MODELING AND CHARACTERIZATION OF TRAFFIC IN A PUBLIC SAFETY WIRELESS NETWORK

Božidar Vujičić bvujicic@cs.sfu.ca

Communication Networks Laboratory http://www.ensc.sfu.ca/cnl Simon Fraser University Vancouver, BC

- Introduction
- Traffic data models
- OPNET simulation model
- Statistical concepts and analysis tools
- OPNET simulation results
- Statistical analysis of traffic data
- Conclusions and references

Roadmap

Introduction

- Traffic data models
- OPNET simulation model
- Statistical concepts and analysis tools
- OPNET simulation results
- Statistical analysis of traffic data
- Conclusions and references

E-Comm network: coverage and user agencies

E-Comm network architecture

Structure of trunked radio systems

Network characteristics

- EDACS: Enhanced Digital Access Communications Systems
- Simulcast: repeaters covering one cell use identical frequencies
- Trunking: available frequencies in a cell are shared dynamically among mobile users
 - transmission trunking
 - message trunking
- Cell capacity (number of available frequencies in a cell):
 - one radio channel occupies one frequency
 - one call occupies one radio channel

- Users are organized in talk groups:
 - one-to-many type of conversations
- Push-to-talk (PTT) mechanism for network access:
 - user presses the PTT button
 - system locates other members of the talk group
 - system checks for availability of channels:
 - channel available: call established
 - all channels busy: call queued/dropped
 - user releases PTT:
 - call terminates

Erlang traffic models

- *P_B* : probability of rejecting a call
- *P_c* : probability of delaying a call
- *N* : number of channels/lines
- *A* : total traffic volume

- Erlang B model assumes:
 - call holding time follows exponential distribution
 - blocked call will be rejected immediately
- Erlang C model assumes:
 - call holding time follows exponential distribution
 - blocked call will be put into a FIFO queue with infinite size

- Introduction
- Traffic data models
- OPNET simulation model
- Statistical concepts and analysis tools
- OPNET simulation results
- Statistical analysis of traffic data
- Conclusions and references

Previous work

- Simulation:
 - OPNET
 - WarnSim
- Traffic prediction based on user clusters
 - Seasonal ARIMA model

Statistical analysis of traffic

[1] N. Cackov, B. Vujičić, S. Vujičić, and Lj. Trajković, "Using network activity data to model the utilization of a trunked radio system," in *Proc. SPECTS*, San Jose, CA, July 2004, pp. 517–524.

[2]N. Cackov, J. Song, B. Vujicic, S. Vujicic, and Lj. Trajkovic, "Simulation and perfomance evaluation of a public safety wireless network:case study," *Simulation*, to appear.

[3] J. Song and Lj. Trajković, "Modeling and performance analysis of public safety wireless networks," in *Proc. IEEE IPCCC*, Phoenix, AZ, Apr. 2005, pp. 567–572.

[4] H. Chen and Lj. Trajković, "Trunked radio systems: traffic prediction based on user clusters," in *Proc. ISWCS*, Mauritius, Sept. 2004, pp. 76–80.

[5] D. Sharp, N. Cackov, N. Lasković, Q. Shao, and Lj. Trajković, "Analysis of public safety traffic on trunked land mobile radio systems," *IEEE J. Select. Areas Commun.*, vol. 22, no. 7, pp. 1197–1205, Sept. 2004.

[6] B. Vujičić, N. Cackov, S. Vujičić, and Lj. Trajković, "Modeling and characterization of traffic in public safety wireless networks," in *Proc. SPECTS 2005*, Philadelphia, PA, July 2005, pp. 14–223.

