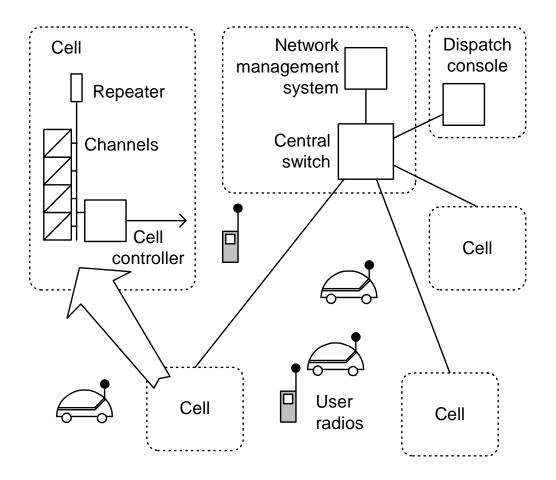
USING NETWORK ACTIVITY DATA TO MODEL THE UTILIZATION OF A TRUNKED RADIO SYSTEM

Nikola Cackov, Bozidar Vujičić, Svetlana Vujičić, and Ljiljana Trajković {ncackov, bvujicic, svujicic, ljilja}@cs.sfu.ca

> Communication Networks Laboratory http://www.ensc.sfu.ca/cnl Simon Fraser University



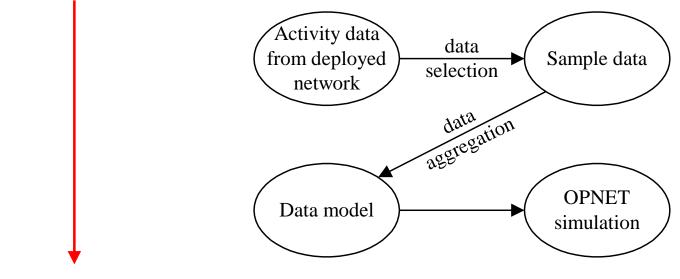
- Introduction
- Data and network models
- OPNET simulation results
- Conclusions

Network architecture

Network characteristics

- Simulcast: all repeaters covering one cell use identical frequencies
- Trunking: all available frequencies in a cell are shared dynamically among all mobile users
- Cell capacity: number of available frequencies in a cell
 - one radio channel occupies one frequency
 - one call occupies one radio channel

cell	1	2	3	4	5	6	7	8	9	10	11
channels	12	7	4	5	3	7	6	4	6	6	3

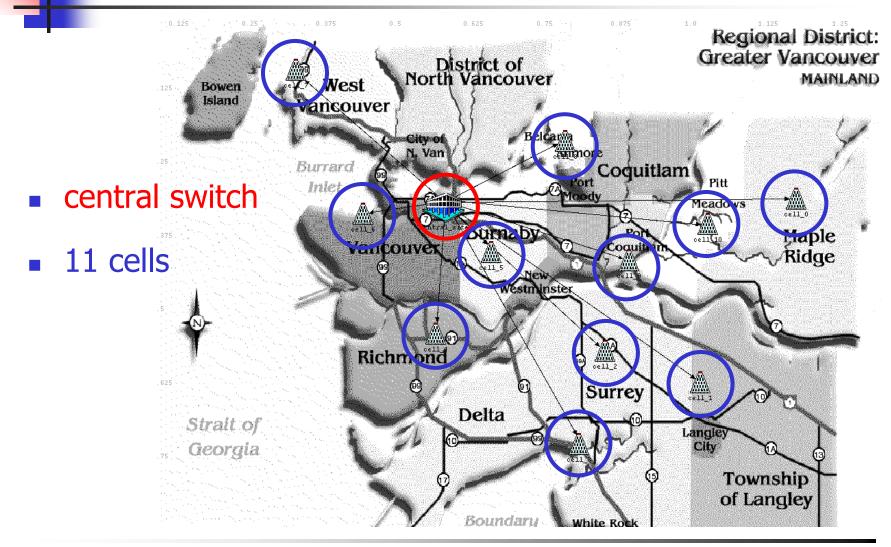


- Users are organized in talk groups:
 - one-to-many type of conversations
- Push-to-talk (PTT) mechanism for network access:
 - user presses the PTT button
 - system locates other members of the talk group
 - system checks for availability of channels:
 - channel available: call established
 - all channels busy: call queued/dropped
 - user releases PTT:
 - call terminates

