motivation of our work by a quotation from the famous psychologist William James. “Everyone knows what attention is”. Actually, the problem of visual attention is challenging. The purpose of our work is to develop a computational approach to visual attention, which serves as a fast selection for objects of interest in different scenes. 
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® Visual saliency is the selective mechanism of
human visual attention that concentrates on
one aspect of the scene while ignoring other

things.

Cognitive Neuropsychology
neuroscience

Computer
vision

Psychology

Studied by multiple disciplines
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object detection and recognition
Image compression
video summarization,

content-based image editing and
Image retrieval.




1. Introduction

® Two branches of saliency detection in computer vision:
Eye fixation prediction v.s. Salient object detection

Salient object/region detection

Eve fixation prediction
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® Eye fixation prediction becomes active after

Itti et al.s work (TPAMI 1998)....
A Model of Saliency-Based Visual Attention
for Rapid Scene Analysis

Laurent Itti, Christof Koch, and Ernst Niebur
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Feature Integration: 1tti1998, 1tti2000, 1tti2005, Gao2008...
Input imagE/ —
|

[ Linear filtering |
" colors _—" __—intensity — __—orientations_—

_ — P _ —
Center-surround differences and normalization ]
——  Feature = maps - —
I a—— " a—— P a———

Across-scale combinations and normalization ]

o | |
— — Conspicuity _——— maps P
|

-+

Combinations |

Saliency map _— I R
I

[ Winner-take-all | | Inhibition
I of return

Attended location


演示者
演示文稿备注
Many effort have been focus on this topic. We will give a brief review of two kind of method. The first one is first proposed by Itti 1998. The core idea is feature integration and center surround architecture. As shown in this flow chart, the input image is first divided into patches along different scales. 

Then a bank of linear filters in performed on each patch to form different feature channels, such as colors, intensity and orientation. And some center-surround operation is performed to enhance the stimuli. Finally, all the channels are combined to form the final saliency map. After that, certain mechanism called inhibition of return together with the winner-take-all network is performed to model the shift of attention. We exactly follow the center surround architecture in our work and focus on how to produce the saliency map.

(The standard approaches are based on biologically motivated feature selection, followed by center-surround operations which highlight local stimuli, and finally a combination step leading to a "master saliency map".) 
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® Salient object detection becomes active after
Liu et al.’s work (CVPR 2007, TPAMI 2011)

Learning to Detect a Salient Object

Tie Liu, Zejian Yuan, Jian Sun, Jingdong Wang, Nanning Zheng, Fellow, IEEE,
Xiaoou Tang, Fellow, IEEE, and Heung-Yeung Shum, Fellow, IEEE

Abstract—In this pap#®
where we separate thi
surround histogram, &
field is learned to effecss .
salient object from seq -4
of thousands of carefig
them to demonstrate || 3 e

-ﬁ R Jlem as a binary labeling task
LR o multiscale contrast, center-
abally. A conditional random

roposed approach to detect a
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® Our work focuses on salient object detection:
-Automatically detect attention-grabbing objects
in a scene;
-Highlight entire objects uniformly and suppress
irrelevant background in resulting saliency maps;

Input image Ground truth Our saliency map
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1. Introduction

® The motivation:

Image

2

Conventional pipeline

Regions

2

Regional saliency

Results of state-of-the-art models

Regions for saliency
computation

Superpixels for saliency
computation

Only local color similarity considered;
object holism ignored;
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® The motivation:

Better grouping of | leads to,| Better saliency

a whole object estimation

Results of state-of-the-art models

Input imae DRFI

NCS (ours)




1. Introduction

® Novelties of this work:

1. Apply the Normalized graph cut (Ncut) to
salient region detection, and induce a saliency
map by Ncut eigenvectors for better visual
clustering;

2. Embed saliency detection in an adaptive multi-
level merging scheme to discover cluster
information conveyed by Ncut eigenvectors.
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® What is Normalized graph cut (Ncut)?