- 2001 data set:
 - 2 days of traffic data
 - 2001-11-1 to 2001-11-02 (110,348 calls)
- 2002 data set:
 - 28 days of continuous traffic data.
 - 2002-02-10 to 2002-03-09 (1,916,943 calls)
- 2003 data set:
 - 92 days of continuous traffic data
 - 2003-03-01 to 2003-05-31 (8,756,930 calls)

Sample of processed data: 2003-03-01

No	Time (hh:mm:ss)(r	ms)	Call Duration (ms)	System Id	Channel Id	Caller	Callee
1	00:00:00 3	30	1340	1	12	A	В
6	00:00:00 4	89	1350	7	4	А	В
29	00:00:03 6	20	7550	2	7	С	D
31	00:00:03 7	'60	7560	1	3	С	D
37	00:00:04 2	60	7560	7	6	С	D
38	00:00:04 3 [,]	40	7560	6	6	С	D

Traffic data used for OPNET simulations

- Timestamps and durations corresponding to single call differ due to discrepancies in records:
 - the smallest timestamp was chosen arbitrarily
 - the largest call duration (worst-case scenario) was used
- Original timestamp represents date and time of call start
 - in simulations: timestamp is difference between the original timestamp and arbitrary reference time
 - reference times: 0:00 on February 25, 2002 and 0:00 on March 10, 2003

Trace (dataset)	Time span		
2002	0:00, February 25,2002 – 24:00, March 3, 2002		
2003	0:00, March 10,2003 – 24:00, March 16, 2003		

Data processing for OPNET model

Timestamp	Duration (ms)	Caller	Callee	Cell
2003-03-20 0:00:10.639	4,870	Α	В	4
2003-03-20 0:00:10.599	4,830	Α	В	8
2003-03-20 0:00:10.529	4,860	Α	В	9
2003-03-20 0:00:10.510	4,870	Α	В	10

- Coarse resolution of the timestamp
 - activity data: 10 ms
 - data model: 1 s
- Example:

Overlapping usage of channels

Timestamp	Duration (ms)	Cell	Channel
2003-03-20 0:00:33.370	9,420	10	4
2003-03-20 0:00:42.769	4,290	10	4

- 0:00:42.769 < 0:00:33.370 + 9.420</p>
 - channel 4 in cell 10 is occupied by two calls at the same time!

Traffic data used for statistical modeling

- Records of network events:
 - established, queued, and dropped calls in the Vancouver cell
- Traffic data span periods during:
 - 2001, 2002, and 2003

Trace (dataset)	Time span	No. of established calls
2001	November 1–2, 2001	110,348
2002	March 1–7, 2002	370,510
2003	March 24–30, 2003	387,340

 Call holding and call inter-arrival times from the five busiest hours in each dataset (2001, 2002, and 2003)

2001		2002		2003	
Day/hour	No.	Day/hour	No.	Day/hour	No.
02.11.2001 15:00–16:00	3,718	01.03.2002 04:00–05:00	4,436	26.03.2003 22:00–23:00	4,919
01.11.2001 00:00-01:00	3,707	01.03.2002 22:00–23:00	4,314	25.03.2003 23:00–24:00	4,249
02.11.2001 16:00–17:00	3,492	01.03.2002 23:00–24:00	4,179	26.03.2003 23:00–24:00	4,222
01.11.2001 19:00–20:00	3,312	01.03.2002 00:00-01:00	3,971	29.03.2003 02:00–03:00	4,150
02.11.2001 20:00–21:00	3,227	02.03.2002 00:00-01:00	3,939	29.03.2003 01:00–02:00	4,097

Example: March 26, 2003

- Introduction
- Traffic data models
- OPNET simulation model
- Statistical concepts and analysis tools
- OPNET simulation results
- Statistical analysis of traffic data
- Conclusions and references

Central switch (site) model

- Reads the trace file
- Generates packets according to calls from trace file
 - one call = one packet
 - packet_size (bits) = k × call_duration (s)
 - k: bit rate of channels (k=1,000 bps in simulations)
- Checks for availability of channels in the cells and sending packets to appropriate cells
- Collects statistics

Central switch: OPNET node model

Dispatcher module in the central switch: OPNET process model

- Introduction
- Traffic data models
- OPNET simulation model
- Statistical concepts and analysis tools
- OPNET simulation results
- Statistical analysis of traffic data
- Conclusions and references

- Probability distribution:
 - probability that outcomes of a process are within a given range of values
 - expressed through probability density (pdf) and cumulative distribution (cdf) functions
- Autocorrelation:
 - measures the dependence between two outcomes of a process
 - wide-sense stationary processes: autocorrelation depends only on the difference (lag) between the time instances of the outcomes