Data processing

Timestamp	Duration (ms)	Caller	Callee	Cell	
2003-03-20 0:00:10.639	4,870	Α	В	4	
2003-03-20 0:00:10.599	4,830	Α	В	8	
2003-03-20 0:00:10.529	4,860	Α	В	9	
2003-03-20 0:00:10.510	4,870	Α	В	10	

{10.510; 4,870; 4; 8; 9; 10}


Overlapping usage of channels

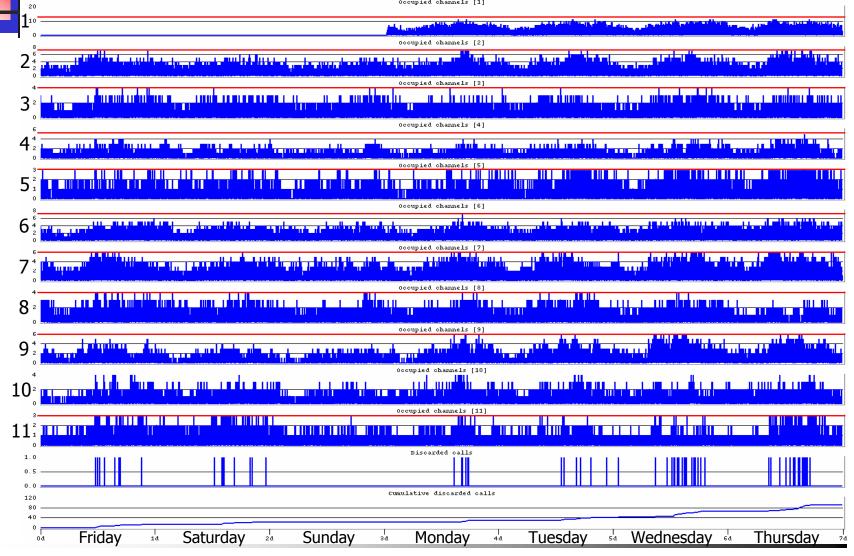
Timestamp	Duration (ms)	Cell	Channel
2003-03-20 0:00:33.370	9,420	10	4
2003-03-20 0:00:42.769	4,290	10	4

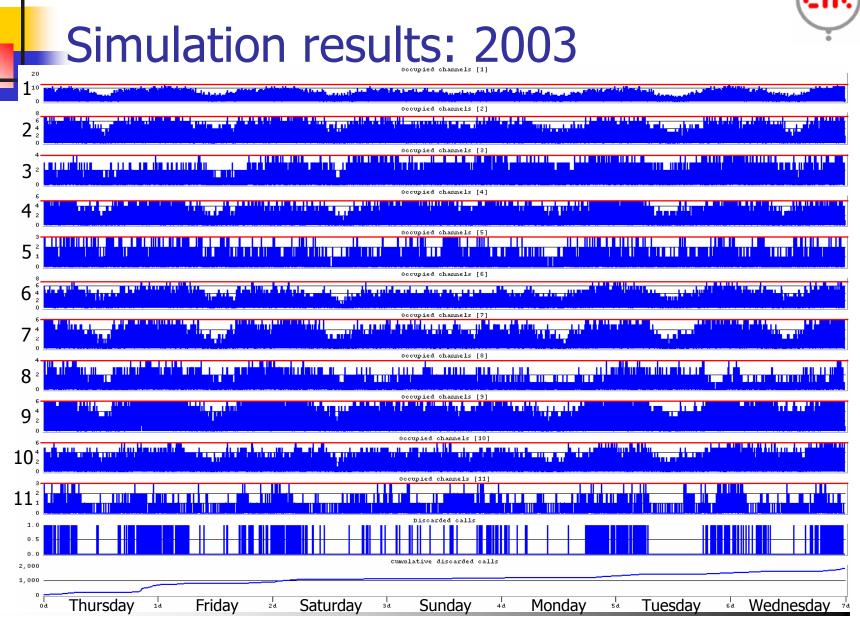
- 0:00:42.769 < 0:00:33.370 + 9.420</p>
 - channel 4 in cell 10 is occupied by two calls at the same time!