Given a similarity graph G=(V,E) with affinity matrix W and a
desired partition number k, Ncut finds a partition {A; A,

,,,,,

A} of V which minimizes: Large affinity
K (A;, A;) B
CUr(A;, Aj
Ncut(Aq, ..., Ar) = \
( ) ; assoc(A;, V) —
...... . \\ Cut

where: cut(A, B) := Zn;eA,z;jeB wj;

assoc(A;, V) = ZU;’EA v;eV Wij / | small affinity

A toy graph
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1. Introduction

® Why use Ncut for saliency detection?

1. Due to the normalization, Ncut biases cut of fairly
large sets of vertices. Most salient objects are
perceptually large regions, whereas too small
regions often correspond to noise or parts of an
object.

2. Ncut is a global, discriminative, and also non-
parametric partition technique. Its approximated
solution is efficient to achieve.

3. Ncut has not yet been used to inducing saliency
maps.




SAXLY 2. Proposed Method

Graph-based multi-level region merging

Reconstructed Level #1 Level #5 Level #10 Level #15 Final saliency map
construction graph edges
(only weights between
adjacent superpixels
are visualized)
Edge detection Intermediate saliency & across-level integration Integrated map

Overview of the proposed method




rEXLZE 2 Proposed Method

® Graph Construction for the Ncut:

Input image Superpixel graph

A node belonging to
the salient object

lullll

A node belonglng to
the background

The 2-ring graph topology: green connections (neighbor superpixels)
+ blue connections (neighbors of neighbor superpixels)
+ brown connections (boundary superpixels)




&) FERIAY 2. Proposed Method

® Graph Construction for the Ncut:

Graph edge weight (affinity)

apptedge
S { exp(——+——) If Ry, I’j are connected

0 Otherwise
app+edge . app edge
d = (1 — a)d? + adS;
~~ ~—
Superpixel color differences Intervening edge magnitude
app __ . edge
dij — ”C’& CJHQ d;;” = Imax E(p)
Object and SEEEBEEESEEAE
HEECIETAW
background have I%:n-- ..IW-
similar colors but P I.===¢’.:.-..-

goet
Sk
$8 e

different textures

2
%

H
B
e

Q

Intervening edge magnitude may help delineate object v.s. background!




@ :x#ii2% 2 Proposed Method

® Apply the Ncut to Obtain Cluster Information

1) Solve (D — W)v = ADv for generalized eigenvectors;

nvec (nvec=8) eigenvectors with smallest non-zero eigenvalues

Input image [% N Ve
‘;— e >

2) Reconstruct the graph edge between two nodes:

noec

¢ij = Z |vk(R°> — Vi (RY)]

Rationale: eigenvectors are soft indicator vectors of Ncut. The
reconstruction is indeed a measure of inter-cluster distance, i.e, the
extent of the two nodes belonging to different clusters.




2. Proposed Method

® Graph-based Adaptive Merging of Vertices

A multi-level adaptive merging scheme is proposed to generate
regions for saliency computation:

1) Merging starts from initial superpixels {R, R), ..., R}
2) Atlevel ], two regions R!, Rﬂ. are fused if
Dj; < Th
[ [ [N
D;; = D(R;, R;) = meanukeRf,U,”ER;-,(?;\-,”EE{ek’”}

3) At the next level [+1: A fixed step
during mergin
Th < Th4T, - Lduring merging

4) The merging proceeds adaptively until the whole image
becomes one region.




rELLE 2 Proposed Method

® Graph-based Adaptive Merging of Vertices

Cluster information gradually discovered

Reconstructed Level #1 Level #5 Level #10 Level #15
graph edges
from Ncut




2. Proposed Method

® Regional Saliency Measures During Merging

Consider saliency measures for a merged region Rf:

v’ Figure-Ground Contrast Sﬁ": the color contrast to
boundary superpixels (boundary superpixels are
pseudo-background)

v’ Center Bias ;| " the closer to image center, the larger.

v Boundary Cropping S;; : 0 for a region touching more
than one image border, and 1 otherwise.

