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Introduction

Random graphs:
nodes and edges are generated by a random process
Erdős and Rényi model

Small world graphs:
nodes and edges are generated so that most of the 
nodes are connected by a small number of nodes in 
between
Watts and Strogatz model

Scale-free graphs:
graphs whose node degree distribution follow power-law
rich get richer
Barabási and Albert model
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Introduction

Many complex networks have universal characteristics:
small-world (Watts and Strogatz, 1998)
scale-free (Barabasi and Albert, 1999)

Analysis of complex networks:
discovery of spectral properties of graphs
constructing matrices describing the network 
connectivity
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Internet graphs

Internet is a network of Autonomous Systems:
groups of networks sharing the same routing policy
identified with Autonomous System Numbers (ASN) 

Autonomous System Numbers:
http://www.iana.org/assignments/as-numbers
Internet topology on AS-level:

the arrangement of ASes and their interconnections
Analyzing the Internet topology and finding properties of 
associated graphs rely on mining data and capturing 
information about Autonomous Systems (ASes).
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Internet routing protocol

Border Gateway Protocol (BGP):
de-facto Inter Autonomous System routing 
used to exchange network reachability information 
among BGP systems 
reachability information is stored in routing tables
peer routers exchange four types of messages: open, 
update, notification, and keepalive

BGP utilizes a path vector algorithm called the best path 
selection algorithm to select the best path
BGP routing tables are publicly available and may be 
retrieved from the Route Views and Réseaux IP Européens 
(RIPE)
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Internet AS-level data

Source of data are routing tables:
Route Views: http://www.routeviews.org

most participating ASes reside in North America
RIPE (Réseaux IP européens): http://www.ripe.net/ris

most participating ASes reside in Europe
The BGP routing tables are collected from multiple 
geographically distributed BGP Cisco routers and Zebra 
servers. 
Analyzed datasets were collected at 00:00 am on July 31, 
2003 and 00:00 am on July 31, 2008. 
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Analyzed datasets

Sample datasets:
Route Views:
TABLE_DUMP| 1050122432| B| 204.42.253.253| 267| 
3.0.0.0/8| 267 2914 174 701| IGP| 204.42.253.253| 0| 
0| 267:2914 2914:420 2914:2000 2914:3000| NAG| |
RIPE:
TABLE_DUMP| 1041811200| B| 212.20.151.234| 13129| 
3.0.0.0/8| 13129 6461 7018 | IGP| 212.20.151.234| 0| 0| 
6461:5997 13129:3010| NAG| |
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Internet topology at AS level

267
174

1239
12956

2914 21889

3561

701

13237

3130

Datasets collected from Border Gateway Protocols (BGP) 
routing tables are used to infer the Internet topology at 
AS-level.



February 7, 2012 IRMACS C2C 2012, SFU, Vancouver 16

Roadmap

Introduction
Internet topology and the BGP datasets
Collection of BCNET BGP traffic
Power-laws and the Internet topology
Spectral analysis of Internet graphs
Dynamics in complex networks
Conclusions, future work, and references



February 7, 2012 IRMACS C2C 2012, SFU, Vancouver 17

BCNET packet capture: 
physical overview

BCNET is the hub of advanced telecommunication network 
in British Columbia, Canada that offers services to research 
and higher education institutions 
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BCNET packet capture

BCNET transits have two service providers with 10 Gbps 
network links and one service provider with 1 Gbps network 
link 
Optical Test Access Point (TAP) splits the signal into two 
distinct paths 
The signal splitting ratio from TAP may be modified
The Data Capture Device (NinjaBox 5000) collects the real-
time data (packets) from the traffic filtering device
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Real time network usage by BCNET 
members

The BCNET network is high-speed fiber optic research 
network
British Columbia's network extends to 1,400 km and 
connects Kamloops, Kelowna, Prince George, Vancouver, and 
Victoria



February 7, 2012 IRMACS C2C 2012, SFU, Vancouver 23

Roadmap

Introduction
Internet topology and the BGP datasets
Collection of BCNET BGP traffic
Power-laws and the Internet topology
Spectral analysis of Internet graphs
Dynamics in complex networks
Conclusions, future work, and references



February 7, 2012 IRMACS C2C 2012, SFU, Vancouver 24

Internet topology

The Internet topology is characterized by the presence of 
various power-laws observed when considering:

node degree vs. node rank
node degree frequency vs. degree 
number of nodes within a number of hops vs. number of 
hops
eigenvalues of the adjacency matrix and the normalized 
Laplacian matrix vs. the order of the eigenvalues.

