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ABSTRACT 

Border Gateway Protocol (BGP) is the inter-domain routing protocol currently employed 

in the Internet. Internet growth imposes increasing requirements on BGP performance. Recent 

studies revealed that performance degradations in BGP are due to the highly dynamic nature of 

the Internet. Undesirable properties of BGP, such as poor integrity, slow convergence, and 

divergence, have been reported by the research community. Theoretical analysis and empirical 

measurements have been employed in the past, albeit with certain limitations. Simulations allow 

more realistic experiments with fewer simplifications than the theoretical approach. They also 

provide more enhanced flexibility than empirical studies permit. 

In this thesis, we describe the design and implementation of a BGP-4 model (ns-BGP) in 

the network simulator ns-2 by porting the BGP-4 implementation from SSFNet. The ns-BGP 

node is based on the existing ns-2 unicast node and the SSF.OS.BGP4  model from SSFNet. In 

order to provide socket support and at the same time maintain the structure of SSF.OS.BGP4 , we 

also ported to ns-2 TcpSocket, the socket layer implementation of SSFNet. In order to support the 

IPv4 addressing and packet forwarding, the basic address classifier in ns-2 was replaced with a 

new address classifier named IPv4Classifier. We also modified FullTcpAgent, the TCP agent 

used by TcpSocket, to support user data transmission. 

We performed a suite of validation tests to ensure that the ns-BGP model complies with 

the BGP-4 specifications, including BGP-4 features such as: basic peer session management 

(keep and drop peer), route selection, reconnection, internal BGP (iBGP), and route reflection.  

Finally, in the scalability analysis of ns-BGP, we showed that the model scales with respect to the 

number of peer sessions and the size of routing tables. 
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CHAPTER 1:  
INTRODUCTION 

The Internet began as an academic experiment in the late 1960s and has become a world-

wide data network that is used for mission critical applications. The Internet is no longer owned 

by a single entity. It is a conglomeration of tens of thousands of independently managed computer 

networks.  

Most Internet communications are based on data transfers over connections between pairs 

of hosts. Routing is the act of moving data (usually divided into packets) across a network from a 

source to a destination. Routing involves two basic activities: determining optimal routing paths 

and transporting packets through a network.  The latter activity is also called as packet 

forwarding. Although packet forwarding is relatively straightforward, path determination can be 

very complex [21]. 

Routing in the Internet is performed on two levels (intra-domain and inter-domain) 

implemented by two sets of protocols. Interior gateway protocols (IGPs) [22], such as Routing 

Information Protocol (RIP) [26], Enhanced Interior Gateway Routing Protocol (EIGRP, Cisco’s 

proprie tary protocol) [22], Intermediate System to Intermediate System (IS-IS) [22], and Open 

Shortest Path First (OSPF) [22], route packets within a single Autonomous System (intra-

domain). Exterior gateway protocols (EGPs) [22], such as EGP and Border Gateway Protocol 

(BGP) [36], route packets between Autonomous Systems (inter-domain).  

1.1 BGP weaknesses 
As the de facto  inter-domain routing protocol, BGP-4 was designed in the mid 90s for a 

much smaller Internet. With the help of Classless Inter-domain Routing (CIDR) [4] and other 

modifications, it has survived several years of Internet exponential growth. It is still an open 
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research question how much growth BGP will be able to sustain [8]. Apart from growth issue, the 

research community has identified three main weaknesses concerning BGP [10]. 

1.1.1 Poor integrity 

Routing protocols of the Internet are vulnerable to attacks and BGP is no exception. 

Misconfigured or deliberately malicious sources can disrupt overall Internet behavior by injecting 

bogus routing information into the distributed BGP routing database (by modifying, forging, or 

replaying BGP packets) [28]. 

1.1.2 Slow convergence 
Labovitz et al., [25] measured routing changes in the Internet and showed that there can 

be considerable delay in BGP convergence due to subsequent exploration of errant paths. They 

observed that the delayed convergence bears an adverse effect on end-to-end traffic delay, 

causing packet loss and intermittent disruption of connectivity.  

Griffin and Premore [14] used simulations to show how convergence is affected by the 

Minimum Route Advertisement Interval (MRAI) timer setting and to explore its impact on 

various topologies. The ubiquitously used default value of the MRAI timer appears to be much 

higher than necessary. 

Mao et al., [27] showed that route flap damping can significantly exacerbate the 

convergence times of relatively stable routes. Such abnormal behavior arises from the interaction 

of flap damping with BGP path exploration during route withdrawal and route announcement. 

1.1.3 Divergence 

Varadhan et al., [38] analyzed route oscillations in simple ring topologies and showed 

that the independently defined routing policies of different autonomous systems can cause BGP 

to diverge and result in persistent route oscillations. 
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Labovitz et al., [24] used large traces of BGP update messages to characterize the 

instability of routes to destination prefixes. They also highlighted the adverse effects of inter-

domain routing instability. 

Griffin et al., [16] established that the problem of checking the convergence properties is 

NP-complete, even with full knowledge of the routing policies of each AS. In later efforts, Griffin 

and Wilfong [17] presented a sufficient condition for a convergent routing system and proposed 

an abstract model of BGP, called Simple Path Vector Protocol (SPVP), which can identify and 

suppress policy-based oscillations. 

1.2 Employed approaches 
Various techniques, including theoretical analysis, empirical measurement, and 

simulations, have been employed in previous research on BGP. Despite the useful results, both 

theoretical and empirical approaches have certain limitations. 

1.2.1 Empirical measurement 
By collecting and analyzing genuine traffic data from the Internet, empirical studies have 

reported certain unexpected pathological behavior of BGP [24], [25], [32]. Because the Internet is 

a collection of independently managed entities, empirical measurements need to be well 

considered, strategically deployed, and collaboratively maintained. The high cost to implement 

system changes also makes it very difficult to perform controlled comparisons of protocol 

variants. 

1.2.2 Analytical approach 

Most theoretical analyses have been aimed at proving fundamental properties of routing 

protocols, such as whether they are guaranteed to converge [13], [15]-[18]. However, as the 

network topologies and protocols become more and more complex, theoretical models that are 

highly simplified have become increasingly inadequate for many practical scenarios. 
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1.2.3 Simulations 
Because of the drawback of empirical measurement and analytic methods, there has been 

a considerable increase in the use of simulations for analysis of communication networks. 

Simulations allow more realistic experiments with fewer simplifications than the theoretical 

approach. They also provide more enhanced flexibility than empirical studies permit [34]. 

In a simulation scenario, there is full control of the system and desired modifications are 

possible . It is more cost-effective to test proposed and novel extensions of network protocols 

using simulations than to deploy them in a real system. The process of model development via 

simulations requires the system to be well studied and understood. This process frequently 

uncovers problems that were unknown or not well-understood. Finally, by using visual 

representation (such as animation) to demonstrate the behavior of the system, a simulation feels 

more “real” than other methods used for system analysis.  

1.3 Contribution 
The goal of this thesis is to describe the implementation, validation, and scalability 

analysis of a BGP-4 model (ns-BGP) in the network simulator ns-2. A summary of the 

contributions follows. 

1.3.1 Implementation of a BGP-4 model in ns-2  
We implemented a BGP-4 model, the current version of BGP, in the network simulator 

ns-2 [30] by porting the BGP-4 implementation from SSFNet [35]. The new model is compliant 

with the specification [37] and also includes several extensions and experimental features.  The 

model is well documented and hierarchically organized so that it can be easily understood, 

modified, and extended. 

1.3.2 Validation of the ns -BGP model 

We have also implemented a suite of validation tests to verify the fundamental behavior  

of ns-BGP. These validation tests cover the basic maintenance of peer session (keep and drop 
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peer), route advertisement and withdrawal, route selection, internal BGP (iBGP), and route 

reflection. These tests illustrated the validity of our ns-BGP implementation. 

1.3.3 Analysis of the scalability property of ns -BGP 

We analyzed the scalability properties of ns-BGP both with respect to the number of peer 

sessions and the size of the routing tables under a variety of network topologies. The analysis 

shows that the internal data structures and employed algorithms are scalable in terms of the 

number of peer sessions and the size of routing tables. 

1.4 Organization of the thesis 
The thesis is organized as follows. In Chapter 2, we provide background on inter-domain 

routing, BGP, ns-2, and SSFNet. The design and implementation of ns-BGP are described in 

Chapter 3. Three validation tests for route selection, peer reconnection, and route reflection are 

presented in Chapter 4. We analyze the scalability of ns-BGP in Chapter 5 and we conclude with 

Chapter 6. 
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CHAPTER 2:  
BACKGROUND 

Routers are devices that direct traffic between hosts. They build routing tables that contain 

routing information about the best paths to all the destinations that they know how to reach. Inter-

domain routing protocols, such as BGP, were introduced because the intra-domain routing 

protocols do not scale well in networks that go beyond the enterprise level, with thousands of 

nodes and hundreds of thousands of routes [21]. In this chapter, we introduce the background 

information regarding inter-domain routing, BGP, and the related BGP implementation.   

