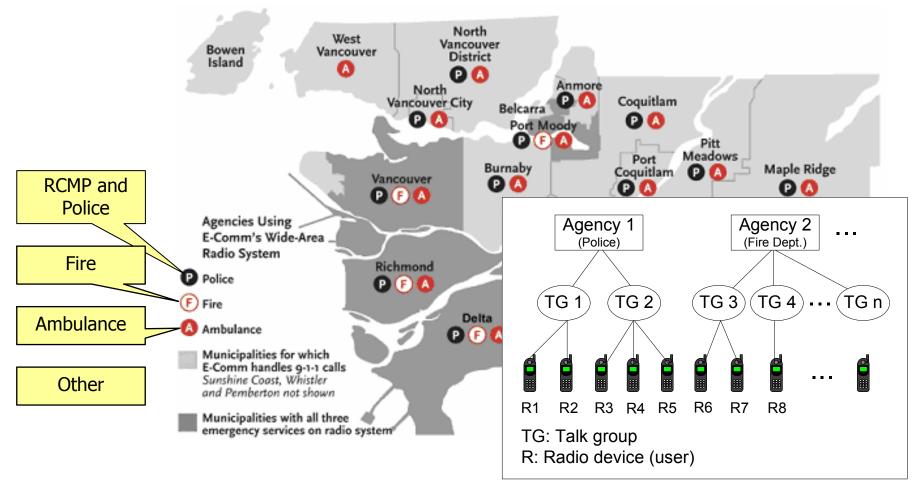


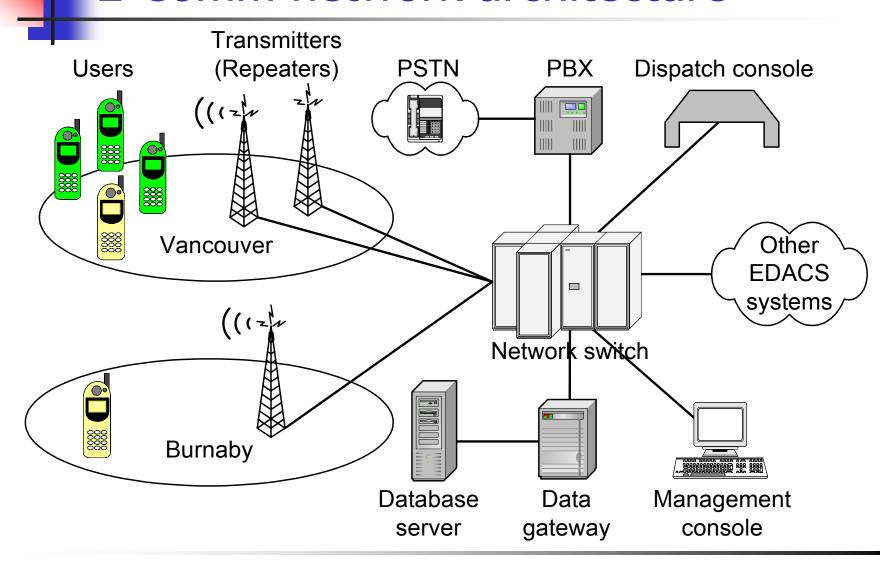
Modeling and Performance Analysis of Public Safety Wireless Networks

Authors: Jiaqing Song and Ljiljana Trajković {jsong, ljilja}@cs.sfu.ca
Presented by: Nikola Cackov
ncackov@cs.sfu.ca