A combinatorial regional saliency score for Rll. ;

s/ = slf . seh . shs
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SAXLY 2. Proposed Method

® Across level integration

~ Graph-based multi-level region merging

Level #1 Level #5 Level #10 Level #15

~esele

Intermediate saliency & across-level integration  Integrated map

® Post-smoothing by manifold ranking:
f = (D —BW) s

Smoothed saliency map Manifold ranking Integrated saliency map




FEXLAY 3 Experiments and Results

® Quan. comparisons with 13 methods on 5 datasets

n.4H
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Recall

Precision-recall curve F-measure Mean absolute error
(higher is better) (higher is better) (lower is better)



FEXLAY 3 Experiments and Results

® Quan. comparisons with 13 methods on 5 datasets
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3. Experiments and Results

® Quan. comparisons with 13 methods on 5 datasets

[ I Recall
1 I:I F-measura

0.3 0.4 o.a 0.e Q.7 0.5
Recall

Precision-recall curve
(higher is better)

a.e 1 CA FT LG HC RC LR HS PCADRA GC MR Ours

F-measure
(higher is better)

"Mean Absolufe Error (MAE)
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ZELLAT 3 Experiments and Results

® Quli. comparisons on SOD




#)xF2i£% 3 Experiments and Results

® Quli. comparisons on SED1, SED2 and CSSD
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Semi-Supervised Learning
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BIFEALLT Ppoblems of Supervised Learning

* High-quality labelled samples are often difficult
to obtain

* Training instances are not uniformly sampled
* Sensitive to noise in training samples
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#) X EX{47 supervised learning results

KNN:two-rectangle SVM:two-rectangle
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Supervised learning results

KNN:two-moon SVM:two-moon
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Categories of SSL algorithms

g probabilistic generative model
semi-supervised SVM
ssL < graph-based model
Co-training
-

Advantages of graph-based SSL:
1) mathematical background,
2) compact algebraic linear forms,
3) good results in computational biology, web mining,
or text categorization, etc.




Basic Conceptions

Graph or Network: ©=(V.E)

w. =1, 1if (I, J)eE
% Adjacency :{ J L
Matrix: w; =0, if (i,j)eE
X Degr'ee D :{d“ :VOI(i)}
2 X3 Matrix:
Laplacian Matrix: L=D-W
Properties:
y a) semi-positive definitive
%y 5 b) multiplicity of 4 is equal to

number of connected component
c) exist a group orthogonal
eigenvectors
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Construct Graph G=(V,E)

vertices: V ={X,X,,.... X}
Edges: E:W={w, >0}
Edge types:

1)Weight: Wi =exp(lx—x; I /207)
2)Knn:w, =1, if x, e{Knnof x}

3)énn: w, =1 if [[x, -xl<e




A Learning Model
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To learn a function f in graph meeting two
constraints S(f) =min Zwij (fi - fj)z
-]

1) Smoothness:
C(f)=min 3" (f,-,)
2) Consistency:
F(f)=S(f)+C(f)== Z(f —y.)? +f7Lf
Final objective fUHCTIOH
st. <f,e>=0, e=(111...2'




LPDGL : Label Prediction via

Deformed Graph Laplacian for
Semi-supervised Learning




s Y # L4 4% LPDGL:
G o u.,. i Deformed Graph Laplacian for Semi-supervised Learning

Motivation:

This paper introduces Deformed Graph Laplacian (DGL) and
preser - . G o PERRR S VR for semi-
supen j_“wﬁmﬁ[ 17" e, | e 1 Used N
LPDG . 'I'T | ¢ | | : neighbors
locally - mmmfﬁ) [Tty [ttttg) Yy properly

dealin D1 23 456 g 10 11 12 01 232 458 7 8 010112 01 2 2 45 6678 8101112

Fig. 1: The illustration of local smoothness constraint on
DoubleLine dataset. A k-NN graph with & = 2 is built and
the edges are shown as green lines in (a). (b) shows the result
without incorporating the local smoothness, and (c) is the
result produced by the proposed LPDGL. The labels of “bridge
point” under two different simulations are highlighted in (b)
and (c), respectively.