2.1 Inter-domain routing 
The Internet consists of thousands of interconnected Autonomous Systems (ASs) loosely 

defined as a set of routers and networks under the same administration. A typical AS could be the 

network of a university, corporation, or an Internet Service Provider (ISP). Each AS is identified 

by a 16-bit AS number. This number is assigned by the numbering authorities in the way similar 

to the IP address assignment. Routing through the Internet depends on routing between ASs 

(inter-domain) and routing inside the ASs (intra-domain). Figure 2.1 shows the protocols 

implementing these two categories of routing. 

 
Figure 2.1: Inter-domain and intra-domain routing protocols. 
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Inside a single domain, routers employ interior gateway protocols (IGPs) to discover and 

exchange information about the internal networks to which they are directly connected. Routers 

from different ASs use exterior gateway protocols (EGPs), such as BGP, to exchange reachability 

information and determine the end-to-end path for packets traversing through multiple ASs. At 

the boundary of each AS, BGP border routers exchange routing information of IP address blocks, 

called prefixes. Each prefix consists of a 32-bit address and a mask length indicating the size of 

the network. For example, 192.0.1.0/24 represents a block of 256 addresses ranging from 

192.0.1.0 to 192.0.1.255. 

2.2 BGP overview 
BGP is categorized as a path vector protocol, a variant of distance vector protocol. 

Instead of distributing link cost information, it propagates full path information to avoid cycles. 

BGP employs TCP as its transport protocol, which ensures transport reliability and eliminates the 

need for BGP to handle retransmission, acknowledgement, and sequencing. Routers that use BGP 

are called BGP speakers. Two BGP speakers that participate in a BGP session are called 

neighbors or peers. Peer routers exchange four types of messages: open, update, notification, and 

keep-alive. The update message carries routing information while the remaining three messages 

handle session management [37].  

2.2.1 Peer session management  

The routers that support BGP usually wait for BGP connections on port 179. A router that 

wants to establish a peer session will first open a TCP connection to port 179 on the peer router. 

Once the connection is set up, each side sends an open message to negotiate the session’s 

parameters. In order to constantly monitor the reachability of their neighbors, the BGP routers 

send regularly keep-alive messages. During the opening exchange, the BGP routers announce a 

hold time, the maximum interval during which the peer should have to wait between successive 

messages. Failure to receive a message during the interval specified by hold time, will indicate 
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that the peer dose not function properly. If a BGP router receives an ill-formatted or erroneous 

message, or if it fails to receive any message during a period longer than the hold time, it will 

report the error to its peer by sending a notification message, delete all routes associated with this 

connection, and then gracefully close the TCP connection [22]. 

2.2.2 Exchange routing information  
To exchange routing information, two BGP routers first establish a peer session. After the 

session is established, the peers then exchange their full routing tables via a series of BGP 

messages. The routers are expected to memorize the paths provided by their peers. After the 

initial route exchanges, each router sends only incremental updates for new or modified routes.  

Update  messages can contain two types of reachability information: advertisements and 

withdrawals. An advertisement notifies its recipient of a new route to the destination prefix, 

whereas a withdrawal revokes a route it announced before. Beside the reachable information, an 

update message also contains a variable number of path attributes that describe the property of the 

route, including AS path , next-hop, local preference, origin type, and multi-exit discriminator 

(MED). The AS path  attribute contains a list of the ASs the prefix has traversed. BGP uses the AS 

path  for both loop detection and path selection. Upon receipt of a BGP update, each router 

examines the path vector and invalidates any route that includes the router’s own AS number in 

the path. The next-hop attribute is the IP address of the router that must be used to reach the 

announced network. The origin type attribute identifies how the origin AS learned about the 

route: within the AS (static configuration), EGP (an obsolete exterior gateway protocol), or 

injection from another routing protocol. These origin types are known as IGP, EGP, and 

INCOMPLETE. The multiple exit discriminator attribute encourages the recipient to choose a 

particular exit point for sending traffic to the neighboring AS. A local preference attribute may be 

included in an iBGP message to help the recipient in ranking the paths learned from different 

routers within the same AS.  
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2.2.3 Route processing 
There are two types of BGP peer sessions: external BGP (eBGP) for peers from different 

ASs and internal BGP (iBGP) for peers from the same AS. A BGP router may receive multiple 

paths to the same destination prefix from its eBGP and iBGP neighbors. Figure 2.2 shows the 

steps of BGP route processing. The router first applies import polic ies to filter out unwanted 

routes. For example, a BGP router may only accept advertisements with an AS path containing a 

set of trusted ASs. The router then invokes a decision process to select exactly one best route for 

each destination prefix by comparing the new routes to all other known routes to the same 

destination. The router applies a sequence of steps to narrow the set of candidate routes to a single 

choice. The best route will be installed in the router’s forwarding table, while unselected routes 

are remembered for backup purposes. 

Finally, the router applies export policies to manipulate attributes and decide whether to 

advertise the route to neighboring ASs. If the route is advertised, the router may modify some of 

the path attributes. It will at least add its own AS number to the AS path . 

2.2.4 Route withdrawal 
If a router receives a withdrawal, it first removes the invalidated route from its record. If 

the withdrawn route is currently the best route, the router looks into its backups and chooses a 

new preferred route or marks the prefix as unreachable. If the network is unreachable, a 

withdrawal must be sent to all peers who learned the route through earlier announcements. 

2.2.5 Route reflection 

In standard iBGP implementations, all BGP routers within the AS are fully meshed so 

that external routing information is redistributed among all routers within the AS. This type of 

implementation may present scaling problems when an AS has a large number of internal BGP 

speakers. Route reflection provides one way to decrease BGP control traffic, minimizing the 

number of update messages sent within an AS [2]. 
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The route reflection concept is based on the idea of appointing a concentration router 

(reflector) to act as a focal point for iBGP sessions. In route reflection, BGP systems are arranged 

in clusters. Each cluster consists of at least one router that acts as a route reflector, along with any 

number of client peers. BGP peers outside the cluster are called nonclient peers. The route 

reflector reflects (redistributes) routing information to every client peer and to all nonclient peers. 

Because the route reflector redistributes routes within the cluster, the BGP routers in the cluster 

do not have to be fully meshed.   

When the route reflector receives a route, it selects the best path. Then, if the route 

arrived from a nonclient peer, the route reflector sends the route to all client peers within the 

cluster. If the route arrived from a client peer, the route reflector sends it to all nonclient peers and 

to all client peers except the originator. During this process, none of the client peers sends routes 

to other client peers.  

2.3 ns-2 network simulator 
We implemented ns-BGP as an extension to the latest version of ns-2 network simulator 

(ns-2.27) [30]. ns-2 was developed at the ISI (University of Southern California). It was 

originally developed as an extension to the REAL network simulator. ns-2 is currently part of the 

collaborative VINT project involving USC/ISI, Xerox PARC, LBNL, and UC Berkeley. As one of 

the most popular discrete event network simulators [1] , ns-2 supports simulation of TCP, routing, 

and multicast protocols over wired and wireless networks. ns-2 is written in both C++ and OTcl 

and employs an object-oriented paradigm. C++ is used for the low level implementation of packet 

oriented processing, where performance is important. OTcl is a scripting language used for higher 

level implementation, where flexibility is more important. A graphical animator nam is used to 

visualize simulation results.  
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2.4 BGP implementation in SSFNet 
SSF.OS.BGP4 [33] is the BGP-4 model in the SSFNet [35] network simulation package. 

SSFNet is a Java-based simulator for modeling large communication networks. It includes a 

simulation kernel, an open source suite of network component models, a management suite, and a 

configuration language called Domain Modeling Language (DML). SSF.OS.BGP4, implemented 

in Java by Brian J. Premore [34], was designed with a purely object-oriented approach. A suite of 

tests is included in SSF.OS.BGP4 to ensure that the model complies with the BGP-4 

specifications [34]. We ported to ns-2 the class hierarchy that was used to implement the BGP-4 

model in SSF.OS.BGP4.  

2.5 Related work in BGP implementation 
OPNET [31], a commercial network simulator, also provides substantial support for 

BGP. However, differences between OPNET and ns-2 would have made porting the BGP model 

from OPNET to ns-2 rather difficult. GNU Zebra (written in C) is a free routing software package 

[19] that supports BGP [20] and other routing protocols. The Zebra BGP daemon has been 

recently ported to ns-2 [6]. Our project has been developed in parallel. We preferred the 

SSF.OS.BGP4 implementation because of its object oriented paradigm. 
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CHAPTER 3:  
DESIGN AND IMPLEMENTATION OF NS-BGP 

The ns-BGP classes are derived from the existing ns-2 class hierarchy. A brief introduction 

to the ns-2 unicast routing structure is first provided. Based on this structure, we describe the 

unicast routing structure of the ns-BGP model and its supported features. 