M. Faloutsos, P. Faloutsos, and C. Faloutsos, 1999
G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos,  2003 
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Internet matrices

Adjacency matrix  A(G):

where i and j are the graph nodes.

Normalized Laplacian matrix NL(G):

where di and dj are degrees of node i and j, respectively.
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Power laws: node degree vs. rank

The graph nodes v are sorted in decreasing order based on 
their  degrees dv and are indexed with a sequence of 
numbers indicating their ranks rv. 
The (rv, dv) pairs are plotted on the log-log scale.
The power-law implies:

where v is the node number and R is the node degree power-
law exponent.

R
vv rd ∝
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Power laws: eigenvalues

The eigenvalues λi of the adjacency matrix and the 
normalized Laplacian matrix are sorted in decreasing order 
and plotted versus the associated increasing sequence of 
numbers i representing the order of the eigenvalue.
The power-law for the adjacency matrix implies: 

The power-law for the normalized Laplacian matrix implies:

where ε and L are the eigenvalue power-law exponents.

ελ iai ∝

L
Li i∝λ
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Analysis of datasets

Calculated and plotted on a log-log scale are:
node degree vs. node rank
frequency of node degree vs. node degree
eigenvalues vs. index

The power-law exponents are calculated from the linear regression 
lines 10a xb, with segment a and slope b when plotted on a log-log 
scale.
Linear regression is used to determine the correlation coefficient 
between the regression line and the plotted data. 
A high correlation coefficient between the regression line and the 
plotted data indicates the existence of a power-law, which implies 
that node degree, frequency of node degree, and eigenvalues follow 
a power-law dependency on the rank, node degree, and index, 
respectively.
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Spectrum of a graph

Spectrum of a graph is:
the collection of all eigenvalues of a matrix
closely related to certain graph invariants
associated with topological characteristics of the 
network such as number of edges, connected components, 
presence of cohesive clusters.

If x is an n-dimensional real vector, then x is called the 
eigenvector of matrix A with eigenvalue λ if and only if it 
satisfies: 

where λ is a scalar quantity.

,xAx λ=
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Spectrum of a graph

The number of times 0 appears as an eigenvalue of the 
Laplacian matrix is equal to the number of connected 
components in a graph.
Algebraic connectivity, the second smallest eigenvalue of 
a normalized Laplacian matrix is:

related to the connectivity characteristic of a graph
Elements of the eigenvector corresponding to the largest 
eigenvalue of the normalized Laplacian matrix tend to be 
positioned close to each other if they correspond to AS 
nodes with similar connectivity patterns constituting 
clusters.

F. R. K. Chung, 1997
M. Fiedler, 1973

D. Vukadinovic, P. Huang, and T. Erlebach, 2001
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Spectrum of a graph

The eigenvectors corresponding to large eigenvalues 
contain information relevant to clustering.
Large eigenvalues and the corresponding eigenvectors 
provide information suggestive to the intracluster traffic 
patterns of the Internet topology.
We consider both the adjacency and the normalized 
Laplacian matrices.

