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E-Comm network architecture
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Structure of trunked radio systems

Cell

Channels

Repeater

Cell
controller

Cell

Central
switch

Network
management

system

Dispatch
console

User
radios Cell

Cell



Nov. 22, 2005 Modeling and characterization of traffic in PSWNs 7

Network characteristics

� EDACS: Enhanced Digital Access Communications Systems
� Simulcast: repeaters covering one cell use identical 

frequencies
� Trunking: available frequencies in a cell are shared 

dynamically among mobile users
� transmission trunking
� message trunking

� Cell capacity (number of available frequencies in a cell):
� one radio channel occupies one frequency
� one call occupies one radio channel
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Call establishment

� Users are organized in talk groups:
� one-to-many type of conversations

� Push-to-talk (PTT) mechanism for network access:
� user presses the PTT button
� system locates other members of the talk group
� system checks for availability of channels:

� channel available: call established
� all channels busy: call queued/dropped

� user releases PTT:
� call terminates
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Erlang traffic models 

� PB : probability of rejecting a call
� Pc : probability of delaying a call
� N : number of channels/lines 
� A : total traffic volume
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Erlang traffic models (2)

� Erlang B model assumes:
� call holding time follows exponential distribution
� blocked call will be rejected immediately

� Erlang C model assumes:
� call holding time follows exponential distribution
� blocked call will be put into a FIFO queue with infinite 

size
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Traffic data

� 2001 data set:
� 2 days of traffic data

� 2001-11-1 to 2001-11-02 (110,348 calls)
� 2002 data set:

� 28 days of continuous traffic data.
� 2002-02-10 to 2002-03-09 (1,916,943 calls)

� 2003 data set:
� 92 days of continuous traffic data

� 2003-03-01 to 2003-05-31 (8,756,930 calls)
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Sample of processed data: 2003-03-01

DC66756000:00:04    34038

DC67756000:00:04    26037

DC31756000:00:03    76031

DC72755000:00:03    62029

BA47135000:00:00    4896

BA121134000:00:00     301

CalleeCallerChannel 
Id

System 
Id

Call 
Duration 

(ms)

Time
(hh:mm:ss)(ms)

No
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Traffic data used for OPNET simulations

� Timestamps and durations corresponding to single call differ 
due to discrepancies in records:
� the smallest timestamp was chosen arbitrarily
� the largest call duration (worst-case scenario) was used

� Original timestamp represents date and time of call start
� in simulations: timestamp is difference between the 

original timestamp and arbitrary reference time
� reference times: 0:00 on February 25, 2002 and 0:00 on 

March 10, 2003

0:00, March 10,2003 – 24:00, March 16, 2003

0:00, February 25,2002 – 24:00, March 3, 2002

Time span

2003

2002

Trace (dataset)
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Data processing for OPNET model

Activity data
from deployed

network

OPNET
simulation

Sample data

Data model

data
selection

data

aggregation

10BA4,8702003-03-20 0:00:10.510
9BA4,8602003-03-20 0:00:10.529
8BA4,8302003-03-20 0:00:10.599
4BA4,8702003-03-20 0:00:10.639

CellCalleeCallerDuration
(ms)Timestamp

{10.510; 4,870; 4; 8; 9; 10}
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Data discrepancies 

� Coarse resolution of the timestamp
� activity data: 10 ms
� data model: 1 s

� Example:
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Data discrepancies: 2003

� Overlapping usage of channels

4104,2902003-03-20 0:00:42.769

…………

4109,4202003-03-20 0:00:33.370

ChannelCellDuration (ms)Timestamp

� 0:00:42.769 < 0:00:33.370 + 9.420
� channel 4 in cell 10 is occupied by two calls at the 

same time!
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Traffic data used for statistical modeling

� Records of network events:
� established, queued, and dropped calls in the 

Vancouver cell
� Traffic data span periods during:

� 2001, 2002, and 2003

March 24–30, 2003

March 1–7, 2002

November 1–2, 2001

Time span

387,3402003

370,5102002

110,3482001

No. of established callsTrace (dataset)
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Hourly traces

� Call holding and call inter-arrival times from the five 
busiest hours in each dataset (2001, 2002, and 2003)