3.1 ns-2 unicast routing structure 
The ns-2 unicast routing structure consists of the forwarding and the control planes [30], 

as shown in Figure 3.1. Components of the forwarding plane are enclosed by an ellipse and 

components of the control plane are enclosed by a trapezoid.  

The forwarding plane is responsible for classifying and forwarding packets to the 

destination nodes. It includes various types of connected classifiers and routing modules. 

Classifiers deliver the incoming packets either to the appropriate agent or to the outgoing link. A 

routing module manages a node’s classifier and provides an interface to the control plane. 

Address classifier (classifier_) and port classifier (dmux_) are two types of classifiers (trapezoids) 

in an ns-2 unicast node. A classifier_ examines the destination address of an arriving packet and 

forwards the packet to the dmux_ if the node is the packet’s destination. Otherwise, the classifier_ 

sends the packet to a downstream node. The dmux_ forwards the packet to an agent 

corresponding to the packet’s destination port number.  

The control plane handles route computation and creation and the maintenance of routing 

tables. It also implements specific routing algorithms. The components of the control plane are 

route logic , route object, route peer, and routing protocol. The route logic is the centrally created 

and maintained routing table. Route objects are employed only in simulations of dynamic routing. 

The route object associated with a node acts as a coordinator for the node’s routing instances. A  
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route peer object acts as a container object used by the routing protocol: it stores the address of 

the peer agent, the metric, and the preference for each route advertised by the peer. Routing 

protocols implement specific routing algorithms, such as distance vector and link state algorithms 

[22]. 

3.2 ns-BGP unicast routing structure 
The ns-BGP node is based on the existing ns-2 unicast node and the SSF.OS.BGP4 

model from SSFNet. We converted the SSF.OS.BGP4 model to ns-2 and added the socket layer  

as well as IPv4 addressing and packet forwarding schemes. 

In order to provide socket support and at the same time maintain the structure of 

SSF.OS.BGP4, we also ported to ns-2 TcpSocket, the socket layer implementation of SSFNet. In 

order to support the IPv4 addressing and packet forwarding, the basic address classifier was 

replaced with a new address classifier named IPv4Classifier. To support user data transmission, 

we modified FullTcpAgent [30], the TCP agent for TcpSocket. 

Figure 3.2 shows the unicast structure of ns-BGP. The address classifier classifier_ is an 

IPv4Classifier. A new routing module rtModule/BGP manages the IPv4Classifier and is a 

replacement of the basic routing module rtModule/Base. TcpSocket has been added to the 

modified FullTcpAgent, encapsulating the TCP services into a socket interface. A new routing 

protocol rtProtoBGP relies only on TcpSocket for packet transmission. rtProto/BGP has one 

PeerEntry for each peer. PeerEntry establishes and closes a peer session and exchanges BGP 

messages with a peer. Each instance of PeerEntry contains one AdjIn, one AdjOut, and a variable 

BGP_Timer. LocRIB, AdjIn, and AdjOut correspond to the three parts of the BGP Routing 

Information Base (RIB): Loc-RIB, Adj-RIBs-In, and Adj-RIBs-Out [37]. BGP_Timer provides 

support for the BGP timing features (timers).  
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The five important classes of ns-BGP are TcpSocket, IPv4Classifer, rtModule/BGP,  

rtProtoBGP, and BGP_Timer. 

3.2.1 TcpSockets 

A socket is an Application Programming Interface (API) used in network 

communications. Socket applications treat network connections as UNIX file descriptors. Similar 

to files, communication endpoints can be written to, read from, or deleted. 

The TcpSocket class is an implementation of the sockets API, similar to UNIX 

implementations. Its most important functions are: bind, listen, connect, close, read, and write. 

The TcpSocket interface involved implementation of blocking calls using the Continuation caller, 

a class consisting of two callback functions: Success and Failure. Necessary data structures and 

classes, such as queue classes that store the data and a TcpData class that contains the transmitted 

user data, were also added to ns-2. The FullTcpAgent was modified to send and receive data 

packets containing user data and to inform the corresponding TcpSocket of changes in the TCP 

status.  

We implemented blocking calls using Continuation caller, which is a container of two 

callback functions: Success and Failure. Blocking function calls are widely used in network 

programming environments. For example, if a user function is about to send a data packet using 

socket service, the caller will be blocked until the socket connection succeeds (returns Success to 

calling function) or fails (returns Failure to calling function). Network performance is often 

unpredictable, due to traffic congestion for instance. In this case, Continuation caller can 

synchronize the calling function and the called function. 

We added the following data structures and classes to support TcpSocket capable of user 

data transmission: SendQueue class that stores the data requested to be sent by sender TCP agent, 

ReceiveQueue class that stores the received data from the sender, and TcpData  class that contains 

the transmitted user data. 
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3.2.2 IPv4Classifier 
The IPv4Classifier is derived from Classifier. It is implemented as one of the ns-2 dual 

classes (in both C++ and OTcl). The IPv4Classifier uses map from the C++ Standard Template 

Library to store and search the routing table. To classify an incoming packet, the IPv4Classifier 

examines the packet’s destination address. It then matches this address in the routing table of the 

classifier in order to find the route with the longest prefix match. 

3.2.3 rtModule/BGP 
The rtModule/BGP, a new routing module implemented in Tcl, provides a registration 

interface. When a node is created, active route models must register with the node. This 

registration replaces the existing classifier objects in the node. 

3.2.4 rtProtoBGP 
The rtProtoBGP class (Agent/rtProto/BGP) is implemented as an ns-2 dual class. An 

instance of this class implements BGP-4 in a node. This new routing protocol performs all the 

BGP operations: establishing BGP peer sessions, learning multiple paths via internal and external 

BGP speakers, selecting the best path and storing it into the IP forwarding table (IPv4Classifier), 

and managing the BGP finite state machine. 

3.2.5 BGP_Timer 
BGP_Timer is derived from the ns-2 TimerHandler class. It provides support for the BGP 

timing features, such as the start-up timer, keep-alive timer, hold  timer, and the Minimum Route 

Advertisement Interval (MRAI) timer. During the auto-configuration process, a start-up timer is 

scheduled for each BGP agents. When the start-up timer expires, it will bring up the BGP agent 

(rtProtoBGP) to try to establish peer connections with its BGP neighbors. When a keep-alive 

timer expires, it will trigger the BGP agent to send out a keep-alive message to its peer. 

Expiration of a hold timer indicates the failure of a BGP agent to receive a message during the 

hold time interval from a peer. In this case, the BGP agent will report the error to its peer by 
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sending a notification message. The MRAI timers are used to space out by M seconds (default 

value 30) consecutive updates for the same destination.  

3.3 Supported features 
The implementation of the ns-BGP is compliant with the BGP-4 specification RFC 1771 

[37]. It includes several optional protocol extensions and additional experimental features. We 

implemented experimental features: sender-side loop detection, withdrawal rate limiting, 

unjittered Minimum Route Advertisement Interval timer, and per-peer and per-destination rate 

limiting. Implemented optional features are Multiple Exit Discriminator, Aggregator, 

Community, Originator ID, and Cluster List path attributes. We have also implemented route 

reflection. Nevertheless, the current implementation does not support the multiprotocol 

extensions for BGP-4 [3]. 
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CHAPTER 4:  
VALIDATION TESTS 

SSF.OS.BGP4 included a suite of tests that ensured that the SSF.OS.BGP4 model complies 

with the BGP-4 specifications, including BGP-4 features such as: basic peer session maintenance 

(keep-alive and hold timer operation), route advertisement and withdrawal, route selection, 

internal BGP (iBGP), and route reflection [34]. We implemented most of these validation tests in 

ns-2 and tested the same network topologies as employed in the SSFNet validation tests [33]. We 

also introduced a new validation test for route reflection [2]. The test scripts used for validation 

tests are included in Appendix A. 

4.1 Route selection validation test 
This test checks whether a BGP speaker chooses routes properly when there is more than 

one path to a particular destination. BGP bases its decision on the values of path attributes. 

Following is an ordered list of rules used to determine the best path (also shown in Figure 2.2):  

? prefer the path with the largest Local Preference 

? prefer the path with the shortest AS path  

? prefer the path with the lowest multiple exit discriminator (MED) 

? prefer external (eBGP) over internal (iBGP) paths 

? prefer the path with the lowest IGP metric to the BGP next hop. 