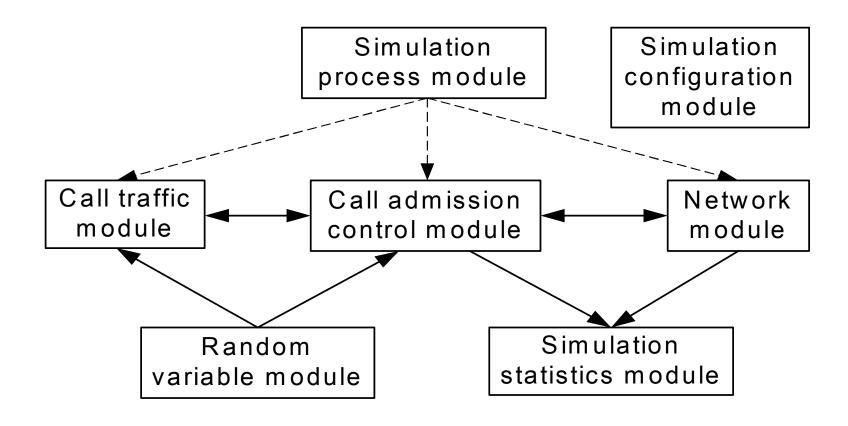
Communication Networks Laboratory
http://www.ensc.sfu.ca/cnl
Simon Fraser University
Vancouver, Canada



- E-Comm network
- WarnSim: a simulator for public safety wireless networks (PSWN)
- Traffic data analysis
- Traffic modeling
- Simulation and prediction
- Conclusions
- References

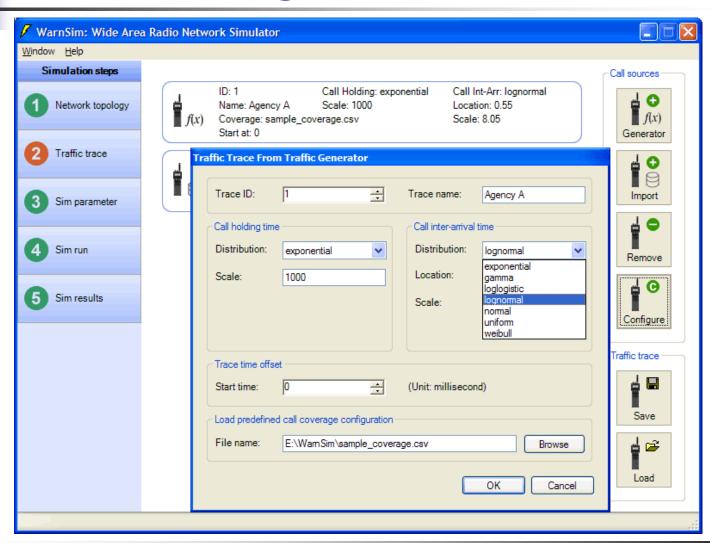

E-Comm network coverage and user agencies

E-Comm network architecture

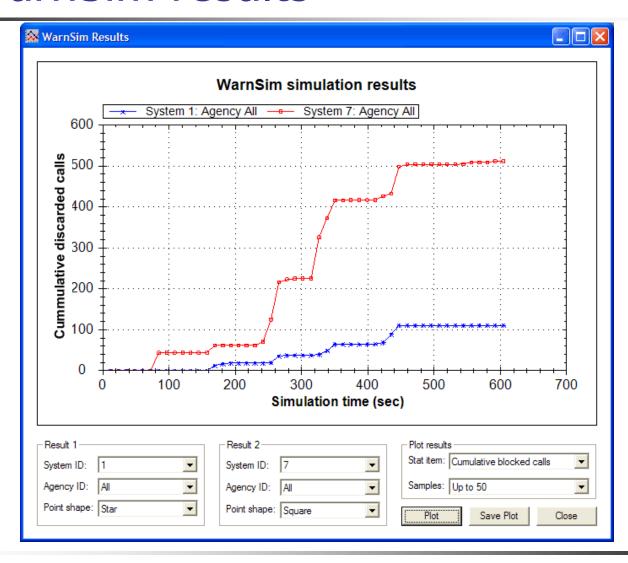


WarnSim overview

- Simulators such as OPNET, ns-2, and JSim are designed for packet-switched networks
- WarnSim is a simulator developed for circuitswitched networks, such as PSWN
- WarnSim:
 - publicly available simulator
 - http://www.vannet.ca/warnsim
 - effective, flexible, and easy to use
 - developed using Microsoft Visual C# .NET
 - operates on Windows platforms

