

Implementation of BGP in a Network Simulator

Tony Dongliang Feng Rob Ballantyne Ljiljana Trajković

Communication Networks Laboratory
http://www.ensc.sfu.ca/cnl
Simon Fraser University

- Introduction
- Background
- Design and implementation of ns-BGP
- Validation test
- Scalability analysis
- Conclusions

- Introduction
- Background
- Design and implementation of ns-BGP
- Validation test
- Scalability analysis
- Conclusions

Introduction

- Internet routing
 - Autonomous Systems
 - IGP: Interior Gateway Protocol (Intra-domain)
 - EGP: Exterior Gateway Protocol (Inter-domain)
- Border Gateway Protocol (BGP) weaknesses
 - routing instability
 - inefficient routing
 - scalability issues
- Employed approaches
 - empirical measurements
 - theoretical analysis
 - simulations

Internet routing

- Internet is organized as a collection of interconnected Autonomous Systems (AS)
- Routing in the Internet is performed on two levels
 - IGP: Interior Gateway Protocol (Intra-domain)
 - OSPF, IS-IS, EIGRP, RIP
 - EGP: Exterior Gateway Protocol (Interdomain)
 - BGP

BGP weaknesses

- Poor integrity
 - vulnerable to malicious attacks and misconfiguration
- Slow convergence
 - up to tens of minutes
- Divergence
 - conflicts of routing policies can cause BGP to diverge, resulting in persistent route oscillations

- Empirical measurements
 - expensive set-up
 - inflexible
- Theoretical analysis
 - highly simplified
 - inadequate in practical scenarios
- Simulations
 - full control over the system and flexible
 - cost effective
 - controlled experiments

- Introduction
- Background
- Design and implementation of ns-BGP
- Validation test
- Scalability analysis
- Conclusions

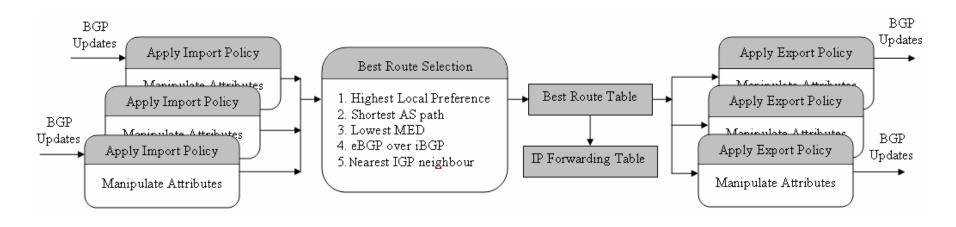
Background

- BGP version 4
- Network simulator ns-2
- BGP implementation in SSFNet
- Related work

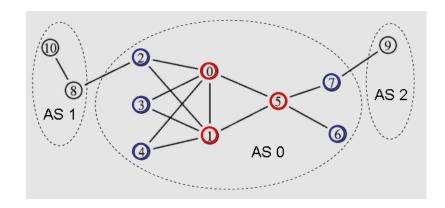
BGP version 4

- RFC 1771, "A Border Gateway Protocol 4", March 1995
- The de facto inter-domain routing protocol of the Internet
- Path vector protocol
- Incremental
- Relies on TCP

Four types of BGP messages


- Open: establish a peering session
- Keep alive: handshake at regular intervals
- Notification: report errors, shut down a peer session
- Update: announce new routes or withdraw previously announced routes
 - advertisement
 - destination prefix
 - route attributes (local preference, AS path)

- Apply import policy
- Select a best route
- Install the best route
- Apply export policy and send out updates


MED: Multiple Exit Discriminator

- Two types of BGP peer connections:
 - external BGP (eBGP) connection
 - internal BGP (iBGP) connection
- BGP routers within an AS are required to be fully meshed with iBGP connections
- Route reflection provides one way to address the scalability issue of iBGP

- reflector O
- client O

Network Simulator ns-2

- One of the most popular network simulators
- Object oriented
 - written in C++ and OTcl
- Substantial support for TCP, routing, and multicast protocols
- Graphical animator: nam