Since the Local Preference path attribute is not considered in this validation test, the best 

route will be the route with the shortest AS path . 
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4.1.1 Network topology 
Figure 4.1 shows the network topology used for the simulation of route selection. The 

network consists of three ASs. Each AS contains one node: AS 0, AS 1, and AS 2 contain node 0, 

1, and 2, respectively. The IP address of each node is shown in Table 4.1. The addressing scheme 

is: 10.(AS number).(node number).1. 

Table 4.1: IP addresses used in the route selection validation test. 
 

node 0 10.0.0.1 

node 1 10.1.1.1 

node 2 10.2.2.1 

 
 

 
Figure 4.1: Network topology used in the route selection validation test. 

4.1.2 BGP configuration and event scheduling 
BGP agents were configured for each of the three nodes (0, 1, and 2). They are fully 

meshed using external BGP (eBGP) connections. At 0.25 s, the BGP agent in node 0 advertises a 

new route for IP address 10.0.0.0/24. At 39.0 s, ns-2 displays the all routing tables from BGP 

agents. The simulation terminates at 40.0 s. 
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4.1.3 Simulation results 
The simulation sequence of events is shown in Table 4.2. Simulation results displayed by 

nam are shown in Figure 4.2.  

Table 4.2: Sequence of simulation events. 

0.0503 s 

 

Figure 4.2(a): TCP SYN segments are exchanged between BGP peers, 

establishing the underlying TCP connections. 

0.2507 s Figure 4.2(b): Node 0 originates an update message advertising to node 1 and 

node 2 the route for network 10.0.0.0/24. 

0.2525 s Figure 4.2(c): Nodes 1 and 2 propagate the route advertisement to each other. 

 
 

 
(a) Establishing TCP connections (0.0503 s). 

 
(b) Node 0 advertises a route (0.2507 s). 
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(c) Nodes 1 and 2 propagate the route (0.2525 s). 

 
Figure 4.2: Snapshots of simulation results in the route selection test. 

 
During the simulation run, node 1 and node 2 both learned two routes for the IP address 

10.0.0.0/24 originated by node 0. One of these two routes is received directly from node 0 (Figure 

4.2(b)), while  the other route is exchanged between nodes 1 and 2 (Figure 4.2(c)). We first 

consider node 1. The AS path of the route that node 1 received directly from node 0 contains only 

AS 0, thus, the length of this route’s AS path  is 1. The AS path of the route that received from 

node 2 contains AS 0 and AS 2, thus, the AS path  length is 2. According to the rules of the best 

route selection, node 1 should favor the route that it received directly from node 0 over the route 

received from node 2. Node 2 followed similar decision processes.  

The routing tables from the BGP agents at 39.0 s show (status codes are: * valid, > best, i 

– internal) the proper choices of the best route in three nodes:  

BGP routing table of node0      
BGP table version is 2, local router ID is 10.0.0.1     
Status codes: * valid, > best, i - internal.      
     Network            Next Hop       Metric  LocPrf  Weight Path                                
*>   10.0.0.0/24        self                    -            -           -    
          
BGP routing table of node1                node name   
BGP table version is 1, local router ID is 10.1.1.1     
Status codes: * valid, > best, i - internal.      
     Network            Next Hop       Metric  LocPrf  Weight Path             AS path 
*>   10.0.0.0/24        10.0.0.1              -       -       - 0 
                   destination IP address 
BGP routing table of node2 
BGP table version is 1, local router ID is 10.2.2.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path 
*>   10.0.0.0/24        10.0.0.1              -       -       - 0 
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4.2 Reconnection validation test 
This test checks the ability of a BGP speaker to re-establish a peer session with a former 

peer. In this test, a BGP speaker establishes two peer sessions, but the session with one of them is 

later broken. The two BGP speakers that are disconnected then attempt to re-establish a session. 

4.2.1 Network topology 
Figure 4.3 shows the network topology used for simulation of route reconnection. The 

network consists of three ASs. Each AS contains one node: AS 0, AS 1, and AS 2 contain nodes 

0, 1, and 2, respectively. The IP address of each node is shown in Table 4.3. We used the same 

addressing scheme as in Section 4.1: 10.(AS number).(node number).1. 

Table 4.3: IP addresses used in the reconnection validation test. 
 

node 0 10.0.0.1 

node 1 10.1.1.1 

node 2 10.2.2.1 

 

 
Figure 4.3: Network topology in the reconnection validation test. 

4.2.2 BGP configuration and event scheduling 
BGP agents are configured for each of the three nodes (0, 1, and 2). External BGP 

(eBGP) connections exist between nodes 0 and 1, as well as nodes 0 and 2. For nodes 0 and 2, the 
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values for hold timer and keep-alive timer intervals of BGP agents are default values (hold time: 

90 s, keep-alive: 30 s) suggested in RFC 1771 [37]. In order to observe the reconnection behavior  

of ns-BGP, we increase the keep-alive timer interval of the BGP agent in node 1 to 200 s. By 

doing so, BGP agent in node 0 will not receive any keep-alive message before its hold  timer 

expires, which will trigger the session re-establishment.  

At 0.25 s, the BGP agent in node 0 advertises a new route for IP address 10.0.0.0/24. At 

0.35 s, the BGP agent in node 1 advertises a new route for IP address 10.1.1.0/24. At 0.45 s, the 

BGP agent in node 2 advertises a route for IP address 10.2.2.0/24. At 28 s, 90.38 s, and 119.0 s, 

ns-2 displays all routing tables from BGP agents. The simulation terminates at 120.0 s. 

4.2.3 Simulation results 
The simulation sequence of events is shown in Table 4.4. Simulation results displayed by 

nam are shown in Figure 4.4. 

Table 4.4: Sequence of simulation events. 

0.0503 s 

 

Figure 4.4(a): TCP SYN segments are exchanged between BGP peers, 

establishing the underlying TCP connections. 

0.2507 s Figure 4.4(b): node 0 originates an update message advertising to both nodes 1 

and 2 the route for network 10.0.0.0/24. 

0.3507 s Figure 4.4(c): node 1 originates an update message advertising to node 0 the route 

for network 10.1.1.0/24. 

0.3523 s Figure 4.4(d): node 0 propagates to node 2 the route for network 10.1.1.0/24. 

92.2034 s Figure 4.4(e): in node 0, the hold timer for the peer session with node 1 expires. 

Node 0 sends a notification message to node 1 informing it of the error and sends 



 26 

a route withdrawal to node 2 revoking the route for network 10.1.1.0/24. 

92.2534 s Figure 4.4(f): node 0 re-establishing the underlying TCP connection with node 1. 

92.4021 s Figure 4.4(g): after the session re-establishment, nodes 0 and 1 exchange routing 

information. 

92.4038 s Figure 4.4(h): node 0 propagates to node 2 the route for network 10.1.1.0/24. 

 

 
(a) Establishing TCP connections (0.0503 s). 

 

 
(b) Node 0 originates a route to nodes 1 and 2 (0.2507 s). 

 

 
(c) Node 1 originates a route to node 0 (0.3507 s). 

 

 
(d) Node 0 propagates the route to node 2 (0.3523 s). 
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(e) Node 0 sends a notification to node 1 and a withdrawal to node 2 (92.2034 s). 

 

 
(f)  Node 0 re-establishing TCP connection with node 1 (92.2534 s). 

 

 
(g) Node 0 and 1 exchange routing information (92.4021 s). 

 

 
(h) Node 0 propagates the route to node 2 (92.4038 s) 

 
Figure 4.4: Snapshots of nam simulation results of reconnection test. 