Long-range dependence: definition

Slow decay of the autocorrelation function r(k) of a (wide-sense) stationary process X(n):

$$\sum_{k=-\infty}^{\infty} r(k) = \infty$$
 definition
$$r(k) = c_r k^{-(2-2H)}, \ k \to \infty$$
 model
$$f(v) = c_f |v|^{-\alpha}, \ v \to 0$$
 corollary

where f(v) is the power spectral density of X(n), c_r and c_f are non-zero constants, and $0 < \alpha < 1$

0.5 < H < 1 implies LRD

LRD: long-range dependence

Wavelet coefficients

Discrete wavelet transform of a signal X(t): $d(j,k) = \int_{-\infty}^{\infty} X(t) \psi_{j,k}(t) dt \quad \text{wavelet coefficients}$

where

$$\psi_{j,k}(t) = 2^{-j/2} \psi(2^{-j}t - k)$$

- $\psi(t)$: mother wavelet
 - j: octave
 - *k* : translation
- Reconstruction formula:

$$X(t) = \sum_{j=0}^{k} \sum_{k} d(j,k) \psi_{j,k}(t)$$

- Let *X*(*t*) be LRD process (wide-sense stationary)
 - its power spectral density:

 $f(v) \sim c_f |v|^{-\alpha}, v \to 0$

 Mean square value of its wavelet coefficients on octave j satisfies:

 $E\{d(j,k)^{2}\} = 2^{j\alpha}c_{f}C(\alpha,\psi)$ where $C(\alpha,\psi) = \int |v|^{-\alpha} |\Psi(v)|^{2} dv$ does not depend on j

D. Veitch and P. Abry, "A wavelet-based joint estimator of the parameters of long-range dependence," *IEEE Trans. on Information Theory*, vol. 45, no. 3, pp. 878–897, Apr. 1999.

• Logarithm:

 $\log_2 \mathrm{E}\{d(j,k)^2\} = \alpha \times j + c$

- Important property: for given j, d(j,k) does not exhibit long-range dependence (with respect to k)
 - with appropriately chosen mother wavelet
- Hence:
 - simple estimator for $E\{d(j,k)^2\}$ is a sample mean:

$$\mathbf{E}\{d(j,k)^2\} = \frac{1}{n_j} \sum_{k=1}^{n_j} d(j,k)^2$$

n_i: number of wavelet coefficients at octave *j*

Estimation of α and H

- Logscale diagram: plot of log₂E{d(j,k)²} vs. j (octave)
- Linear relationship between log₂E{d(j,k)²} and j on the coarsest octaves indicates LRD
- Estimation of α:
 - linear regression of log₂E{d(j,k)²} on j in the linear region of the logscale diagram
- $H = 0.5 (\alpha + 1)$

Logscale diagram: example

call inter-arrival times: 22:00–23:00, 26.03.2003
α=0.576, H=0.788 (octaves 4–9)

Test for time constancy of $\boldsymbol{\alpha}$

- X(n): wide-sense stationary process
 - α does not depend on n
- Is α constant throughout the time series X(n)?
- Approach:
 - divide X(n) into *m* blocks of equal length
 - estimate α for each block
 - compare the estimates
- If α varies significantly, estimating α for the entire time series is not meaningful
- In our analysis: $m \in \{3, 4, 5, 6, 7, 8, 10\}$
Kolmogorov-Smirnov test

- Goodness-of-fit test: quantitative decision whether the empirical cumulative distribution function (ECDF) of a set of observations is consistent with a random sample from an assumed theoretical distribution
- ECDF is a step function (step size 1/N) of N ordered data points Y₁, Y₂, ..., Y_N:

$$E_N = \frac{n(i)}{N}$$

n(i): the number of data samples with values smaller than Y_i

- Hypothesis:
 - null: the candidate distribution fits the empirical data
 - alternative: the candidate distribution does not fit the empirical data
- Input parameters: significance level σ and tail
- Output parameters:
 - p-value
 - k: test statistic
 - cv: critical (cut-off) value

- Significance level σ : determines if the null hypothesis is wrongly rejected σ percent of times, if it is in fact true
 - default value $\sigma = 0.05$
- or defines sensitivity of the test:
 - smaller σ implies larger critical value (larger tolerance)
- tail: specifies whether the K-S performs two sided test (default) or tests from one or other side of the candidate distribution