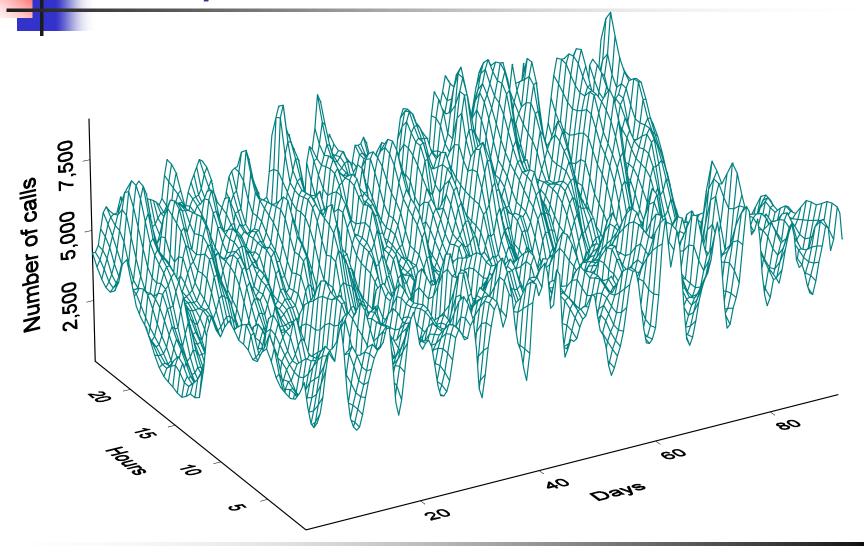


WarnSim: module diagram



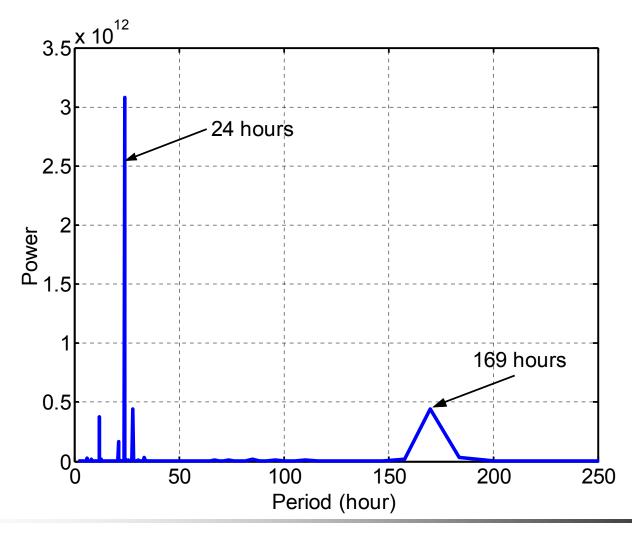
Traffic trace generator

WarnSim results

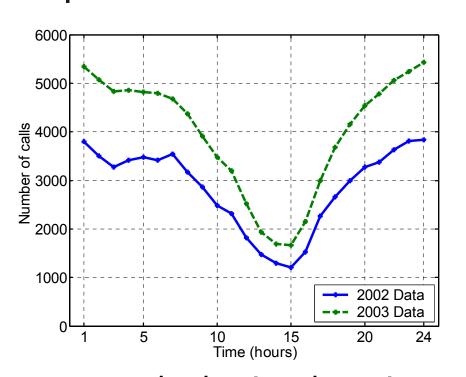

- 2 days of traffic data from 2001
- 28 days of traffic data from 2002
- 92 days of traffic data from 2003
- contain more than 10 million calls
- a sample record of the call traffic data:

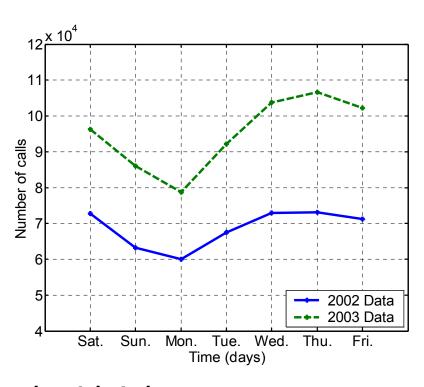
Call arrival time	Duration (ms)	Caller agency
2003-05-01 00:00:09.620	1990	5