 

The routing tables from all BGP agents at 28 s, 90.38 s, and 119 s, respectively , illustrate 

that every BGP agents learned the routes announced by other BGP agents by 28 s. At 90.38 s, due 

to the failure of the peer session between nodes 0 and 1, nodes 0 and 2 already removed the route 

for network 10.1.1.0/24 that was originated by node 1. Node 1 also deleted the routes for 

networks 10.0.0.0/24 and 10.2.2.0/24, which it learned from node 0. After the re-establishment of 

their peer session, nodes 0 and 1 exchanged all the routing information they had and the routing 

tables converged for the second time at 119 s. 
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time: 28 
dump routing tables in all BGP agents: 
 
BGP routing table of node0 
BGP table version is 10, local router ID is 10.0.0.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.0.0.0/24        self                     -       -       - 
*>   10.1.1.0/24        10.1.1.1              -       -      - 1 
*>   10.2.2.0/24        10.2.2.1              -       -        - 2 
 
BGP routing table of node1 
BGP table version is 16, local router ID is 10.1.1.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.0.0.0/24        10.0.0.1              -       -       - 0 
*>   10.1.1.0/24        self                     -       -       - 
*>   10.2.2.0/24        10.0.0.1              -       -       - 0 2 
 
BGP routing table of node2 
BGP table version is 10, local router ID is 10.2.2.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.0.0.0/24        10.0.0.1              -      -      - 0 
*>   10.1.1.0/24        10.0.0.1              -       -       - 0 1 
*>   10.2.2.0/24        self                     -      -      - 
 
 time: 90.38 
 dump routing tables in all BGP agents: 
 
BGP routing table of node0 
BGP table version is 23, local router ID is 10.0.0.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.0.0.0/24        self                     -       -       - 
*>   10.2.2.0/24        10.2.2.1              -       -       - 2 
 
BGP routing table of node1 
BGP table version is 42, local router ID is 10.1.1.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.1.1.0/24        self                     -       -       - 
 
BGP routing table of node2 
BGP table version is 23, local router ID is 10.2.2.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.0.0.0/24        10.0.0.1              -       -       - 0 
*>   10.2.2.0/24        self                     -       -       - 
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 time: 119 
 dump routing tables in all BGP agents: 
 
BGP routing table of node0 
BGP table version is 30, local router ID is 10.0.0.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.0.0.0/24        self                     -       -       - 
*>   10.1.1.0/24        10.1.1.1              -       -       - 1 
*>   10.2.2.0/24        10.2.2.1              -       -       - 2 
 
BGP routing table of node1 
BGP table version is 56, local router ID is 10.1.1.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.0.0.0/24        10.0.0.1              -       -       - 0 
*>   10.1.1.0/24        self                     -       -       - 
*>   10.2.2.0/24        10.0.0.1              -       -       - 0 2 
 
BGP routing table of node2 
BGP table version is 30, local router ID is 10.2.2.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.0.0.0/24        10.0.0.1              -       -       - 0 
*>   10.1.1.0/24        10.0.0.1              -       -       - 0 1 
*>   10.2.2.0/24        self                      -       -       - 
 

4.3 Route reflection validation test 
Implementing route reflection can help address the scalability problem in iBGP 

connections. However, without a full BGP mesh inside the AS, redundancy and reliability 

become an issue. If a route reflector fails, its clients will become isolated. Redundancy requires 

the existence of multiple route reflectors in a cluster where clients can simultaneously peer with 

multiple routers. If one route reflector fails, the other(s) should still be available. The goal of this 

simulation test is to validate the behavior of multip le reflectors inside a BGP cluster [21].  

4.3.1 Network topology 
Figure 4.5 shows the network topology employed for simulation of route reflection. The 

network consists of three ASs: AS 0 containing eight nodes (0 through 7), AS 1 containing two 

nodes (8 and 10), and AS 2 with a single node (9). The address of each node is shown in Table 

4.5. The addressing scheme is: 10.(AS number).(node number).1. 



 30 

Table 4.5: IP addresses used in the route reflection validation test. 

Nodes: 0 through 7 10.0.0.1 though 10.0.7.1 

Nodes: 8 and 10 10.1.8.1 and 10.1.10.1 

Node: 9 10.2.9.1 

 

 
Figure 4.5: Network topology employed in the route reflection validation test. 

4.3.2 BGP configuration 
AS 0 contains two clusters. The first cluster contains two reflectors: nodes 0 and 1. The 

reflection clients of nodes 0 and 1 are nodes 2, 3, and 4. The second cluster has one reflector node 

(5), with nodes 6 and 7 as its clients. The three reflectors (nodes 0, 1, and 5) are fully connected 

via iBGP sessions. External BGP (eBGP) peer sessions exist between nodes 2 and 8, as well as 

between nodes 7 and 9.  

4.3.3 Traffic source and event scheduling 
A constant bit rate (CBR) traffic source attached to node 4 employs UDP as its transport 

protocol. It sends segments of 20 bytes every millisecond to the IP address of node 10 

(10.1.10.1). The traffic source begins sending UDP segments at 0.23 s and stops sending them at 

20.0 s. At 0.25 s, the BGP agent in node 8 sends a route advertisement for a network 10.1.10.0/24 

that is within its AS (AS 1). At 0.35 s, the BGP agent in node 9 sends a route advertisement for 
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network 10.2.9.0/24 (AS 2). At 39.0 s, ns-2 displays all routing tables for BGP agents. The 

simulation terminates at 40.0 s.  

4.3.4 Simulation results 

The simulation sequence of events is shown in Table 4.6. Simulation results displayed by 

nam are shown in Figures 4.6(a)–(g).  

Table 4.6: Sequence of simulation events. 

0.0503 s 

 

Figure 4.6(a):  TCP SYN segments are exchanged between BGP peers, 

establishing the underlying TCP connections. 

0.2505 s Figure 4.6(b): node 8 originates an update message advertising the route for 

network 10.1.10.0/24. 

0.2525 s Figure 4.6(c):  node 2 propagates the route advertisement to nodes 0 and 1. 

0.2561 s Figure 4.6(d): route reflectors (nodes 0 and 1) reflect the route advertisement 

to their clients (nodes 3 and 4) and to their iBGP peers. 

0.2568 s Figure 4.6(e): node 5 reflects the route advertisement to its clients (nodes 6 

and 7). Because node 4 now knows the route to network 10.1.10.0/24, the 

UDP segment will be forwarded to node 10. Before node 4 knowing this 

route, the UDP segments sending out by the traffic source are dropped at 

node 4. 

0.2578 s Figure 4.6(f): the second UDP segment is sent to the destination (node 10). 

Node 7 propagates the route advertisement to node 9. 

0.2580 s Figure 4.6(g): UDP segments are delivered to node 10. 
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(a) Establishing TCP connections (0.0503 s). 

 

 
(b) Node 8 originates a route (0.2505 s). 

 

 
(c) Node 2 propagates the route to nodes 0 and 1 (0.2525 s). 

 

 
(d) Nodes 0 and 1 reflect the routes to nodes 3 and 4 (0.2561 s). 
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(e) Node 4 sends a UDP segment to node 10. Node 5 reflects the route to 

nodes 6 and 7 (0.2568 s). 
 

 
(f) Node 4 sends the second UDP segment. Node 7 propagates the route 

to node 9 (0.2578 s). 
 

 
(g) Four UDP segments are being delivered to node 10 (0.2580 s). 

 
Figure 4.6: Snapshots of simulation results for route reflection test. 

 

By the end of the simulation run, every BGP node knows routes to 10.1.10.0/24 and 

10.2.9.0/24. Routing tables for BGP agents at 39.0 s are:  

BGP routing table of node0 
BGP table version is 2, local router ID is 10.0.0.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.1.10.0/24       10.0.2.1              -       -       - 1         i 
*>   10.2.9.0/24        10.0.7.1               -       -         - 2         i 
 
BGP routing table of node1 



 34 

BGP table version is 2, local router ID is 10.0.1.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.1.10.0/24       10.0.2.1              -       -       - 1         i 
*>   10.2.9.0/24        10.0.7.1               -       -      - 2         i 
 
BGP routing table of node2 
BGP table version is 4, local router ID is 10.0.2.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.1.10.0/24       10.1.8.1              -       -       - 1 
*>   10.2.9.0/24        10.0.7.1               -       -       - 2         i 
 
BGP routing table of node3 
BGP table version is 4, local router ID is 10.0.3.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.1.10.0/24       10.0.2.1              -       -       - 1         i 
*>   10.2.9.0/24        10.0.7.1               -       -       - 2         i 
 
BGP routing table of node4 
BGP table version is 4, local router ID is 10.0.4.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.1.10.0/24       10.0.2.1              -       -       - 1         i 
*>   10.2.9.0/24        10.0.7.1               -        -        - 2         i 
 
BGP routing table of node5 
BGP table version is 2, local router ID is 10.0.5.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.1.10.0/24       10.0.2.1              -       -       - 1         i 
*>   10.2.9.0/24        10.0.7.1               -       -        - 2         i 
 
BGP routing table of node6 
BGP table version is 2, local router ID is 10.0.6.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.1.10.0/24       10.0.2.1              -       -       - 1         i 
*>   10.2.9.0/24        10.0.7.1               -       -       - 2         i 
 
BGP routing table of node7 
BGP table version is 2, local router ID is 10.0.7.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.1.10.0/24       10.0.2.1              -         -       - 1         i 
*>   10.2.9.0/24        10.2.9.1               -       -       - 2 
 
BGP routing table of node8 
BGP table version is 3, local router ID is 10.1.8.1 
Status codes: * valid, > best, i - internal. 
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     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.1.10.0/24       self                   -       -      - 
*>   10.2.9.0/24        10.0.2.1              -       -       - 0 2 
 
BGP routing table of node9 
BGP table version is 3, local router ID is 10.2.9.1 
Status codes: * valid, > best, i - internal. 
     Network            Next Hop       Metric  LocPrf  Weight Path  
*>   10.1.10.0/24       10.0.7.1              -       -       - 0 1 
*>   10.2.9.0/24        self                      -        -        - 
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CHAPTER 5:  
MODEL SCALABILITY 

As the size and complexity of simulated networks grow, it is important to address the 

scalability properties of simulation models. Such properties include execution speed and memory 

requirements of a simulation experiment [29]. The ns-BGP model should scale both with respect 

to the number of peer sessions and the size of routing tables. Our simulation experiments were 

performed on a 1.6 GHz Intel Xeon host with 2 GBytes of memory and a RedHat Linux 9.0 

operating system.  