Output parameters

• Test statistic k is the maximum difference over all data points: $k = \max_{1 \le i \le N} \left| F(Y_i) - \frac{i}{N} \right|$

where *F* is the CDF of the assumed distribution

- The null hypothesis is accepted if the value of the test statistic is smaller than the critical value
- p-value is probability level when the difference between distributions (test statistics) becomes significant:
 - if p-value $\leq \sigma$: test rejects the null hypothesis
- If test returns critical value = NaN, the decision to accept or reject null hypothesis is based only on p-value

Best-fitting distributions: CDF

Inter-arrival time: complementary CDF

K-S test: call inter-arrival times 2001

Significance level $\sigma = 0.1$

Distribution	Parameter	02.11.2001, 20:00–21:00	02.11.2001, 16:00–17:00	02.11.2001, 15:00–16:00	01.11.2001, 19:00–20:00	01.11.2001, 00:00-01:00		
exponential	h	1	1	0	1	1		
	р	0.0384	0.0001	0.5416	0.0122	0.0135		
	k	0.0247	0.0369	0.0131	0.0277	0.0259		
	h	0	1	0	0	1		
Weibull	р	0.3036	0.0409	0.4994	0.1574	0.0837		
	k	0.0171	0.0236	0.0136	0.0195	0.0206		
	h	0	1	0	1	1		
gamma	р	0.3833	0.0062	0.3916	0.0644	0.0953		
	k	0.0159	0.0287	0.0148	0.0227	0.0202		
Significance lovel a		0.01	0.04	0.05 0		$0 \qquad 0 \qquad 1$		

Significance level σ	0.01	0.04	0.05	0.08	0.09	0.1
02.11.2001, 16:00–17:00: cv	0.0275	0.0237	0.0230	0.0215	0.0211	0.0207
01.11.2001, 00:00-01:00: cv	0.0267	0.0229	0.0223	0.0208	0.0204	0.0201

- Introduction
- Traffic data models
- OPNET simulation model
- Statistical concepts and analysis tools
- OPNET simulation results
- Statistical analysis of traffic data
- Conclusions and references

- Presence of daily cycles:
 - minimum utilization: ~ 2 PM
 - maximum utilization: 9 PM 3 AM
- 2002 sample data:
 - cell 5 is the busiest
 - other cells seldom reach their capacities
- 2003 sample data:
 - several cells (2, 4, 7, and 9) have all channels occupied during busy hours

- appear only in the OPNET simulation results (do not exist in the deployed network)
- occur during busy hours
- may be used to identify possibly congested cells

Sample data	Cell no.	Capacity	No. of discarded calls
2002		original	91
2002	5	3 + 1	62
2003		original	1,812
2003	9	6 + 1	679
2002	4	5 + 1	F.2.1
2005	9	6 + 1	521

original can				
cell	ch.			
1	12			
2	7			
3	4			
4	5			
5	3			
6	7			
7	6			
8	4			
9	6			
10	6			
11	3			

Maximum and average utilizations

		2002		20	03
Cell	Capacity	Maximum	Average	Maximum	Average
1	12	11	2.5	11	2.6
2	7	7	0.8	7	1.6
3	4	4	0.3	4	0.5
4	5	5	0.3	5	1.1
5	3	3	0.2	3	0.3
6	7	7	0.7	7	1.2
7	6	6	0.7	6	1.1
8	4	4	0.3	4	0.4
9	6	6	0.4	6	1.6
10	6	4	0.2	6	1.0
11	3	3	0.2	3	0.2

General OPNET statistics for data samples

- 2002 sample data:
 - span: 8:00, February 1 8:00, February 8
 - number of calls: 403,590
 - discarded calls: 91
- 2003 sample data
 - span: 0:00, March 20–24:00, March 26
 - number of calls: 645,167
 - discarded calls: 1,812
- Discarded calls are due to discrepancies in the data
 - they appear only in simulation results

- Introduction
- Traffic data models
- OPNET simulation model
- Statistical concepts and analysis tools
- OPNET simulation results
- Statistical analysis of traffic data
- Conclusions and references