Caller	Callee	System ID	Channel no.
9999	1111	1, 7	3, 4


Hourly call arrival rate in 2003

Hourly call arrival rate in 2003: power spectrum





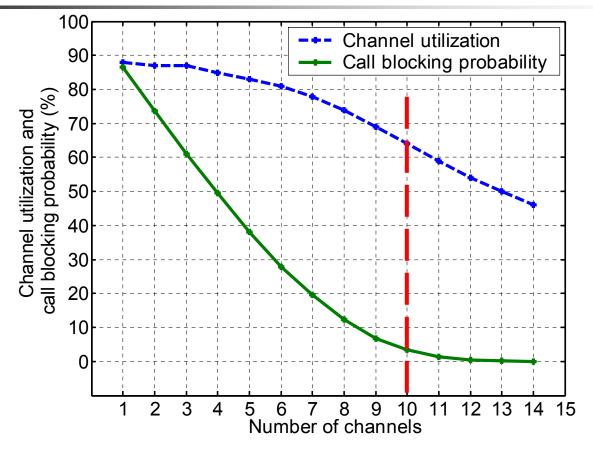
Call arrival rate in 2002 and 2003: cyclic patterns

- the busiest hour is around midnight
- the busiest day is Thursday
- useful for scheduling periodical maintenance tasks

Traffic modeling procedure

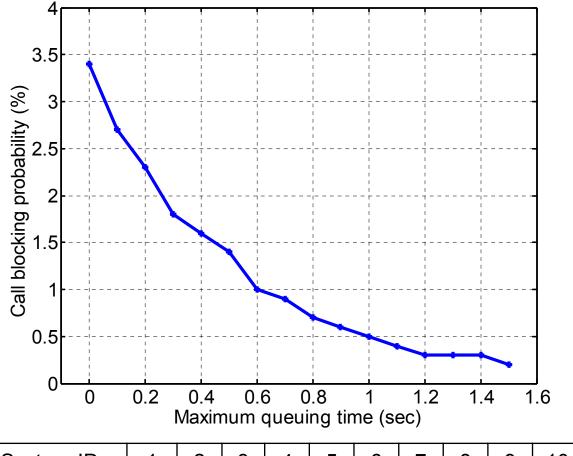
- Modeling of traffic on user agency level
- Extract 500 data samples (call holding time/call inter-arrival time) from traffic data table
- Select a candidate distribution (exponential, lognormal, or gamma) and use Maximum Likelihood Estimation to estimate its parameters
- Use Kolmogorov-Smirnov goodness-of-fit (GoF) test to evaluate the candidate distribution

Proposed call traffic model


- Use lognormal distribution to model call holding time at user agency level
- Use exponential distribution to model call interarrival time at user agency level
- Assume call coverage pattern remains constant

	Agency 2	Agency 5	Others
Call holding time	$\begin{array}{l} \text{lognormal} \\ \sigma = 8.05 \\ \mu = 0.55 \end{array}$	$\begin{array}{l} \text{lognormal} \\ \sigma = 8.09 \\ \mu = 0.73 \end{array}$	$\begin{array}{l} \text{lognormal} \\ \sigma = 7.88 \\ \mu = 0.82 \end{array}$
Call inter-arrival time	exponential eta_1	exponential β_2	exponential eta_3

Channels and Grade of Service (busy hour 2003-05-15 2:00-3:00 am)



System ID	1	2	3	4	5	6	7	8	9	10	11
Channels	variable	7	4	5	3	7	8	4	7	6	3

Queuing and Grade of Service (busy hour 2003-05-15 2:00-3:00 am)

System ID	1	2	3	4	5	6	7	8	9	10	11
Channels	10	7	4	5	3	7	8	4	7	6	3

Performance prediction

- Increased the number of calls made by Agency 5 by 100% from the busiest hour in 2003:
 - maximum queuing time is set to zero
 - parameters for WarnSim call traffic generator

	Agency 2	Agency 5	Others
Call holding time	lognormal σ = 8.05 μ = 0.55	lognormal σ = 8.09 μ = 0.73	lognormal σ = 7.88 μ = 0.82
Call inter-arrival time	exponential $\beta = 1354$	exponential $\beta = 381$	exponential $\beta = 3480$