Reference: Deformed Graph Laplacian for Semi-supervised Learning, Chen Gong,
Dacheng Tao, Keren Fu, Enmei Tu, Jie Yang, accepted by TNNLS, 2015.




LPDGL.:
Deformed Graph Laplacian for Semi-supervised Learning

Advantages:

« A novel local smoothness term Is Introduced
“naturally”, which Is critical for our SSL model to
better deal with ambiguous examples;

« LPDGL Is able to achieve higher classification
accuracy than some state-of-the-art methods for
both transductive and inductive settings;

« LPDGL can be regarded as a unified framework of
many popular SSL algorithms




X4 A% LPDGL:
....... AR . Deformed Graph Laplacian for Semi-supervised Learning

Deformed graph Laplacian:

L(k) = k(I — W /v) — %(I — D/v).
The proposed regularizer:
fTLE = f7 [k(I — W /v) — 2(I— D/v)] f

.2
— (k — k2)FTF — 'fTWerh' £7(D — W)f+

— (k—k )fo+ (— )—fTWf—(H—n—*’fTDf
v v




LPDGL.:
Deformed Graph Laplacian for Semi-supervised Learning

Theatrical Analyses (Robustness)

Theorem 5: Let  denote the input space, and_¥x,x € 7. |x,-x |<7. A

k-NN graph is built with the edge weights represented by RBF kernel

q

‘fac*)) . Under_s(ef2.x[|)< , the proposed

) 24 2em)])
LPDGLIs [a,z\/ﬂj{HJﬂj '{1_3@[_5 gy ||
a a’J 200 )




LPDGL.:
Deformed Graph Laplacian for Semi-supervised Learning

Theatrical Analyses (Generalization)

Theorem 7: Let L(f.¥)= %||v. -Jks| be the loss function of LPDGL, than
forany &> 0,the generalizationerror of LPDGL is-

Prob| () - L,,, (4,)|21-5

ol  F12en ) 12\ DEIn2+2 :
< gﬁ_f_ﬁfj I-exp ol +=-1£??. i L_ nl +Hf .\/-Kin-+-1n(1/cﬁ'j
i 1 S 2 Yo 2) n
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swammotonsunvesy ——— Deformed Graph Laplacian for Semi-supervised Learning

Relationship with existing SSL algorithms:

Replace y with o —

defined in [20 LLReg

PBSSL

Path-based

similarity
y=0
y=0 y=0 Anchor
Linear neighbor Normalized graph

graph graph Laplacian

=0
LapRLS
=0

Hinge loss

y=0
| Replace I-Dfv LGReg
with M defined

in [21]

GTAM

Node
normalization

=
|
=]

I

> f(x)=0 |regularization

S(x) e {1}
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Fig. 3: Transduction on two 3D datasets: (
the initial states of Cylinder&Ring and Knor Fig. 4 Induction on DoubleMoon and Square&Ring datasets.

blue circle represents a negative example. (b €Xamples. (b) and (d) are induction results, in which the

transduction results of LPDGL on these two decision boundaries are plotted.
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Fig. 7. Experimental results on UUSPS dataset. (a) shows the
transductive results, and (b) shows the inductive results.
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TABLE IV: Transductive comparison on Yuale dataset S
o P
LGC 0.66 = 0.06 0.76 = 0.02
! HF 0.65 1+ 0.04 0.79 &+ 0.01 ]
Indiv AGR 0.50 £ 0.03 0.64 + 0.02 f;;
LNP 0.32 4+ 0.0b 0.34 &£ 0.04
LapRLS 0.63 £+ 0.05 0.714+£0.03
LapSVM 0.63 1+ 0.05 0.724+0.03
S4VM(Linear) 0.27 + 0.07 0.52 & 0.06
] S4VMI(RBF) 0.11 &= 0.02 0.23 +0.04 1
Indiv LLReg 0.65 = 0.08 0.79 £ 0.09 o
LPDGL 0.67 &= 0.03 0.81 &£ 0.01 o
Y
L