Statistical distributions

- Fourteen candidate distributions:
 - exponetial, Weibull, gamma, normal, lognormal, logistic, log-logistic, Nakagami, Rayleigh, Rician, t-location scale, Birnbaum-Saunders, extreme value, inverse Gaussian
- Parameters of the distributions: calculated by performing maximum likelihood estimation
- Best fitting distributions are determined by:
 - visual inspection of the distribution of the trace and the candidate distributions
 - K-S test on potential candidates

Maximum Likelihood Estimation (MLE)

- Introduced by R. A. Fisher in 1920s
- The most popular method for parameter estimation
- Goal: to find the distribution parameters that make the given distribution that follow the most closely underlying data set
- Conduct an experiment and obtain *N* independent observations

•
$$\theta_1, \theta_2, ..., \theta_k$$
 are k unknown constant parameters which
 $L(x_1, x_2, ..., x_N | \theta_1, \theta_2, ..., \theta_k) = L = \prod_{i=1}^N f(x_i; \theta_1, \theta_2, ..., \theta_k)$
 $i = 1, 2, ..., N$

Call inter-arrival times: pdf candidates

K-S test results: 2003

Distribution	Parameter	26.03.2003, 22:00–23:00	25.03.2003, 23:00–24:00	26.03.2003, 23:00–24:00	29.03.2003, 02:00–03:00	29.03.2003, 01:00–02:00
	h	1	1	0	1	1
Exponential	р	0.0027	0.0469	0.4049	0.0316	0.1101
	k	0.0283	0.0214	0.0137	0.0205	0.0185
	h	0	0	0	0	0
Weibull	р	0.4885	0.4662	0.2065	0.286	0.2337
	k	0.013	0.0133	0.0164	0.014	0.0159
	h	0	0	0	0	0
Gamma	р	0.3956	0.3458	0.127	0.145	0.1672
	k	0.0139	0.0146	0.0181	0.0163	0.0171
Lognormal	h	1	1	1	1	1
	р	1.015E-20	4.717E-15	2.97E-16	3.267E-23	4.851E-21
	k	0.0689	0.0629	0.0657	0.0795	0.0761

Call inter-arrival time: autocorrelation

Call inter-arrival times: 26.03.2003, 22:00–23:00

other traces have similar logscale diagrams

Call inter-arrival times: estimates of H

 Traces pass the test for time constancy of α: estimates of H are reliable

2001		2002		2003	
Day/hour	Н	H Day/hour H		Day/hour	Н
02.11.2001 15:00–16:00	0.907	01.03.2002 04:00–05:00	0.679	26.03.2003 22:00–23:00	0.788
01.11.2001 00:00-01:00	0.802	01.03.2002 22:00–23:00	0.757	25.03.2003 23:00–24:00	0.832
02.11.2001 16:00–17:00	0.770	01.03.2002 23:00–24:00	0.780	26.03.2003 23:00–24:00	0.699
01.11.2001 19:00–20:00	0.774	01.03.2002 00:00-01:00	0.741	29.03.2003 02:00–03:00	0.696
02.11.2001 20:00–21:00	0.663	02.03.2002 00:00-01:00	0.747	29.03.2003 01:00–02:00	0.705

Call holding time: pdf candidates

Best-fitting distributions: cdf

K-S test results: 2003

- No distribution passes the test when the entire trace is tested (significance levels = 0.1 and 0.01)
- Lognormal distribution passes test (significance level = 0.01) for:
 - 5-6 sub-traces from 15 randomly chosen 1,000-sample subtraces
 - passes the test for almost all 500-sample sub-traces
- Test rejects null hypothesis when the sub-traces are compared with candidate distributions:
 - exponential
 - Weibull
 - gamma

Call holding time: autocorrelation

Logscale diagram, call holding times: 26.03.2003, 22:00–23:00

- independence: $\alpha \approx 0$ (H \approx 0.5)
- other traces have similar logscale diagrams

Call holding times: estimates of H

- all traces (except one) pass the test for constancy of $\boldsymbol{\alpha}$
- only one unreliable estimate (*): consistent value