Network model

Network model: central switch

- Reads the trace file
- Generates packets according to the trace file
 - one call = one packet
 - packet_size (bits) = k × call_duration (s)
 - k: bit rate of channels (k=1,000 bps in simulations)
- Checks for availability of channels in the cells
- Collects statistics




- 2002 sample data:
 - span: 8:00, February 1 8:00, February 8
 - number of calls: 403,590
 - discarded calls: 91
- 2003 sample data
 - span: 0:00, March 20 24:00, March 26
 - number of calls: 645,167
 - discarded calls: 1,812
- Discarded calls are due to discrepancies in the data
 - appear only in simulation results

Simulation results: 2002

July 27, 2004 Using network activity data to model the utilization of a trunked radio system

July 27, 2004 Using network activity data to model the utilization of a trunked radio system

- Presence of daily cycles:
 - minimum utilization: ~ 2 PM
 - maximum utilization: 9 PM 3 AM
- 2002 sample data:
 - cell 5 is the busiest
 - others seldom reach their capacities
- 2003 sample data:
 - several cells (2, 4, 7, and 9) have all channels occupied during busy hours

- appear only in the OPNET simulation results (do not exist in the deployed network)
- occur during busy hours
- can be used to identify possibly congested cells

Sample data	Cell no.	Capacity	No. of discarded calls
2002		original	91
2002	5	3 + 1	62
2003		original	1,812
2003	9	6 + 1	679
2003	4	5 + 1	521
2005	9	6 + 1	521

original cap.					
cell	ch.				
1	12				
2	7				
3	4				
4	5				
5	3				
6	7				
7	6				
8	4				
9	6				
10	6				
11	3				

Maximum and average utilization

		20	02	20	03
Cell	Capacity	Maximum	Average	Maximum	Average
1	12	11	2.5	11	2.6
2	7	7	0.8	7	1.6
3	4	4	0.3	4	0.5
4	5	5	0.3	5	1.1
5	3	3	0.2	3	0.3
6	7	7	0.7	7	1.2
7	6	6	0.7	6	1.1
8	4	4	0.3	4	0.4
9	6	6	0.4	6	1.6
10	6	4	0.2	6	1.0
11	3	3	0.2	3	0.2

Conclusions

- We created a model in OPNET and simulated two weeks of network activity
- Network utilization exhibits daily cycles
- Between February 2002 and March 2003:
 - number of calls increased by \sim 60 %
 - average utilization increased non-uniformly across the network
- Several cells may become congested in future

References

- L. A. Andriantiatsaholiniaina and L. Trajković, "Analysis of user behavior from billing records of a CDPD wireless network," in *Proc. Workshop on Wireless Local Networks 2002*, pp. 781-790, Tampa, FL, Nov. 2002.
- D. Tang and M. Baker, "Analysis of a metropolitan-area wireless network," in *Proc. of ACM Mobicom '99,* pp. 13-23, Seattle, WA, Sept. 1999.
- E-Comm, Emergency Communications for SW British Columbia Incorporated. (2004, May). [Online]. Available: http://www.ecomm.bc.ca.
- R. J. Orsulak, R. R. Seach, J. P. Camacho, and R. J. Matheson. (2004, May). "Land mobile spectrum planning options," National Telecommunications and Information Administration, Washington, DC, Spectrum Engineering Reports, Oct. 1995. [Online]. Available: http://www.ntia.doc.gov/osmhome/reports/slye_rpt/cover.html.
- OPNET documentation V.9.0.A, OPNET Technologies, Inc., Bethesda, MD, 2001.
- EDACS Trunking Information. (2004, May). [Online]. Available: http://www.radioreference.com.
- In Vancouver! Vancouver Travel Guide. (2004, May). [Online]. Available: http://www.vancouver-bc.com/maps-html.