C. Gkantsidis, M. Mihail, and E. Zegura, 2003
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Eigenvalues of the adjacency matrix
order

Route 
Views 
2003

Route 
Views 
2008

RIPE 
2003

RIPE 
2008

1 64.30 85.43 66.65 122.28
2 47.75 58.56 54.19 63.94
3 38.15 42.77 38.24 46.14
4 36.23 40.85 36.14 41.98
5 29.88 39.69 31.21 41.08
6 28.50 37.85 27.38 38.93
7 25.47 36.21 26.41 37.94
8 25.06 34.66 25.06 36.47
9 24.13 31.58 23.86 35.08

10 22.51 29.34 23.32 34.47
11 21.61 27.40 22.02 30.97
12 20.69 25.69 21.77 30.54
13 18.58 25.00 20.75 29.68
14 17.94 24.82 19.55 27.03
15 17.78 23.89 18.67 25.74
16 17.31 23.69 18.42 25.35
17 16.99 22.81 17.85 24.83
18 16.75 22.46 17.44 24.30
19 16.22 22.04 17.24 24.06
20 16.01 21.36 16.63 24.00
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Power laws: eigenvalues vs. index

Adjacency matrix:
Route Views 2003 datasets: ε= –0.5713 and r= –0.9990
Route Views 2008 datasets: ε= –0.4860 and r= –0.9982

ε= power-law exponent; r= correlation coefficient
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Power laws: eigenvalues vs. index

Adjacency matrix:
Route Views 2003 datasets: ε= –0.5713 and r= –0.9990
Route Views 2008 datasets: ε= –0.4860 and r= –0.9982

ε= power-law exponent; r= correlation coefficient

Adjacency matrix:
RIPE 2003 datasets: ε= –0.5232 and r= –0.9989
RIPE 2008 datasets: ε= –0.4927 and r= –0.9970

ε= power-law exponent; r= correlation coefficient

Adjacency matrix:
r > 99% for all datasets

r= correlation coefficient
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Power laws: eigenvalues vs. index

Normalized Laplacian matrix:
Route Views 2003 datasets: L= –0.0198 and r= –0.9564
Route Views 2008 datasets: L= –0.0177 and r= –0.9782

L= power-law exponent; r= correlation coefficient

Normalized Laplacian matrix:
RIPE 2003 datasets: L= –0.0206 and r= –0.9636
RIPE 2008 datasets: L= –0.0190 and r= –0.9578

L= power-law exponent; r= correlation coefficient

Normalized Laplacian matrix:
r > 95% for all datasets

r= correlation coefficient
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Clusters of connected ASes: 
Route Views

A dot in the position (x, y) represents the connection 
patterns between AS nodes. 
Existence of higher connectivity inside a particular cluster 
and relatively lower connectivity between clusters is visible.
Similar patterns for Route Views and RIPE 2003 and 2008 
datasets
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Spectral analysis of Internet graphs

The second smallest eigenvalue, called "algebraic 
connectivity" of a normalized Laplacian matrix, is related 
to the connectivity characteristic of the graph. 
Elements of the eigenvector corresponding to the largest 
eigenvalue of the normalized Laplacian matrix tend to be 
positioned close to each other if they correspond to AS 
nodes with similar connectivity patterns constituting 
clusters.

C. Gkantsidis, M. Mihail, and E. Zegura, 2003
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Clusters of AS nodes: 
small world network

Small world network with 20 nodes:
nodes having similar degrees are grouped together based on 
the element values of the eigenvector corresponding to the 
largest eigenvalue of the adjacency matrix



February 7, 2012 IRMACS C2C 2012, SFU, Vancouver 42

Clusters of AS nodes

We calculate the elements of the eigenvectors corresponding 
to the second smallest and the largest eigenvalues of the 
matrix.
These elements are sorted in descending order and are 
plotted vs. the index.
We then calculate the index of AS node based on the index 
of the corresponding element of the eigenvector and plot 
node degree of AS node vs. the index of the AS node. 
We consider both the adjacency and the normalized Laplacian 
matrices.
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Eigenvector: 
the second smallest eigenvalue

Route Views and RIPE 2003 and 2008 datasets:
elements of eigenvectors corresponding to the second 
smallest eigenvalue of the normalized Laplacian matrix
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Clusters: 
Route Views 2003 and 2008 datasests

Element values of the eigenvector corresponding to the 
second smallest eigenvalue of the normalized Laplacian 
matrix group nodes having similar node degrees.
Similar clusters for the RIPE 2003 and 2008 datasets
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Eigenvector: 
the largest eigenvalue