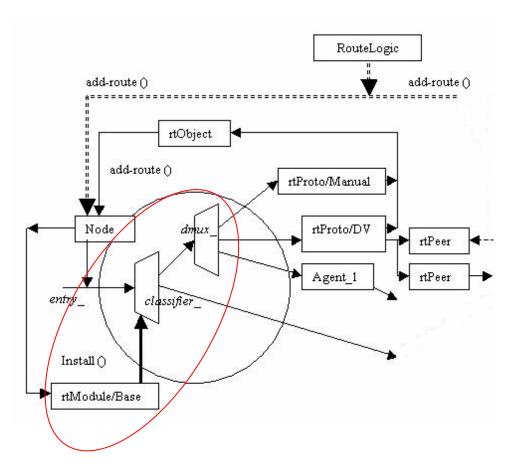
SSF.OS.BGP4: BGP implementation in SSFNet

- Scalable Simulation Framework Network
 Models (SSFNet) is a Java-based simulator
- SSF.OS.BGP4 is developed and maintained by Brian J. Premore from Dartmouth College
- We implemented a BGP-4 model (ns-BGP) in ns-2 by porting the BGP implementation from SSFNet

Related work

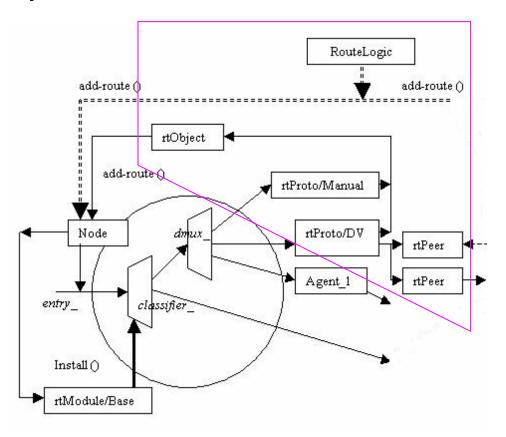
- OPNET BGP model
 - the difference between OPNET and ns-2
- BGP daemon of GNU Zebra
 - object oriented paradigm
- J-Sim BGP model
 - also ported from SSFNet

- Introduction
- Background
- Design and implementation of ns-BGP
- Validation test
- Scalability analysis
- Conclusions

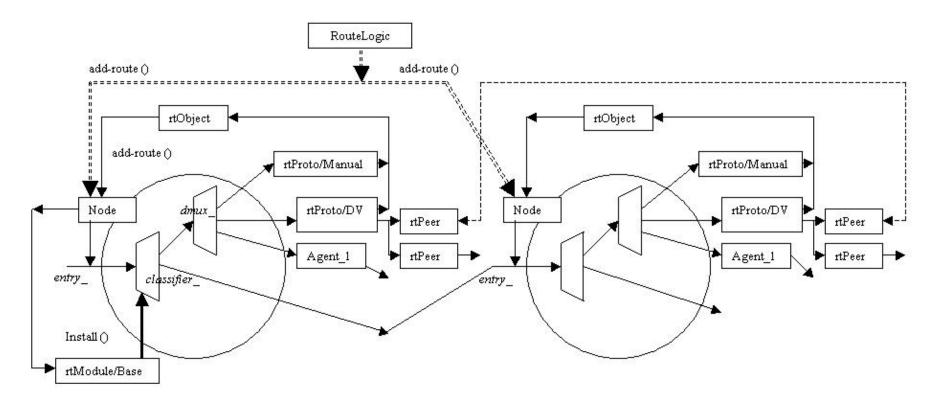

ns-2 unicast routing structure

- Forwarding plane:
 - classify and forward packets
- Control plane:
 - routing info exchange, route computation, routing table creation and maintenance

Forwarding plane



- Classifier (classifer_):
 - delivers the incoming packets either to the correct agent or to the outgoing link
- Routing Module (rtModule):
 - manages a node's classifier and provides an interface to the control plane



- Route logic (RouteLogic):
 - the centrally created routing table
- Routing protocol (rtProto):
 - manual, DV, LS
 - implements specified routing algorithm
- Route peer (rtPeer):
 - stores the metric and preference for each route it advertised
- Route object (rtObject):
 - a coordinator for the node's routing instances

ns-2 routing structure diagram



Modifications to ns-2

- No socket layer in current ns-2:
 - Solution: we ported to ns-2 TcpSocket the socket layer implementation of SSFNet
- Simplified packet transmission:
 - Solution: we modified FullTcpAgent, the TCP agent for TcpSocket to support data transmission
- No support for IPv4 addressing and packet forwarding schemes:
 - Solution: we created a new address classifier
 IPv4Classifier