4,097
29.03.2003 
01:00–02:003,939

02.03.2002 
00:00–01:003,227

02.11.2001 
20:00–21:00

4,15029.03.2003 
02:00–03:003,97101.03.2002 

00:00–01:003,31201.11.2001 
19:00–20:00

4,22226.03.2003 
23:00–24:004,17901.03.2002 

23:00–24:003,49202.11.2001 
16:00–17:00

4,24925.03.2003 
23:00–24:004,31401.03.2002 

22:00–23:003,70701.11.2001 
00:00–01:00

4,91926.03.2003 
22:00–23:004,43601.03.2002 

04:00–05:003,71802.11.2001 
15:00–16:00

No.Day/hourNo.Day/hourNo.Day/hour

200320022001
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Example: March 26, 2003
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Network model

� central switch

� 11 cells
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Central switch (site) model

� Reads the trace file
� Generates packets according to calls from trace file

� one call = one packet
� packet_size (bits) = k × call_duration (s)
� k: bit rate of channels (k=1,000 bps in simulations)

� Checks for availability of channels in the cells and 
sending packets to appropriate cells

� Collects statistics
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Central switch: OPNET node model
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Dispatcher module in the central switch: 
OPNET process model 
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Cell: OPNET node model
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Statistical concepts

� Probability distribution:
� probability that outcomes of a process are within 

a given range of values
� expressed through probability density (pdf) and 

cumulative distribution (cdf) functions
� Autocorrelation:

� measures the dependence between two outcomes of 
a process

� wide-sense stationary processes: autocorrelation 
depends only on the difference (lag) between the time 
instances of the outcomes
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Long-range dependence: definition

� Slow decay of the autocorrelation function r(k) of a (wide-
sense) stationary process X(n):

∑
∞

−∞=

∞=
k

kr )(

∞→= −− kkckr H
r ,)( )22(

0,||)( →= − ννν α
fcf

where f(ν) is the power spectral density of X(n),
cr and cf are non-zero constants, and 0<α<1

definition

model

corollary

LRD: long-range dependence0.5 < H < 1 implies LRD
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Wavelet coefficients

� Discrete wavelet transform of a signal X(t):

∫
∞

∞−

= dtttXkjd kj )()(),( ,ψ

where ( )ktt jj
kj −= −− 22)( 2/

, ψψ

� ψ(t): mother wavelet
� j : octave

� k : translation
� Reconstruction formula:

wavelet coefficients

∑∑
∞

=

=
0

, )(),()(
j k

kj tkjdtX ψ
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where                                          does not depend on j

LRD and wavelets

� Let X(t) be LRD process (wide-sense stationary)
� its power spectral density:

� Mean square value of its wavelet coefficients on octave j
satisfies:

0,||~)( →− ννν α
fcf

),(2}),({ 2 ψαα Cckjd f
j=Ε

∫ Ψ= − νννψα α dC 2)(||),(

D. Veitch and P. Abry, “A wavelet-based joint estimator of the parameters of 
long-range dependence,” IEEE Trans. on Information Theory, vol. 45, no. 3, pp. 
878–897, Apr. 1999.
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LRD and wavelets

� Logarithm:

cjkjd +×=Ε α}),({log 2
2

� Important property: for given j, d(j,k) does not exhibit 
long-range dependence (with respect to k)
� with appropriately chosen mother wavelet

� Hence:
� simple estimator for E{d(j,k)2} is a sample mean:

∑
=

=Ε
jn

kj

kjd
n

kjd
1

22 ),(1}),({

� nj: number of wavelet coefficients at octave j
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Estimation of α and H

� Logscale diagram: plot of log2E{d(j,k)2} vs. j (octave)
� Linear relationship between log2E{d(j,k)2} and j on the 

coarsest octaves indicates LRD
� Estimation of α: 

� linear regression of log2E{d(j,k)2} on j in the linear 
region of the logscale diagram

� H = 0.5 (α + 1)
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Logscale diagram: example

� call inter-arrival times: 22:00–23:00, 26.03.2003
� α=0.576, H=0.788 (octaves 4–9)

2 4 6 8
-3

-2

-1

0

1

Octave  j

lo
g 2E

{d
(j ,

k )
2 }

wavelet power spectrum

regression line
95% confidence intervals
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Test for time constancy of α