2001		2002		2003	
Day/hour	Н	H Day/hour H		Day/hour	Н
02.11.2001 15:00–16:00	0.493	01.03.2002 04:00–05:00	0.490	26.03.2003 22:00–23:00	0.483
01.11.2001 00:00-01:00	0.471	01.03.2002 22:00–23:00	0.460	25.03.2003 23:00–24:00	0.483
02.11.2001 16:00–17:00	0.462	01.03.2002 23:00-24:00	0.489	26.03.2003 23:00–24:00	0.463 *
01.11.2001 19:00–20:00	0.467	01.03.2002 00:00-01:00	0.508	29.03.2003 02:00–03:00	0.526
02.11.2001 20:00–21:00	0.479	02.03.2002 00:00-01:00	0.503	29.03.2003 01:00–02:00	0.466

Call inter-arrival and call holding times

	200	1	2002	2	2003	3
	Day/hour	Avg. (s)	Day/hour	Avg. (s)	Day/hour	Avg. (s)
inter-arrival	02.11.2001	0.97	01.03.2002	0.81	26.03.2003	0.73
holding	15:00–16:00	3.78	04:00-05:00	4.07	22:00–23:00	4.08
inter-arrival	01.11.2001	0.97	01.03.2002	0.83	25.03.2003	0.85
holding	00:00-01:00	3.95	22:00-23:00	3.84	23:00–24:00	4.12
inter-arrival	02.11.2001	1.03	01.03.2002	0.86	26.03.2003	0.85
holding	16:00–17:00	3.99	23:00–24:00	3.88	23:00–24:00	4.04
inter-arrival	01.11.2001	1.09	01.03.2002	0.91	29.03.2003	0.87
holding	19:00–20:00	3.97	00:00-01:00	3.95	02:00–03:00	4.14
inter-arrival	02.11.2001	1.12	02.03.2002	0.91	29.03.2003	0.88
holding	20:00–21:00	3.84	00:00-01:00	4.06	01:00-02:00	4.25

Avg. call inter-arrival times: 1.08 s (2001), 0.86 s (2002), 0.84 s (2003) Avg. call holding times: 3.91 s (2001), 3.96 s (2002), 4.13 s (2003)

Distribution	Expression	Remark
exponential	$f(x) = \frac{e^{-x/\mu}}{\mu}$	
Weibull	$f(x) = ba^{-b}x^{b-1}e^{-(x/a)^{b}}I_{(0,\infty)}(x)$	$I_{(0,\infty)}(x)$: incomplete beta function
gamma	$f(x) = \frac{x^{a-1}e^{-(x/b)}}{b^a \Gamma(a)}$	$\Gamma(a)$: gamma function
lognormal	$f(x) = \frac{e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}}{x\sigma\sqrt{2\pi}}$	

Best fitting distributions

	Distribution						
Durauhaum		Call inter-	Call holdi	Call holding times			
Dusy hour	Wei	bull	Gan	nma	Logno	ormal	
	а	b	а	b	μ	σ	
02.11.2001 15:00-16:00	0.9785	1.1075	1.0326	0.9407	1.0913	0.6910	
01.11.2001 00:00-01:00	0.9907	1.0517	1.0818	0.8977	1.0801	0.7535	
02.11.2001 16:00-17:00	1.0651	1.0826	1.1189	0.9238	1.1432	0.6803	
01.03.2002 04:00-05:00	0.8313	1.0603	1.1096	0.7319	1.1746	0.6671	
01.03.2002 22:00-23:00	0.8532	1.0542	1.0931	0.7643	1.1157	0.6565	
01.03.2002 23:00-24:00	0.8877	1.0790	1.1308	0.7623	1.1096	0.6803	
26.03.2003 22:00-23:00	0.7475	1.0475	1.0910	0.6724	1.1838	0.6553	
25.03.2003 23:00-24:00	0.8622	1.0376	1.0762	0.7891	1.1737	0.6715	
26.03.2003 23:00-24:00	0.8579	1.0092	1.0299	0.8292	1.1704	0.6696	

- call inter-arrival times: H≈0.7–0.8
- call holding times: H≈0.5

- We created an OPNET model and simulated two weeks of network activity
- Network utilization exhibits daily cycles
- Between February 2002 and March 2003:
 - number of calls increased by ~ 60 %
 - average utilization increased non-uniformly across the network
- Several cells may become congested in future