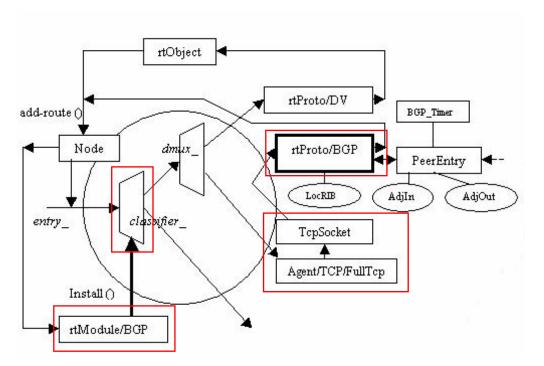
No Socket layer in current ns-2

- BGP is built on top of TCP layer
- Without a socket layer, BGP has to monitor the status of the TCP three-way handshake and connection termination process
- Solution: we ported to ns-2 TcpSocket, the socket layer implementation of SSFNet

Simplified packet transmission

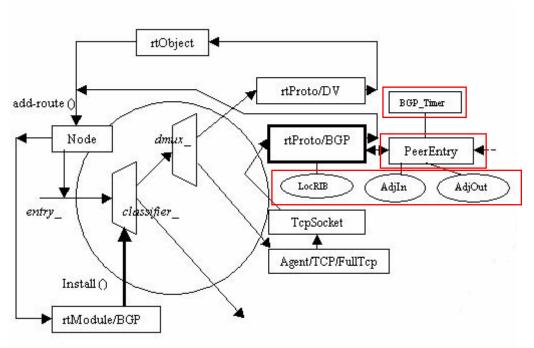
- Only packet headers (without data) are transmitted by the current TCP agent
- In order to exchange routing information, BGP need to transmit the whole packet
- Solution: we modified FullTcpAgent, the TCP agent for TcpSocket to support data transmission

No support for IPv4 addressing and packet forwarding schemes



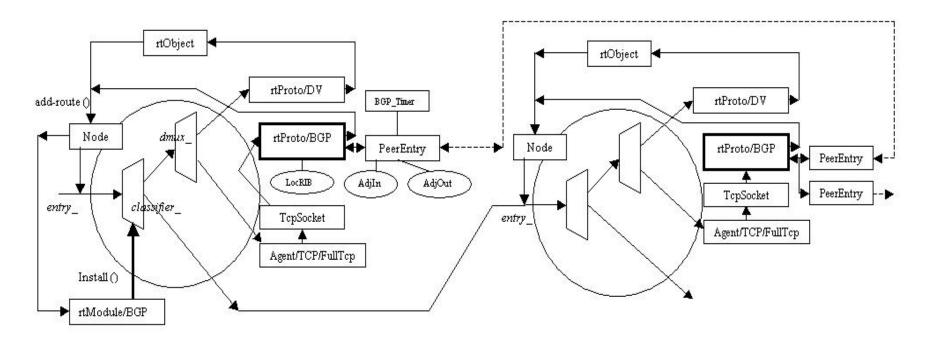
- BGP exchange routing information of IPv4 address blocks, called prefixes
- No support for IPv4 addressing and packet forwarding schemes in current ns-2.
- Solution: we created a new address classifier
 IPv4Classifier

ns-BGP unicast routing structure



- IPv4Classifier (classfier_)
- BGP routing model (rtModule/BGP):
 - manages the IPv4Classifier
- TcpSocket:
 - encapsulating the TCP services into a socket interface
- BGP routing protocol (rtProto/BGP):
 - performs BGP operations

ns-BGP unicast routing structure



- BGP peer (PeerEntry):
 - establishes and closes a peer session, exchanges messages with a peer
- BGP routing tables (LocRIB, AdjIn, and AdjOut):
 - correspond to the BGP Routing Information Base (RIB): Loc-RIB, Adj-RIB-In, and Adj-RIB-Out
- BGP Timer (BGP_Timer):
 - provides supports for the BGP timing features (timers)