Route Views and RIPE 2003 and 2008 datasets:
elements of eigenvectors corresponding to the largest 
eigenvalue of the normalized Laplacian matrix 
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Clusters: 
Route Views 2003 and 2008 datasets

Element values of the eigenvector corresponding to the 
largest eigenvalue of the normalized Laplacian matrix divide 
nodes into two clusters of connected nodes.
Similar clusters for the RIPE 2003 and 2008 datasets
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Clusters of AS nodes

The second smallest eigenvalue of the normalized Laplacian 
matrix groups nodes having similar node degree:

group of nodes having larger node degree follows nodes 
having smaller node degree.

Clusters of nodes based on the elements values of the 
eigenvector corresponding to the second smallest 
eigenvalue of the adjacency matrix are similar to clusters 
based on the largest eigenvalue of the normalized 
Laplacian matrix.
Clusters the Internet graphs are different from clusters 
of small world networks.
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Dynamics in complex networks

Early analysis of network dynamics:
regular networks (Endo and Mori, 1976a, 1976b, 1978)
synchronism in the lattice, ladder, and ring networks
each node contained a Van der Pol oscillator
nodes were connected by resistors or inductors.

Networks with chaotic circuits:
analyzed by Nishio and Ushida, 1995a, 1995b, 1996, 2002
star-connected oscillator (Moro, Nishio, and Mori, 1995)
ring coupling of chaotic circuits (Uwate and Nishio, 2006)
coupled oscillators networks as cellular neural networks 
(Moro. Nishio, and Mori, 1997).
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Synchronization

Small-world networks:
small average distance and high clustering
small-world property does not generally guarantee 
synchronization in the network (Barahona and Pecora, 
2002).
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Synchronization

Scale free networks:
power-law connectivity distribution of  the node degree:

where:
P(k) is the probability distribution function
k is the node degree of the network.

the smaller the parameter γ:
the more the network becomes heterogeneous in its 
connectivity distribution
the average network distance decreases
synchronization is more difficult to achieve (Nishikawa 
et al., 2003).
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Complex networks

Complex networks:
each node contains an oscillator or a dynamical system that 
generates periodic or chaotic oscillations
network topology is represented by a Laplacian matrix L(G):

symmetric and has a single zero eigenvalue for a 
connected network

number of edges incident to a node in an undirected graph 
is called the degree of the node
two nodes are called adjacent if they are connected by 
a link.
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Assumptions

Consider a network with N nodes:
Assume that each network node is governed by a self-
oscillatory autonomous system with m variables.
Examples: 

m = 2: Van der Pol oscillator
m = 3: Lorenz system

Assumption: 
Oscillators are identical with identical coupling to other 
oscillators.
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First step: formulate state equations

Definitions:
m-dimensional vector of state variables of the i-th node

the isolated (uncoupled) dynamics for each node 
a coupling function

The dynamics of node i is:

where σ is a coupling strength.
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Dynamics of the network

Define matrices:

Note: G = −L(G)

The dynamics of the network is described as:

where      is the direct product.
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Second step: periodic solutions

Find periodic solutions of the state equation:
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Third step: variational equation

Derive the variational equation from the periodic steady-
state in order to investigate the stability of synchronized 
steady-state or periodic solution

where:
are variations on node i
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Master stability equation

The variational equation becomes the linear differential 
equation with periodic coefficients combined with the 
Laplacian matrix.
By using an appropriate linear transformation, the 
variational equation can be divided in separate blocks, each 
block corresponding to an eigenvalue:

where N is the number of nodes:

Each separate block equation is called the master stability 
equation.
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Fourth step: master stability function

From the variational equation, we compute the maximum 
Lyapunov exponent

called the master stability function.

If             is negative, the corresponding periodic steady-
state is stable  and the variations die out.
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Stability regions

Factor                    , defined as the product of       and the 
overall strength of coupling parameter     , is a measure 
used to express the coupling strength.

The stability plots of           vs. α (generic coupling factor 
for nonlinear function and output function at each node) are 
used to define stability regions.