TABLE V: Inductive comparison on Yale dataset

LNP 0.10 £ 0.04 0.15 £ 0.05
LapSVM 0.69 & 0.01 0.77 £0.01
LapRLS 0.68 & 0.01 0.79 £ 0.01
LPDGL 0.69 £ 0.04 0.83 £0.03
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Experimental Results

Face recognition (LFW data)
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TABLE VI: Transductive comparison on LFW dataset

| | [ = 50 | [ =100 | { = 150 | I =200 |
LGC 0.50 + 0.07 | 0.60+0.05 | 0.65 4 0.08 0.69 + 0.06
HF 0.66 £ 0.03 | 0.78+0.02 | 0.834+0.01 0.87 4+ 0.01
AGR 0.60+0.03 | 0.711+0.01 | 0.76 £0.02 | 0.80+ 0.01
LNP 0.3240.07 | 0.384+0.16 | 0.574+0.12 | 0.59+ 0.11
LapRLS 0484+ 0.03 | 0.624+0.04 | 0.71 £0.03 | 0.75 £ 0.03
LapSVM 0.574+002 | 0.701+0.03 | 0.744+0.03 | 0.76 4+ 0.03
S4VM(Linear)| 0.56 4+ 0.05 0.68 +0.03 | 0.734+0.03 | 0.77 £ 0.02
S4VM(RBF) | 0.454+0.06 | 0.614+0.02 | 0.704+0.02 | 0.73 4 0.02
LLReg 0.5240.04 | 0.69 4 0.02 0.86 1+ 0.02 0.88 £+ 0.01
LPDGL 0.71 = 0.02 0.81 +0.02 | 0.86 +0.01 0.90 4+ 0.01

TABLE VII: Inductive comparison on LFW dataset

{ =50 [ = 100 [ = 150 [ =200
LNP 030007 | 033009 | 0.45x0.13 | 0.45£0.09
LapSVM | 0.65+0.01 | 0.69+0.03 | 0.75£0.02 | 0.76 £0.01
LapRLS | 0.67X£0.04 | 0.73X£0.02 | 0.78 £0.01 | 0.79 £0.01
LPDGL 0.70+0.03 | 0.78+0.03 | 0.80+0.02 | 0.83£+0.02

2}
L.
I
i
:
!
:
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Experimental Results

Fight detection (HockeyFight data)

Fight: |

Non-fig

TABLE VIII: Transductive results on HockeyFight dataset

| (=40 | =80 | =120 | I=160 |
LGC 0.80 £+ 0.03 0.82 1+ 0.02 0.83 1 0.02 0.84 4+ 0.01
HF 0.80 £+ 0.02 0.84 + 0.01 0.86 £ 0.01 0.87 + 0.01
AGR 0.79 = 0.02 0.82 4 0.01 0.83 £ 0.01 0.83 1+ 0.01
LNP 0.61 & 0.08 0.65 + 0.10 0.65 = 0.09 0.67 £ 0.11
LapRLS 0.72 1+ 0.02 0.76 + 0.01 0.79 4+ 0.01 0.79 4+ 0.01
LapSVM 0.67 4+ 0.03 0.66 &+ 0.02 0.70 & 0.02 0.71 £ 0.01
S4VM(Linear)| 0.80 4+ 0.05 0.84 4+ 0.02 0.84 4+ 0.03 0.86 4+ 0.01
S4AVMI(RBEF) 0.81 1+ 0.03 0.84 + 0.01 0.86 + 0.01 0.87 4+ 0.01
LLReg 0.78 + 0.04 0.79 + 0.01 0.82 £ 0.01 0.82 4+ 0.01
LPDGL 081 4+0.03 0.85 4 0.01 0.87 £+ 0.01 0.88 + 0.01