5.1 Model Configuration 
In validation tests, we verified the ns-BGP model using three small scale networks. In 

contrast, the experiments performed in the scalability analysis are quite larger in terms of the 

network topology and its size. Some experiments used in the scalability analysis contain up to 

10,000 nodes and 10,000 peer sessions. Experiments with such large scale networks require 

further configuration of the ns-BGP model. 

5.1.1 Topology families 
Our scalability analysis is based on several simpler topologies that are similar to 

subgraphs of the Internet’s AS graph. BGP’s behavior of these subgraphs is expected to be an 

important indicator of its behavior in more general topologies. Finding a closer behavioral 

relationship between the individual components and the Internet topologies would require further 

study [34]. 

 We first introduce several definitions to simplify the explanation of the experiments. A 

simple AS is an AS containing only one BGP router and no host [34]. Every AS in the 

experiments of scalability analysis is a simple AS. A topology of size n has n simple ASs and, 
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therefore, n BGP routers referred as R0, R1, …, Rn-1. eBGP connections are established between 

each router Ri and its neighbors that are connected to Ri by physical links. 

The first family of experiment is performed on a line topology. A line topology of size n 

is a topology with n simple ASs with routers R0, R1, …, Rn-1, such that there is link between Ri and 

Ri+1  for i = 0, 1, …, n-2. Figure 5.1 shows a line topology of size 6. 

 

Figure 5.1 A line topology of size 6. 
 

A ring topology of size n is a topology with n simple ASs with routers R0, R1, …, Rn-1, 

such that there is a link between Ri and Ri+1  for i = 0, 1, …, n-2, as well as a link between R0 and 

Rn-1. Figure 5.2 illustrates a ring topology of size 6. 

 

Figure 5.2 A ring topology of size 6. 
 

A binary tree topology of size n (n = 2m-1, where m is the tree height)  is a topology with 

n simple ASs with routers R0, R1, …, Rn-1, such that there are links between Ri and R2i, as well as 

Ri and R2i+1 for i = 0, 1, …, 2m-1-2. Figure 5.3 illustrates a binary tree topology of size 15. 
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Figure 5.3 A binary tree topology of size 15. 
 

A grid topology of size n (n = m2 , where m is the grid length) to be a topology in which 

there are n simple ASs with routers R0, R1, …, Rn-1, such that there is link between Rx and Ry 

(where x = im + j, y = km + l and {|i-k| , |j -l|} = {0,1}) for x,y = 0, 1, …, n-1, x ? y, Figure 5.4 

illustrates a grid topology of size 16. 

 

Figure 5.4 A grid topology of size 16. 
 

A clique topology of size n is a topology with n simple ASs with routers R0, R1, …, Rn-1, 

such that there is link between Ri and Rj, for i, j = 0, 1, …, n-1, i ?  j. Figure 5.5 illustrates a clique 

topology of size 6. 
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Figure 5.5 A clique topology of size 6. 

5.1.2 Experiment parameters  

BGP’s behavior can be changed by a set of parameters. The default values for the 

parameters that are applied in all experiments are list in Table  5.1: 

Table 5.1: Default values of parameters used in experiments. 
 

Parameter description Default 

hold-time interval 90 s 

keep-alive interval 30 s 

MRAI 30 s 

jitter keep-alive interval yes 

jitter MRAI yes 

jitter start-up timer interval yes 

 

The first three parameters are interval values for the BGP timers. They are set to the 

default values suggested in [37]. We introduce jitter factors to the keep-alive interval, the MRAI, 
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and the start-up timer interval to avoid performance degradation of the ns-2 scheduler, as 

described in Section 5.1.4 with more details.  

5.1.3 ns-BGP simulation phases 

Each BGP simulation described in this chapter contains seven phases. An ns-2 simulator 

instance is created during phase 1. The execution time and memory usage of this phase are 

identical for every simulation experiment and are small enough to be ignored. Nodes and links are 

created in phases 2 and 3, respectively. All BGP agents are enabled to be auto-configured by the 

ns-BGP model during phase 4. In phase 5, initialization of the simulator, such as the creation of 

the central routing table (Route Logic), is performed. The time and memory usage of phase 4 and 

5 are also negligible  and are ignored. During phase 6, each BGP agent establishes peer sessions 

with its neighbors. In phase 7, after all peer sessions are established successfully, BGP messages 

(keep-alive and/or update messages) are exchanged between the peering BGP agents. A sample 

Otcl script containing information of simulation phases is given in Appendix B. 

5.1.4 ns-2 Calendar Scheduler 

ns-2 is an event-driven simulator. The scheduler runs by selecting the next earliest event, 

executing it to completion, and returning to execute the next event [30]. The Calendar Queue 

data structure used by the default Calendar Scheduler is described by Brown [7]. It is a priority 

queue specially designed for the event set problem.  

Performance of the Calendar Scheduler is affected by the distribution of event times. As 

the network topology grows, more synchronous BGP agents schedule events for the same time 

instance. Large number of events scheduled at the few time instances can cause the scheduling 

time (cumulative execution time of the scheduler) to increase exponentially, as shown in Figure 

5.6. In order to reduce the synchronization, we scatter the events by introducing random jitter 

factors to the BGP start-up, keep-alive, and MRAI timers. Figure 5.7 shows the effect of jittered 

timers on the distribution of event times. While the jittered scheduling times no longer increase 
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exponentially with the number of peer sessions, they are affected by the introduced random 

factors as shown in Figure 5.8. 
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Figure 5.6 Execution times of clique topologies (without jittered timers). 

 
 

Figure 5.7 Scattering events (left) along the time line by jittering the timers (right). 
 

5.1.5 Measurements 
We measured execution time and memory usage of the ns-BGP model in every 

simulation phase. Besides collecting the statistics for an individual phase, we also calculated total 

sum of the statistics from different phases. The sum of phases 2 (node creation) and 3 (link 

creation) is named node and link creation. ns-BGP is the sum of phase 6 (session establishment) 

and phases 7 (message exchange). The total time is almost equal to the sum of node and link 
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creation and ns-BGP, since the statistics of phases 1 (simulator instance creation), phase 4 

(enabling auto-configuration), phase 5 (initialization of the simulator) are small enough to be 

ignored. 
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Figure 5.8 Execution times of clique topologies (with jittered timers). 

 

The clock OTcl command was used to retrieve timestamps with millisecond precision at 

the beginning of each phase and at the end of simulation. These timestamps were used to 

calculate the execution time of each phase. The malloc C library call was employed to calculate 

the dynamic memory utilization using a modification of the approach proposed in [29]. 

5.2 Scalability: number of peer sessions 
In this section, we illustrate the ns-BGP model’s scalability with respect to the number of 

peer sessions, by examining the execution time and memory usage of BGP.  

5.2.1 Line topology 

Execution times of different phases for networks with the line topology are shown as 

functions of the number of peer sessions in Figure 5.9. The total execution time increases 
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nonlinearly with the number of peer sessions. The total execution time, including the scheduling 

time as one of its components, is affected by the randomness (jitter) introduced to the BGP timers.  
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Figure 5.9 Execution times for line topologies. Simulated time is 100 s. 

 

In order to exclude the effect of the randomized scheduling time, we examine the total 

(excluding scheduling) execution time, which is calculated by subtracting the scheduling time 

from the total execution time. As shown in Figure 5.9, the total (excluding scheduling) execution 

time increases smoothly, but still shows a slight exponential trend.  

The total (excluding scheduling) execution time mainly cons ists of two parts: the node 

and link creation and ns-BGP (excluding scheduling) execution times.  Because nodes and links 

are created before the simulation begins, the node and link creation time is not affected by the 

scheduler performance. However, the slight exponential trend shown by the total (excluding 

scheduling) execution time results from the node and link creation time. The node and link 

creation are not a part of the ns-BGP model. Since the performance degradation it caused is not 

severe, we have not attempted to improve the node and link creation processes in ns-2. 
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Similar to the total (excluding scheduling) time, the ns-BGP (excluding scheduling) time 

is calculated to exclude the affect of the randomized scheduling time. The ns-BGP (excluding 

scheduling), which is the actual contribution of the ns-BGP model to the execution time, 

increases linearly. The session establishment (excluding scheduling) and keep-alive message 

exchange execution times are also measured. The keep-alive message exchange execution time 

fluctuates with the scheduling time as shown in Figure 5.9. The session establishment (excluding 

scheduling) execution time increases linearly and is very close to the ns-BGP (excluding 

scheduling) execution time. This implies that the ns-BGP model spent most of its execution time 

in session establishment and only a small portion in exchanging keep-alive message.  