The oscillatory systems such as periodic oscillators have a 
master stability function that has                    over the 
interval                          in these stability plots.

The generic requirement for the synchronous state to be 
stable is given by                                       for each k.
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Stability of synchronization

This requirement can be equivalently written as

where          and              are the second smallest and the 
largest eigenvalues.

The left-hand side of the inequality is determined solely by 
the Laplacian matrix while the right-hand side is defined by 
the master stability function.

Hence, we can analyze the stability of synchronization and 
network dynamics by only observing the network topology.
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Modeling the Internet dynamics

Laplacian matrix has distinct real eigenvalues.
The behavior of the nodes is governed by network 
transport protocols and queuing algorithms:

Transport Control Protocol (TCP) combined with Random 
Early Detection (RED) queuing algorithm

Modeling network dynamics:
fluid-flow models 
discrete (one and two dimensional) models



February 7, 2012 IRMACS C2C 2012, SFU, Vancouver 68

TCP/RED fluid flow model: 
state variables and parameters

w(t): averaged instantaneous window size (in packets) of the TCP 
sources
r(t): round trip time
q(t): averaged instantaneous queue length (in packets) 
x(t) : filtered queue length after removal of short bursts 
p(t): marking probability 
A: filter resolution (0 < a <1)
k: a proportionality constant dependent on the implementation of the 
RED algorithm
Xmax: maximum threshold of x(t)
Xmin: minimum threshold of x(t)
Pmax: maximum threshold of p(t)
R0: propagation delay
C: bottleneck bandwidth in packets/second
B: maximum physical queue length
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TCP/RED fluid flow model

V. Misra, W. B. Gong, and D. Towsley, 2000
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TCP/RED discrete model: 
one state variable and parameters

Variables:
qk+1: average queue size in round k+1
qk: average queue size in round k
wq: queue weight in RED
N: number of TCP connections
K: constant =
pk: drop probability in round k
C: capacity of the link between the two routers
d: round-trip propagation delay
M: packet size
rwnd: receiver's advertised window size

2/3
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TCP/RED discrete model

Dynamical model of TCP/RED:
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TCP/RED model: 
two state variables and parameters

Variables:
qk+1: instantaneous queue size in round k+1
qk+1: average queue size in round k+1
Wk+1: current TCP window size in round k+1
wq: queue weight in RED
pk: drop probability in round k
RTTk+1: round-trip time at k+1
C: capacity of the link between the two routers
M: packet size
d: round-trip propagation delay
ssthesh: slow start threshold
rwnd: receiver's advertised window size
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TCP/RED discrete model

No-packet loss:
window size:

average queue size:

One-packet loss:
window size:

average queue size:
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TCP/RED discrete model (cont.)

Two-packet loss: 
window size:

average queue size:

01 =+kW

kk qq =+1
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Conclusions

Route Views and RIPE datasets reveal similar trends in the 
development of the Internet topology.
Power-laws exponents have not significantly changed over the 
years:

they do not capture every property of graph and are only a 
measure used to characterize the Internet topology.

Spectral analysis reveals new historical trends and notable 
changes in the connectivity and clustering of AS nodes over 
the years.
Element values of the eigenvectors corresponding to the 
second smallest eigenvalue and the largest eigenvalue identify 
clusters of connected ASes:

indicate that clusters of connected nodes have changed 
over time.
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Conclusions

We consider numerous aspects of the dynamics of complex
networks (without necessarily restricting our attention to 
classical small-world and  scale-free networks) .
We addressed the universal quantification using differential 
equations combined with graph theory.
Dealing with dynamics of complex networks with weights 
imposed on network nodes and edges is essential in 
understanding various applications of complex networks.
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Future work

Graph of graphs: view each Internet node as a local area 
network.
Capture the evolving nature of the Internet topology.
Model node dynamics by capturing behaviour of network 
protocols (TCP) and queuing algorithms (RED).
Include realistic traffic models to include effect of Internet 
applications (data, voice, images, video).
Develop effective  methods for obtaining synchronous 
solutions of nonlinear equations  with higher dimensions.
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