� X(n): wide-sense stationary process

� α does not depend on n
� Is α constant throughout the time series X(n)?
� Approach:

� divide X(n) into m blocks of equal length
� estimate α for each block
� compare the estimates

� If α varies significantly, estimating α for the entire time 
series is not meaningful

� In our analysis: m∈{3, 4, 5, 6, 7, 8, 10}
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Kolmogorov-Smirnov test

� Goodness-of-fit test: quantitative decision whether the 
empirical cumulative distribution function (ECDF) of a set 
of observations is consistent with a random sample from 
an assumed theoretical distribution

� ECDF is a step function (step size 1/N) of N ordered data 
points                 :

: the number of data samples with values smaller 
than

NYYY ...,,, 21

( )
N
inEN =

( )in
iY
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Parameters

� Hypothesis:
� null: the candidate distribution fits the empirical data
� alternative: the candidate distribution does not fit the 

empirical data 
� Input parameters: significance level σ and tail
� Output parameters: 

� p-value
� k: test statistic 
� cv: critical (cut-off) value
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Input parameters

� Significance level σ: determines if the null hypothesis is 
wrongly rejected σ percent of times, if it is in fact true
� default value σ = 0.05

� σ defines sensitivity of the test:
� smaller σ implies larger critical value (larger tolerance)

� tail: specifies whether the K-S performs two sided test 
(default) or tests from one or other side of the candidate 
distribution
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Output parameters

� Test statistic k is the maximum difference over all data 
points:

where F is the CDF of the assumed distribution
� The null hypothesis is accepted if the value of the test 

statistic is smaller than the critical value
� p-value is probability level when the difference between 

distributions (test statistics) becomes significant:
� if p-value ≤ σ: test rejects the null hypothesis

� If test returns critical value = NaN, the decision to accept 
or reject null hypothesis is based only on p-value

( )
N
iYFxmak i

Ni
−=

≤≤1
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Best-fitting distributions: CDF
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Inter-arrival time: complementary CDF
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K-S test: call inter-arrival times 2001

0.02020.02270.01480.02870.0159k

0.09530.06440.39160.00620.3833p

11010h

gamma

0.02060.01950.01360.02360.0171k

0.08370.15740.49940.04090.3036p

10010h

Weibull

0.02590.02770.01310.03690.0247k

0.01350.01220.54160.00010.0384p

11011h

exponential

01.11.2001, 
00:00–01:00

01.11.2001, 
19:00–20:00

02.11.2001, 
15:00–16:00

02.11.2001, 
16:00–17:00

02.11.2001, 
20:00–21:00ParameterDistribution

0.02010.02040.02080.02230.02290.026701.11.2001, 00:00–01:00: cv

0.02070.02110.02150.02300.02370.027502.11.2001, 16:00–17:00: cv

0.10.090.080.050.040.01Significance level σ

Significance level σ = 0.1
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Simulation results: 2003

Thursday Friday Saturday Sunday Monday Tuesday Wednesday
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Observations

� Presence of daily cycles:
� minimum utilization: ~ 2 PM
� maximum utilization: 9 PM – 3 AM

� 2002 sample data:
� cell 5 is the busiest
� other cells seldom reach their capacities

� 2003 sample data:
� several cells (2, 4, 7, and 9) have all channels 

occupied during busy hours
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Discarded calls

� appear only in the OPNET simulation results 
(do not exist in the deployed network)

� occur during busy hours
� may be used to identify possibly congested

cells

6 + 19
521

5 + 14
2003

6796 + 192003

1,812original2003

623 + 152002

91original2002

No. of discarded callsCapacityCell no.Sample data

311

610

69

48

67

76

35

54

43

72

121

ch.cell

original cap.
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Maximum and average utilizations
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General OPNET statistics for data samples

� 2002 sample data:
� span: 8:00, February 1 – 8:00, February 8
� number of calls: 403,590
� discarded calls: 91

� 2003 sample data
� span: 0:00, March 20–24:00, March 26
� number of calls: 645,167
� discarded calls: 1,812

� Discarded calls are due to discrepancies in the data
� they appear only in simulation results
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Statistical distributions