Memory utilizations of different simulation phases and their linear dependence on the 

number of peer sessions are show in Figure 5.10. We calculated a total memory usage of 54.21 

Kbytes per peer. 
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Figure 5.10 Memory utilization for line topologies. Simulated time is 100 s. 
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5.2.2 Ring topology 
The ns-BGP (excluding scheduling) execution time and the total memory usage of the 

ring topologies increase linearly in the number of peer sessions, as shown in Figures 5.11 and 

5.12. We calculated a total memory usage of 54.21 Kbytes per peer. 
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Figure 5.11 Execution times for ring topologies. Simulated time is 100 s. 
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Figure 5.12 Memory utilization for ring topologies. Simulated time is 100 s. 
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5.2.3 Binary tree topology 
The ns-BGP (excluding scheduling) execution time and total memory usage of the binary 

tree topologies increase linearly in the number of peer sessions, as shown in Figures 5.13 and 

5.14. We calculated a total memory usage of 54.3 Kbytes per peer. 
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Figure 5.13 Execution times for binary trees. Simulated time is 100 s. 
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Figure 5.14 Memory utilization for binary trees. Simulated time is 100 s. 
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5.2.4 Grid topology 
The ns-BGP (excluding scheduling) execution time and total memory usage of the grid 

topologies increase linearly in the number of peer sessions, as shown in Figures 5.15 and 5.16. 

We calculated a total memory usage of 47.7 Kbytes per peer. 
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Figure 5.15 Execution times for grid topologies. Simulated time is 100 s. 
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Figure 5.16 Memory utilization for grid topologies. Simulated time is 100 s. 
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5.2.5 Clique topology 
The ns-BGP (excluding scheduling) execution time and total memory usage of the clique 

topologies increase linearly in the number of peer sessions, as shown in Figures 5.17 and 5.18. 

We calculated a total memory usage of 43.8 Kbytes per peer. 
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Figure 5.17 Execution times for clique topologies. Simulated time is 100 s. 
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Figure 5.18: Memory utilization for clique topologies. Simulated time is 100 s. 
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5.3 Scalability: size of routing tables 
In this section, we analyze the scalability of the ns-BGP model with respect to the size of 

routing tables. We examine the execution time and memory usage of BGP simulations with five 

topologies.  The experiments in this section are performed on topologies with static sizes unlike 

the experiments shown in Section 5.2. The five static topologies used are: line, ring, grid , and 

clique topologies of size 16 and a binary tree topology of size 15. In order to analyze the model’s 

scalability with respect to the size of routing tables M, each node is configured to send M/16 (line, 

ring, grid, clique topologies) or M/15 routes (binary tree topology) to its peers. After the process 

converged, the routing table of each node should contain M routes. 

5.3.1 Line topology 
Execution times for different simulation phases for the line topology as functions of the 

size of routing tables are shown in Figure 5.19. Given the small topology size, the node and link 

creation and session establishment execution times are close to zero. On the other hand, the total 

and message exchange execution times are similar, which implies that the simulator spent most of 

its time in exchanging BGP messages (keep-alive and update). The total and message exchange 

execution times increase linearly. 

The topologies used for this scalability analysis have small number of peer sessions. For 

an instance, the line topology of size 16 has 15 peer sessions. Hence, very few events are 

scheduled for the same time instance and, thus, the scheduler performs well. The scheduling 

times are very small, less than 0.5% of the total execution times. Therefore, we only show the 

total, session establishment, node and link creation, and the message exchange execution times.  

Memory utilizations for different simulation phases and their linear dependence on the 

size of routing tables are show in Figure 5.20. We calculated a total memory usage of 20.88 

Kbytes per route. 
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Figure 5.19 Execution times for the line topology. Simulated time is 10,000 s. 
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Figure 5.20 Memory utilization for the line topology. Simulated time is 10,000 s 
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5.3.2 Ring topology 
Similar to the line topology, we found that the ns-BGP (excluding scheduling) execution 

time and memory usage of the ring topology both increase linearly in the size of routing tables, as 

shown in Figures 5.21 and 5.22. We calculated a total memory usage of 24.97 Kbytes per route. 
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Figure 5.21 Execution times for the ring topology. Simulated time is 10,000 s. 
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Figure 5.22 Memory utilization for the ring topology. Simulated time is 10,000 s 
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5.3.3 Binary tree topology 
The ns-BGP (excluding scheduling) execution time and total memory usage of the binary 

tree topology increase linearly in the size of routing tables, as shown in Figures 5.23 and 5.24. 

We calculated a total memory usage of 19.28 Kbytes per route.  
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Figure 5.23 Execution times for the binary tree. Simulated time is 10,000 s. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

1

2

3

4

5

6

7

8

9
x 10

5

Size of routing tables

M
em

or
y 

ul
til

iz
at

io
n 

(K
by

te
s)

Total
Session establishment
Node and link creation
Message exchange

 
Figure 5.24 Memory utilization for the binary tree. Simulated time is 10,000 s 
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5.3.4 Grid topology 
The ns-BGP (excluding scheduling) execution time and total memory usage of the grid 

topology increase linearly in the size of routing tables, as shown in Figures 5.25 and 5.26. We 

calculated a total memory usage of 60.54 Kbytes per route. 
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Figure 5.25 Execution times for the grid topology. Simulated time is 10,000 s. 
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Figure 5.26 Memory utilization for the grid topology. Simulated time is 10,000 s. 
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5.3.5 Clique topology 
The ns-BGP (excluding scheduling) execution time and total memory usage of the clique 

topology increase linearly in the size of routing tables, as shown in Figures 5.27 and 5.28. We 

calculated a total memory usage of 67.25 Kbytes per route.  
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Figure 5.27 Execution times for the clique topology. Simulated time is 10,000 s. 
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Figure 5.28: Memory utilization for the clique topology. Simulated time is 10,000 s. 
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CHAPTER 6:  
CONCLUSIONS 

In this thesis, we presented the architecture and implementation of ns-BGP, a BGP-4 

model for the ns-2 network simulator. ns-BGP enables simulation and evaluation of BGP protocol 

and its variants. The validation test illustrated the validity of the ns-BGP implementation. Our 

scalability analysis was based on various network topologies. It shows that the internal data 

structures and employed algorithms are scalable in terms of the number of peer sessions and the 

size of routing tables. The ns-BGP implementation also includes several optional BGP features.  

As for feature work, more realistic network topologies and routing polices can be 

employed to simulate genuine behavior of the Internet. Additional features, such as route flap 

damping, policy routing, and multiprotocol extension, may be added to the existing ns-BGP 

model. These features will help compare the performance of various algorithms for route flap 

damping, study the detailed behavior of BGP policy routing, and evaluate new technologies that 

are based on the multiprotocol extension, such as BGP/MPLS (Multiprotocol Label Switching)  

VPN (virtual private network).  
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APPENDIX A: TEST SCRIPTS FOR VALIDATION TESTS 

A.1 Route selection 

# 
# select.tcl 
# 
 
puts "" 
puts "SELECT Validation Test: " 
puts "" 
puts " A \"triangle\" consisting of three ASes.  Each AS has one" 
puts " BGP-speaking router.  Each router is connected directly to" 
puts " the routers in each neighboring AS." 
puts "" 
puts "    AS----AS " 
puts "     \\    /  " 
puts "      \\  /   " 
puts "       AS    " 
puts "" 
 
 
set nf [open select.nam w] 
set ns [new Simulator] 
$ns namtrace-all $nf 
 
$ns node-config -BGP ON 
set n0 [$ns node 0:10.0.0.1] 
set n1 [$ns node 1:10.1.1.1] 
set n2 [$ns node 2:10.2.2.1] 
$ns node-config -BGP OFF 
 
$ns duplex-link $n0 $n1 1Mb 1ms DropTail 
$ns duplex-link $n0 $n2 1Mb 1ms DropTail 
$ns duplex-link $n1 $n2 1Mb 1ms DropTail 
 
set bgp_agent0 [$n0 get-bgp-agent] 
$bgp_agent0 bgp-id 10.0.0.1 
$bgp_agent0 neighbor 10.1.1.1 remote-as 1 
$bgp_agent0 neighbor 10.2.2.1 remote-as 2 
 
set bgp_agent1 [$n1 get-bgp-agent] 
$bgp_agent1 bgp-id 10.1.1.1 
$bgp_agent1 neighbor 10.0.0.1 remote-as 0 
$bgp_agent1 neighbor 10.2.2.1 remote-as 2 
 
set bgp_agent2 [$n2 get-bgp-agent] 
$bgp_agent2 bgp-id 10.2.2.1 
$bgp_agent2 neighbor 10.0.0.1 remote-as 0 
$bgp_agent2 neighbor 10.1.1.1 remote-as 1 
 