Performance prediction

System ID	Number of channels	Original blocking probability (%)	Original channel utilization (%)	Predicted blocking probability (%)	Predicted channel utilization (%)
1	10	1.9 – 3.5	57 – 65	12.1 – 12.6	71 – 72
2	7	0.0 - 0.6	29 – 48	5.1 – 7.0	54 – 55
3	4	0.0	11 – 14	0.1 – 0.4	16 – 17
4	5	0.0 - 0.4	21 – 23	1.5 – 3.7	35 – 39
5	3	0.0	4 – 17	1.0 – 1.3	16 – 18
6	7	0.0 - 0.3	19 – 42	2.1 – 2.7	44 – 45
7	8	0.0 - 0.4	25 – 34	0.6 – 0.8	38 – 40
8	4	0.0	8 – 11	0.0 - 0.3	16 – 18
9	7	0.3 - 0.5	37 – 43	9.0 – 10.1	60 – 62
10	6	0.0	16 – 26	1.3 – 1.5	35 – 38
11	3	0.0	6 – 10	0.3 – 0.9	11 – 13

Performance prediction

System ID	Number of channels	Original blocking probability (%)	Original channel utilization (%)	Predicted blocking probability (%)
1	10 + 4	1.9 – 3.5	57 – 65	< 3
2	7 + 2	0.0 - 0.6	29 – 48	< 3
3	4	0.0	11 – 14	0.1 – 0.4
4	5 + 1	0.0 - 0.4	21 – 23	< 3
5	3	0.0	4 – 17	1.0 – 1.3
6	7	0.0 - 0.3	19 – 42	2.1 – 2.7
7	8	0.0 - 0.4	25 – 34	0.6 – 0.8
8	4	0.0	8 – 11	0.0 - 0.3
9	7 + 3	0.3 - 0.5	37 – 43	< 3
10	6	0.0	16 – 26	1.3 – 1.5
11	3	0.0	6 – 10	0.3 - 0.9

Conclusions

- Developed a new tool (WarnSim) for simulating Public Safety Wireless Networks
- Analyzed call traffic data and showed the cyclic patterns of the call arrival rate
- Proposed statistical models for call traffic on user agency level
 - call holding time: lognormal distribution
 - call inter-arrival time: exponential distribution
- Using WarnSim:
 - evaluated the E-Comm network performance
 - predicted the future performance of the E-Comm network

References

- [1] Emergency Communications for Southwest British Columbia Incorporated [Online]. Available: http://www.ecomm.bc.ca.
- [2] S. M. Ross, *Simulation*, 2nd ed. Toronto, ON: Academic Press, 1997, pp. 189–202.
- [3] Y. Fang and I. Chlamtac, "Teletraffic analysis and mobility modeling of PCS networks," *IEEE Trans. on Communications*, vol. 47, no. 7, pp. 1062–1072, July 1999.
- [4] F. Barceló and J. I. Sanchez, "Probability distribution of the inter-arrival time to cellular telephony channels," in *Proc. of the 49th Vehicular Technology Conference*, May 1999, vol. 1, pp. 762–766.
- [5] D. Sharp, N. Cackov, N. Lasković, Q. Shao, and Lj. Trajković, "Analysis of public safety traffic on trunked land mobile radio systems," *IEEE Journal on Selected Areas in Communications*, vol. 22, no. 7, pp. 1197–1205, Sept. 2004.
- [6] N. Cackov, B. Vujičić, S. Vujičić, and Lj. Trajković, "Using network activity data to model the utilization of a trunked radio system," in *Proc. 2004 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS '04)*, San Jose, CA, July 2004, pp. 517-524.
- [7] N. Cackov, J. Song, B. Vujičić, S. Vujičić, and Lj. Trajković, "Performance analysis of a public safety wireless network: a simulation approach," *Simulation: Transactions of The Society for Modeling and Simulation International*, submitted for publication.

- Jiaqing Song: jsong@cs.sfu.ca
- Ljiljana Trajković: ljilja@cs.sfu.ca