� Fourteen candidate distributions:
� exponetial, Weibull, gamma, normal, lognormal, 

logistic, log-logistic, Nakagami, Rayleigh, Rician, 
t-location scale, Birnbaum-Saunders, extreme value, 
inverse Gaussian

� Parameters of the distributions: calculated by performing 
maximum likelihood estimation

� Best fitting distributions are determined by:
� visual inspection of the distribution of the trace and the 

candidate distributions
� K-S test on potential candidates
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Maximum Likelihood Estimation (MLE)

� Introduced by R. A. Fisher in 1920s
� The most popular method for parameter estimation
� Goal: to find the distribution parameters that make the 

given distribution that follow the most closely underlying 
data set

� Conduct an experiment and obtain N independent 
observations

� θ1, θ2, ..., θk are k unknown constant parameters which 
need to be estimated
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Maximum likelihood estimation
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Call inter-arrival times: pdf candidates
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K-S test results: 2003

0.07610.07950.06570.06290.0689k

4.851E-213.267E-232.97E-164.717E-151.015E-20p

11111h

Lognormal

0.01710.01630.01810.01460.0139k

0.16720.1450.1270.34580.3956p

00000h

Gamma

0.01590.0140.01640.01330.013k

0.23370.2860.20650.46620.4885p

00000h

Weibull

0.01850.02050.01370.02140.0283k

0.11010.03160.40490.04690.0027p

11011h

Exponential

29.03.2003, 
01:00–02:00

29.03.2003, 
02:00–03:00

26.03.2003, 
23:00–24:00

25.03.2003, 
23:00–24:00

26.03.2003, 
22:00–23:00ParameterDistribution
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Call inter-arrival times:
best-fitting distributions (cdf)
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Call inter-arrival time: autocorrelation
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Call inter-arrival times: 26.03.2003, 22:00–23:00
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� LRD: α>0 (H>0.5)
� other traces have similar logscale diagrams
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Call inter-arrival times: estimates of H

� Traces pass the test for time constancy of α: estimates of 
H are reliable
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Call holding time: pdf candidates
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Best-fitting distributions: cdf
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K-S test results: 2003

� No distribution passes the test when the entire trace is tested 
(significance levels = 0.1 and 0.01)

� Lognormal distribution passes test (significance level = 0.01) for:
� 5-6 sub-traces from 15 randomly chosen 1,000-sample sub-

traces 
� passes the test for almost all 500-sample sub-traces 

� Test rejects null hypothesis when the sub-traces are compared 
with candidate distributions:
� exponential
� Weibull
� gamma
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Call holding time: autocorrelation
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Logscale diagram, call holding times:
26.03.2003, 22:00–23:00
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� independence: α ≈ 0 (H ≈ 0.5) 
� other traces have similar logscale diagrams
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Call holding times: estimates of  H
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� all traces (except one) pass the test for constancy of α
� only one unreliable estimate (*): consistent value
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Call inter-arrival and call holding times
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Avg. call inter-arrival times: 1.08 s (2001), 0.86 s (2002), 0.84 s (2003)
Avg. call holding times: 3.91 s (2001), 3.96 s (2002), 4.13 s (2003)
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Distributions
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Best fitting distributions
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Estimates of H
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� call inter-arrival times: H≈0.7–0.8
� call holding times: H≈0.5
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Conclusions

� We created an OPNET model and simulated two 
weeks of network activity

� Network utilization exhibits daily cycles
� Between February 2002 and March 2003:

� number of calls increased by ~ 60 %
� average utilization increased non-uniformly across 

the network
� Several cells may become congested in future
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Conclusions

� We analyzed busy hours voice traffic from a public safety 
wireless network in Vancouver, BC
� call inter-arrival and call holding times during five busy 

hours from 2001, 2002, and 2003
� Statistical distribution functions of traffic traces:

� Kolmogorov-Smirnov goodness-of-fit test
� autocorrelation functions
� wavelet-based estimation of the Hurst parameter
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Conclusions

� Call inter-arrival times:
� best fit: Weibull and gamma distributions
� long-range dependent: H≈0.7–0.8 

� Call holding times:
� best fit: lognormal distribution
� uncorrelated
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