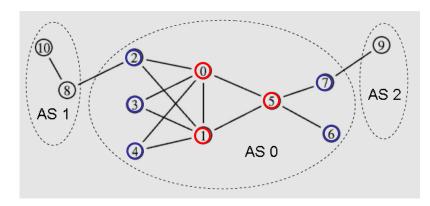
ns-BGP unicast routing structure

Supported features

- Implemented all required features in RFC 1771
- Experimental features:
 - sender-side loop detection
 - withdrawal rate limiting
 - per-peer and per-destination rate limiting
- Optional features:
 - Multiple Exit Discriminator (MED)
 - aggregator
 - community
 - originator ID
 - cluster list

- Introduction
- Background
- Design and implementation of ns-BGP
- Validation test
- Scalability analysis
- Conclusions

Validation test


- Route reflection:
 - validates the behavior of multiple reflectors inside a BGP cluster

Route reflection validation test

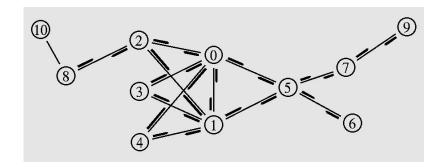
Network topology

- The network contains three ASs:
 - AS 0 has eight nodes (0 to 7), with IP addresses 10.0.0.0 - 10.0.7.0
 - AS 1 has two nodes (8 and 10), with IP addresses 10.1.8.0 and 10.1.10.0
 - AS 2 has a single node (9), with IP address 10.2.9.0
- Addressing scheme:

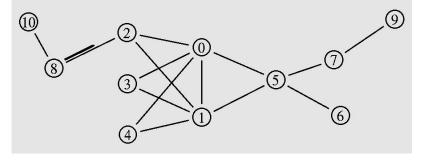
10.(AS number).(node number).1

BGP configuration:

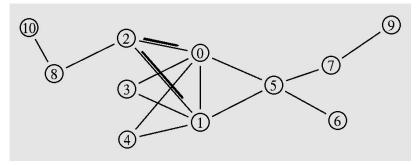
- AS 0 contains two clusters (0 and 1).
 - cluster 0 (nodes 0 4) contains 2 reflectors: nodes 0 and 1, with nodes 2, 3, and 4 as their clients
 - cluster 1 (nodes 5 -7) has one reflector (node 5), with nodes 6 and 7 as its clients
 - The three reflectors (nodes 0, 1, and 5) are fully connected via iBGP connections
- eBGP connections:
 - nodes 2 and 8
 - nodes 7 and 9


Traffic source and event scheduling

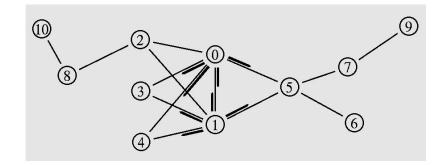
- Traffic source:
 - attached to node 4
 - constant bit rate (CBR)
 - transport protocol: UDP
 - sends segments of 20 bytes/ms to node 10 (10.1.10.1).
- Event scheduling:
 - traffic source begins sending at 0.23 s and stops at 20.0 s
 - 0.25 s: node 8 sends a route advertisement for network
 10.1.10.0/24 that is within its AS (AS 1)
 - 0.35 s: node 9 sends a route advertisement for network
 10.2.9.0/24
 - 39.0 s: displays all routing tables for BGP agents
 - 40.0 s: the simulation terminates

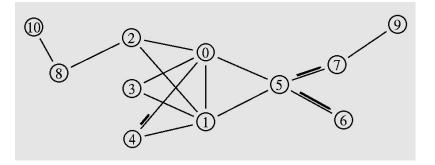


Simulation results: nam snapshots (1)


 0.0503 s, TCP SYN segments are exchanged

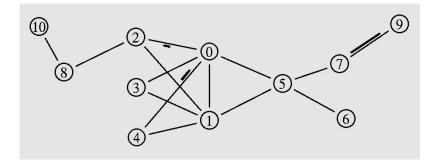
 0.2505 s, node 8 originates an update message for network 10.1.10.0/24

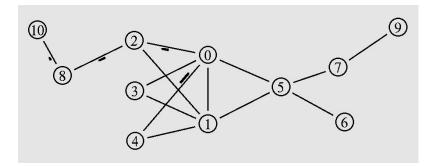

 0.2525 s, node 2 propagates the route to nodes 0 and 1



Simulation results: nam snapshots (2)

 0.2561 s, nodes 0 and 1 reflect the route to nodes 3 and 4 and to their iBGP peers