- We analyzed busy hours voice traffic from a public safety wireless network in Vancouver, BC
 - call inter-arrival and call holding times during five busy hours from 2001, 2002, and 2003
- Statistical distribution functions of traffic traces:
 - Kolmogorov-Smirnov goodness-of-fit test
 - autocorrelation functions
 - wavelet-based estimation of the Hurst parameter

- Call inter-arrival times:
 - best fit: Weibull and gamma distributions
 - long-range dependent: H≈0.7–0.8
- Call holding times:
 - best fit: lognormal distribution
 - uncorrelated

References

- L. A. Andriantiatsaholiniaina and L. Trajković, "Analysis of user behavior from billing records of a CDPD wireless network," in *Proc. Workshop on Wireless Local Networks*, Tampa, FL, Nov. 2002, pp. 781–790.
- D. Sharp, N. Cackov, N. Lasković, Q. Shao, and Lj. Trajković, "Analysis of public safety traffic on trunked land mobile radio systems," *IEEE J. Select. Areas Commun.*, vol. 22, no. 7, pp. 1197–1205, Sept. 2004.
- N. Cackov, B. Vujičić, S. Vujičić, and Lj. Trajković, "Using network activity data to model the utilization of a trunked radio system," in *Proc. SPECTS*, San Jose, CA, July 2004, pp. 517– 524.
- B. Vujičić, N. Cackov, S. Vujičić, and Lj. Trajković, "Modeling and characterization of traffic in public safety wireless networks," in *Proc. SPECTS 2005*, Philadelphia, PA, July 2005, pp. 14–223.
- J. Song and Lj. Trajković, "Modeling and performance analysis of public safety wireless networks," in *Proc. IEEE IPCCC*, Phoenix, AZ, Apr. 2005, pp. 567–572.
- N. Cackov, J. Song, B. Vujicic, S. Vujicic, and Lj. Trajkovic, "Simulation and performance evaluation of a public safety wireless network: case study," *Simulation*, vol. 81, no. 8, pp. 571–585, Aug. 2005.
- F. Barcelo and J. Jordan, "Channel holding time distribution in public telephony systems (PAMR and PCS)," *IEEE Trans. Vehicular Technology*, vol. 49, no. 5, pp. 1615–1625, Sept. 2000.
- W. Leland, M. Taqqu, W. Willinger, and D. Wilson, "On the self-similar nature of Ethernet traffic (extended version)," *IEEE/ACM Trans. Networking*, vol. 2, no. 1, pp. 1–15, Feb. 1994.

References

- D. Tang and M. Baker, "Analysis of a metropolitan-area wireless network," in *Proc. of ACM Mobicom '99,* Seattle, WA, Sept. 1999, pp. 13–23.
- P. Abry, P. Flandrin, M. S. Taqqu, and D. Veitch, "Wavelets for the analysis, estimation, and synthesis of scaling data," in *Self-similar Network Traffic and Performance Evaluation*, K. Park and W. Willinger, Eds. New York: Wiley, 2000, pp. 39–88.
- R. B. D'Agostino and M. A. Stephens, Eds., *Goodness-of-Fit Techniques*. New York: Marcel Dekker, 1986. pp. 63–93, pp. 97–145, pp. 421–457.
- R. J. Orsulak, R. R. Seach, J. P. Camacho, and R. J. Matheson. (2004, May). "Land mobile spectrum planning options," National Telecommunications and Information Administration, Washington, DC, Spectrum Engineering Reports, Oct. 1995. [Online]. Available: <u>http://www.ntia.doc.gov/osmhome/reports/slye_rpt/cover.html</u>.
- E-Comm, Emergency Communications for SW British Columbia Incorporated. (2005, May). [Online]. Available: http://www.ecomm.bc.ca.
- EDACS Trunking Information. (2004, May). [Online]. Available: http://www.radioreference.com.
- OPNET documentation V.9.0.A, OPNET Technologies, Inc., Bethesda, MD, 2001.
- In Vancouver! Vancouver Travel Guide. (2004, May). [Online]. Available: http://www.vancouver-bc.com/maps-html.