TABLE IX: Inductive results on HockeyFight dataset

| i = 40 | =80 | 1=120 | 1=160 |
LNP 0.584+0.12 | 0.58+:0.08 | 0.58 =0.10 | 0.59 1+ 0.11
LapSVM | 0.59 £0.02 | 0.614+0.01 | 0.61£0.01 | 0.65X£0.01
LapRLS | 0.70£+0.01 | 0.73+£0.01 | 0.73£0.01 | 0.74 £0.01
LPDGL 0.71+0.02 | 0.v3+£0.03 | 0.74£0.02 | 0.75£0.01
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Parametric Sensitivity
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Fig. 6: Empirical studies on the parametric sensitivity of LPDGL. (a) and (e) are Iris, (b) and (f) are Wine, (c) and (g) are
BreastCancer, and (d) and (h) are Seeds. The sub-plots in the first row show the transductive results, and the sub-plots in the
second row display the inductive results.

Conclusion:
The performance of LPDGL is not sensitive to the

choice of parameters.
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Conclusion

1. Given a few labelled samples, semi-supervised
learning generally performs much better than
supervised learning, like SVM

2. semi-supervised learning algorithms are more
robust to noise




Multi-modal Curriculum
Learning for Semi-supervised
Image Classification
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® |n practical applications, data is often obtained
from multiple sources rather than a single
source.

® Multi-modal learning (MML) is therefore
proposed to explicitly fuse the complementary
iInformation from different modalities to achieve
Improved performance.

® MML algorithms can be classified into three
groups (arXiv 15): co-training (COLT 98),
multiple kernel learning (JMLR 04), and

subspace learning (NIPS 12).



&y X EA4LY  Background—Curriculum learning

® Curriculum learning (ICML 09) aims to improve the
learning  performance by designing suitable
curriculums from simple to difficult for the stepwise
learner.

® curriculum learning Is able to boost the convergence
speed of the training process as well as find a better
local minima than the existing solvers for non-convex
problems

® The existing curriculum learning algorithms can be
divided into two categories: self-paced learning (NIPS
10; MM 13; NIPS 14), and teaching-to-learn and
learning-to-teach (CVPR 15; TNNLS 16; AAAI 16).




~ Motivation- Why curriculum learning?

® Existing SSL methods often yield unsatisfactory results,

as they are very likely to make incorrect classifications
on “outliers” or “bridge examples”. This Is because
existing methods treat all the unlabeled images equally
without considering the difficulty or reliability of their
classification.

We assume that different images have different levels of
difficulty and utilize curriculum learning to re-organize
the learning sequence, so that the unlabeled images
are logically classified from simple to difficult.

the previously attained simple knowledge to facilitate
the subsequent classification of complex images.




f‘ﬁfi Zf‘? Motivation - Why multi-modal learning?

Ié

An image can usually be characterized by
different feature descriptors.

We regard each type of features as one modality
and develop “Multi-Modal Curriculum Learning”
(MMCL) to guide the learning process. As a
result, the consistency and complementarity of
various features can be fully exploited.

Our MMCL strategy is very similar to the
human’s acquisition of knowledge during the

various stages from childhood to adulthood,
during which time an individual gains knowledge
from many teachers of different subjects.
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fﬁ";{@’ut_ - Single-modal Curriculum Generation

The reliability and discriminability of every
unlabeled image are Investigated by the
“teacher” to make a selection.

Reliability:
* A curriculum § is reliable w.r.t. the labeled set £ if the conditional

entropy H(ys|y,) is small.
* Small H(ys|y;) suggests that the curriculum set § comes as no

“surprise” to the labeled set L.
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A curriculum is diseriminable-if-the included | images are significantly
inclined to certain classes.

* The tendency of an image x; belonging to a class C; is modeled by
the average commute time between x; and all the images in C;.

average commute time; [(x Z I'xi.xi) where

JxEL

I'(x;, Xz Zl /\L “Lz - “l.z 2 (PAMI 07)
Therefore, x; is discriminable |fthe gap M(x;) =T(x;,Co)-T(x;,C1) is large.
Here C; and C, are the two closest classes to x; measured by average commute time.