0.2568 s, node 5 reflects the route to nodes 6 and 7. Node 4 now knows the route to network 10.1.10.0/24, the UDP segment will be forwarded to node 10



Simulation results: nam snapshots (3)

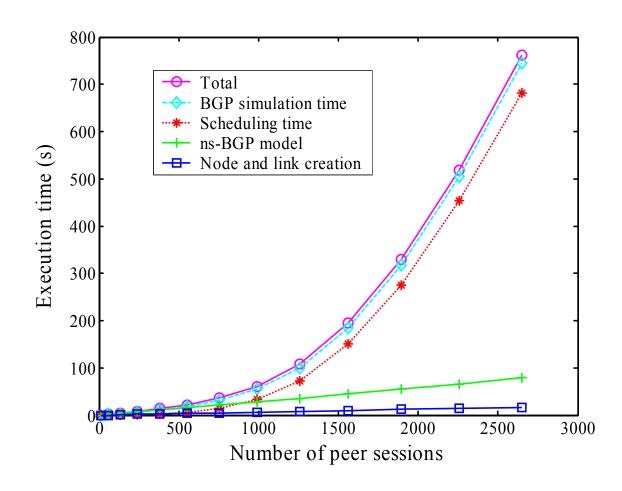
 0.2578 s, the second UDP segment is sent to the node 10.
 Node 7 propagates the route to node 9

 0.2580 s, UDP segments are delivered to node 10

Simulation results: routing tables

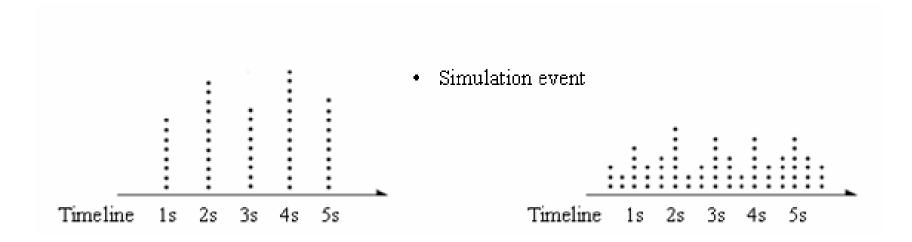
All ten Nodes learned the routes to IP addresses 10.1.10.0/24 and 10.2.9.0/24.

- Introduction
- Background
- Design and implementation of ns-BGP
- Validation test
- Scalability analysis
- Conclusions

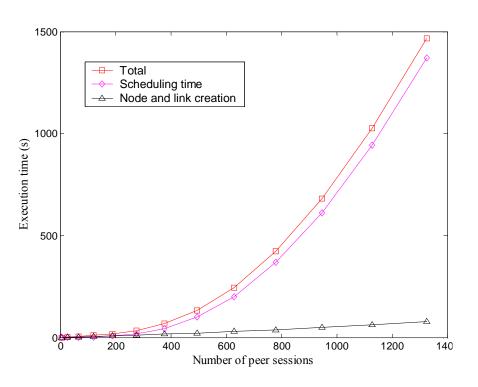


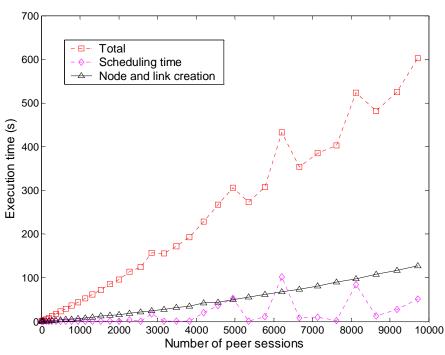
- Scalability properties:
 - execution speed
 - memory requirements
- Scalability: number of peer sessions
- Scalability: size of routing tables
- Hardware platform:
 - 1.6 GHz Xeon host with 2 GBytes of memory