The simplest curriculum in V|ew of discriminability is
found by solving

min Z 1/M(x;,)

S={xi, € U} _ 1
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y comblnlng reliability—and- discriminability, we arrive at
the following optimization problem:

min  tr(Xss - ES,L’,EE‘IK' ¥es) -I-Z 1/M(x;, )

S={x;, € U};_, k=1

To make it tractable, we introduce a S € {1,0}bx

binary selection matrix
The element §;; = 1 means that the i-th image is selected as the j-th element in the curriculum §.

The optimization problem can be reformulated to the
following matrix form:

min tl‘(STEBQBS - STEBLEZ:EEQBS)

S
aT The orthogonality
-|-t1(S MS) 4’ constraint ensures that

‘ bxs @lg _ every image is selected
st SE{L0}77, S8 =1y, onby once




Multi-modal Curriculum Generation

High level idea: force the V teachers to reach a consensus on selecting the
optimal curriculum §*

min Z’u 9(‘)TR
§(1) ... §(V) g

st. §* e {1.0}“*. §* 78" =1,
S(t']E 1.0 bXS. S(t']Ts(l']zl

R=%p5-%5.2; 2c5+M
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Algorlthm 1 The algorithm for solving ) -subproblem (10)

I: Input: R, 8%, SW e St AW =0,0" =1, p=12 5
iter =0

2. repeat

% // Compute T

4: TS') = ma)\(() S -{—AEJ o))

5. // Update S' bv using Eq. (11)

6 S"):=Proj, [s ~1Vg0 L (8,40, 10,0}

7. // Update variables

8: A(-'_If') = max (U A(U) - (t')SEJP)):

9; 0(") = min(po”

10: until Convergence

11: Output: S/

that minimizes Eq. (

10

)

1010) iter .= iter + 1;
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KZ? Multi-modal Classification with Feedback

We employ the label propagation algorithm (ICML 03) as the learner because
it is naturally incremental and does not require retraining with the arrival of a
new curriculum.

(v)[t] _ P.E'U)F[t_l]. X € (S*[l] U...Ug*[t—ll) U St
| ) FEO] , X; € [:[O] U (L{[O] — S*[l] U.ve U S*[l‘])

the integrated label matrix is
computed by:

erp (— St — gl H’)

_Z} 1(:1;( HS )lt]




Experiments

All the images in the adopted datasets are

represented by
dimensional G
(Totally 3 moda

We first valic
algorithm on

the 72-dimensional PHOG, 512-
ST, and 256-dimensional LBP.
ities)

ate the motivation of our MMCL
a small database, and then

compare MMCL with several state-of-the-art
methods on eight practical image datasets.
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Two arguments are demonstrated:
1) curriculum learning is critical to improving classification

performance;
2) MMCL is superior to single-modal
(SMCL).
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The effectiveness of two key steps in our MMCL is
demonstrated:

1) the establishment of learning feedback;

2) the convergence of propagations
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Algorithm validation(3)

We visualize the curriculum images selected by our MMCL
during the entire teaching and learning process.

The introduced teachers in MMCL can accurately evaluate the difficulty level of
every unlabelled image, and effectively organize the entire propagation process so
that all the images are classified from simple to difficult.
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Comparison with otheratgorithms

Datasets:

CaltechAnimal ~ Architecture - MSRC  UIUC ~ Scenel5 ORLFace CIFARIOU NUS-WIDE

# classes Y 25 20 h 15 A() [()0) [12
# inulgcs; 720 | OO0 589 1579 4485 400 (OO 47254
Baselines:

The Gaussian Field and Harmonic Functions (ICML 03)
: Dynamic Label Propagation (ICCV 13)
. Adaptive Multi-Modal Semi-Supervised classifier
(ICCV 13)
: Sparse Multiple Graph Integration (SMGI) (TNNLS 13)
: Single Modal Curriculum Learning
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Fig. 6. Classification results of the compared methods on several visually
challenging images. The red crosses represent “incorrect classifications” while
the green ticks denote “correct classifications”.
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