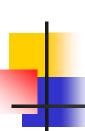
Scalability: number of peer sessions


ns-2 calendar scheduler

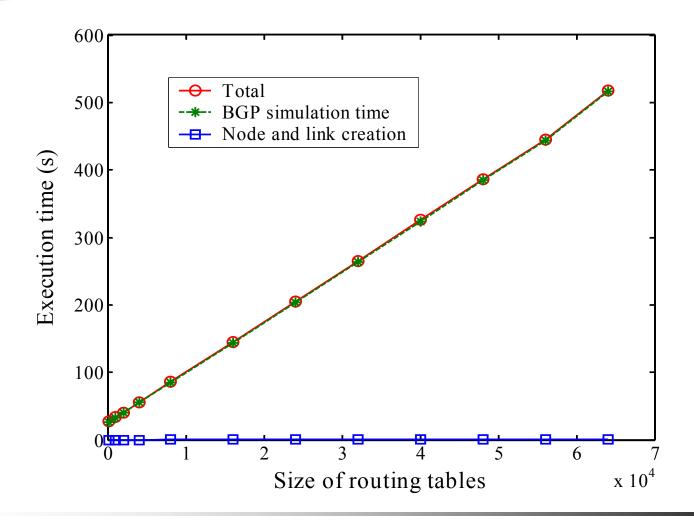
- Performance is affected by the distribution of the event times
- Large number of events scheduled at the same time instance can cause the scheduling time to increase exponentially
- Solution: we jittered BGP timers (start-up, keepalive) to scatter simulation events
- While the jittered scheduling times no longer increase exponentially, they are affected by the introduced jitter factors


Scattering events





Execution time vs. number of peer sessions


- Line topology
 - total execution time
 - scheduling time
 - ns-BGP (excluding scheduling) execution time increases linearly
 - node and link creation time
- Ring, binary tree, grid, and clique topology
 - ns-BGP (excluding scheduling) execution times increase linearly

Scalability: Size of routing tables

Conclusions

- We presented the architecture and implementation of ns-BGP, a BGP-4 model for the ns-2 network simulator.
- ns-BGP enables simulation and evaluation of BGP protocol and its variants.
- Validation tests illustrated the validity of the ns-BGP implementation.
- Our scalability analysis showed that the internal data structures and employed algorithms are scalable with respect to the number of peer sessions and the size of routing tables.
- New features, such as route flap damping, could be added in the future.

- [1] T. Bates, R. Chandra, and E. Chen, "BGP route reflection an alternative to full mesh IBGP," RFC 2796, April 2000.
- [2] Y. Rekhter and T. Li, "A border gateway protocol 4 (BGP-4)," RFC 1771, March 1995.
- [3] T. Griffin and B. Premore, "An experimental analysis of BGP convergence time," in *Proc. ICNP*, Riverside, CA, November 2001, pp. 53-61.
- [4] T. Griffin, F. Shepherd, and G. Wilfong, "The stable paths problem and interdomain routing," *IEEE Transactions on Networking*, vol. 10, no. 2, April 2002, pp. 232-243.
- [5] S. Halabi and D. McPherson, *Internet Routing Architectures*. Indianapolis, IN: Cisco Press, 2000.
- [6] D. Nicol, "Scalability of network simulators revisited," in *Proc of CNDS*, Orlando, FL, February 2003.
- [7] B. Premore, An Analysis of Convergence Properties of the Border Gateway Protocol Using Discrete Event Simulation, PhD thesis, Dartmouth College, May 2003.
- [8] J. Stewart III. BGP4: *Inter-Domain Routing in the Internet*, Addison-Wesley, 1998.

BGP implementations

- [9] T. D. Feng, R. Ballantyne, and Lj. Trajkovic, "Implementation of BGP in a network simulator," to be presented at the Applied Telecommunication Symposium, ATS '04, Arlington, Virginia, April 2004.
- [10] BGP++: http://www.ece.gatech.edu/research/labs/MANIACS/BGP++. Accessed: April 10, 2004.
- [11] GNU Zebra: http://www.zebra.org. Accessed: April 10, 2004.
- [12] GNU Zebra BGP daemon: http://www.zebra.org/zebra/BGP.html#BGP. Accessed: April 10, 2004.
- [13] ns manual: http://www.isi.edu/nsnam/ns/doc/index.html. Accessed: April 10, 2004.
- [14] OPNET BGP: http://www.opnet.com/products/library/bgp.html. Accessed: April 10, 2004.
- [15] B. Premore, SSFNet BGP User's Guide: http://www.ssfnet.org/bgp/user-guide-ps.zip. Accessed: April 10, 2004.
- [16] SSFNet: http://www.ssfnet.org/homePage.html. Accessed: April 10, 2004.

Acknowledgements

- Zhang Wang for the implementation of TcpSocket
- Brian J. Premore for providing the SSF.OS.BGP4 implementation
- Fellow CNL members for their valuable comments