$ns at 0.25 "puts \"\n time: 0.25 \n n0 (ip_addr 10.0.0.1) \ 
                       defines a network 10.0.0.0/24.\"" 
$ns at 0.25 "$bgp_agent0 network 10.0.0.0/24" 
 
$ns at 39.0 "puts \"\n time: 39 \ 
                    \n dump routing tables in all BGP agents: \n\"" 
$ns at 39.0 "$bgp_agent0 show-routes" 
$ns at 39.0 "$bgp_agent1 show-routes" 
$ns at 39.0 "$bgp_agent2 show-routes" 
 
$ns at 40.0 "finish" 
 
proc finish {} { 
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 global ns nf 
 $ns flush-trace 
 close $nf 
 puts "Simulation finished. Executing nam..." 
 exec nam select.nam 
 exit 0 
} 
 
puts "Simulation starts..." 
$ns run 
 

A.2 Reconnection 
# 
# reconnect.tcl 
# 
 
puts "" 
puts "RECONNECT Validation Test:" 
puts "" 
puts " Three ASes connected in a line, each with one router." 
puts "       AS 1       AS 0       AS 2" 
puts "       n1 }------{ n0 }------{ n2" 
puts "" 
 
 
set nf [open reconnect.nam w] 
set ns [new Simulator] 
$ns namtrace-all $nf 
  
$ns node-config -BGP ON 
set n0 [$ns node 0:10.0.0.1] 
set n1 [$ns node 1:10.1.1.1] 
set n2 [$ns node 2:10.2.2.1] 
$ns node-config -BGP OFF 
 
$ns duplex-link $n0 $n1 1Mb 1ms DropTail 
$ns duplex-link $n0 $n2 1Mb 1ms DropTail 
 
set bgp_agent0 [$n0 get-bgp-agent] 
$bgp_agent0 bgp-id 10.0.0.1 
$bgp_agent0 neighbor 10.1.1.1 remote-as 1 
$bgp_agent0 neighbor 10.2.2.1 remote-as 2 
 
set bgp_agent1 [$n1 get-bgp-agent] 
$bgp_agent1 bgp-id 10.1.1.1 
$bgp_agent1 neighbor 10.0.0.1 remote-as 0 
$bgp_agent1 neighbor 10.0.0.1 keep-alive-time 200   
 
set bgp_agent2 [[$n2 get-module BGP] get-bgp-agent] 
$bgp_agent2 bgp-id 10.2.2.1 
$bgp_agent2 neighbor 10.0.0.1 remote-as 0 
 
$ns at 0.25 "puts \"\n time: 0.25 \n n0 (ip_addr 10.0.0.1) \ 
                       defines a network 10.0.0.0/24.\"" 
$ns at 0.25 "$bgp_agent0 network 10.0.0.0/24" 
$ns at 0.35 "puts \"\n time: 0.35 \n n1 (ip_addr 10.1.1.1) \ 
                       defines a network 10.1.1.0/24.\""  
$ns at 0.35 "$bgp_agent1 network 10.1.1.0/24" 
$ns at 0.45 "puts \"\n time: 0.45 \n n2 (ip_addr 10.2.2.1) \ 
                       defines a network 10.2.2.0/24.\"" 
$ns at 0.45 "$bgp_agent2 network 10.2.2.0/24" 
 
## Network converges at 27.25*.  
$ns at 28.0 "puts \"\n time: 28 \ 
                    \n dump routing tables in all BGP agents: \n\"" 
$ns at 28.0 "$bgp_agent0 show-routes" 
$ns at 28.0 "$bgp_agent1 show-routes" 
$ns at 28.0 "$bgp_agent2 show-routes" 
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## At 90.35, HoldTimer of bgp_agent0 expired, bgp_agent0 will  
## 1. drop peer with bgp_agent1,  
## 2. withdrawl route that learned from bgp_agent1 
 
## Connection closing finished at 90.36*. 
$ns at 90.38 "puts \"\n time: 90.38 \ 
                     \n dump routing tables in all BGP agents: \n\"" 
$ns at 90.38 "$bgp_agent0 show-routes" 
$ns at 90.38 "$bgp_agent1 show-routes" 
$ns at 90.38 "$bgp_agent2 show-routes" 
 
## Network converges at 117.50* again after reconnection. 
$ns at 119.0 "puts \"\n time: 119 \ 
                     \n dump routing tables in all BGP agents: \n\"" 
 
$ns at 119 "$bgp_agent0 show-routes" 
$ns at 119 "$bgp_agent1 show-routes" 
$ns at 119 "$bgp_agent2 show-routes" 
 
$ns at 120.0 "finish" 
 
proc finish {} { 
 global ns nf 
 $ns flush-trace 
 close $nf 
 puts "Simulation finished. Executing nam..." 
 #exec nam reconnect.nam 
 exit 0 
} 
 
puts "Simulation starts..." 
$ns run 
 
#* These times are recorded with "jitter_factor_seed" set to 12345. 
#  (Please see file bgp/global.h) 
  

A.3 Route reflection 
# 
# reflection2.tcl 
#  
 
puts "" 
puts "REFLECTION2 VALIDATION TEST:" 
puts "" 
puts " Three ASes(AS0, AS1 and AS2) connected in a line, the middle " 
puts " one(AS0) containing eight BGP routers, the others just one each." 
puts " AS0 has two clusters: cluster 1000 and 2000. Cluster 1000 has " 
puts " two reflectors: n0 and n1. n2, n3 and n4 are reflection clients of " 
puts " both n0 and n1. Cluster 2000 contains one reflector n5, which has" 
puts " n6 and n7 as its reflection clients. " 
puts "" 
puts "        AS 1         AS 0         AS 2 "    
puts "         n8 }------{ n0-7 }------{ n9 " 
puts "" 
 
set nf [open reflection2.nam w] 
set ns [new Simulator] 
$ns namtrace-all $nf 
  
$ns node-config -BGP ON 
set n0 [$ns node 0:10.0.0.1] 
set n1 [$ns node 0:10.0.1.1] 
set n2 [$ns node 0:10.0.2.1] 
set n3 [$ns node 0:10.0.3.1] 
set n4 [$ns node 0:10.0.4.1] 
set n5 [$ns node 0:10.0.5.1] 
set n6 [$ns node 0:10.0.6.1] 
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set n7 [$ns node 0:10.0.7.1] 
set n8 [$ns node 1:10.1.8.1] 
set n9 [$ns node 2:10.2.9.1] 
$ns node-config -BGP OFF 
set n10 [$ns node 1:10.1.10.1] 
 
## SETUP INTER-REFRECTOR LINKS 
$ns duplex-link $n0 $n1 1Mb 1ms DropTail 
$ns duplex-link $n0 $n5 1Mb 1ms DropTail 
$ns duplex-link $n1 $n5 1Mb 1ms DropTail 
 
## SETUP REFRECTOR-CLIENT LINKS 
$ns duplex-link $n0 $n2 1Mb 1ms DropTail 
$ns duplex-link $n0 $n3 1Mb 1ms DropTail 
$ns duplex-link $n0 $n4 1Mb 1ms DropTail 
$ns duplex-link $n1 $n2 1Mb 1ms DropTail 
$ns duplex-link $n1 $n3 1Mb 1ms DropTail 
$ns duplex-link $n1 $n4 1Mb 1ms DropTail 
$ns duplex-link $n5 $n6 1Mb 1ms DropTail 
$ns duplex-link $n5 $n7 1Mb 1ms DropTail 
 
## SETUP INTRA-AS LINKS 
$ns duplex-link $n8 $n10 1Mb 1ms DropTail 
 
## SETUP EBGP LINKS 
$ns duplex-link $n2 $n8 1Mb 1ms DropTail 
$ns duplex-link $n7 $n9 1Mb 1ms DropTail 
 
## SETUP REFRECTORS 
set bgp_agent0 [$n0 get-bgp-agent] 
$bgp_agent0 bgp-id 10.0.0.1 
$bgp_agent0 cluster-id 1000 
$bgp_agent0 neighbor 10.0.2.1 route-reflector-client    
$bgp_agent0 neighbor 10.0.3.1 route-reflector-client 
$bgp_agent0 neighbor 10.0.4.1 route-reflector-client 
$bgp_agent0 neighbor 10.0.1.1 remote-as 0 
$bgp_agent0 neighbor 10.0.5.1 remote-as 0 
 
set bgp_agent1 [$n1 get-bgp-agent] 
$bgp_agent1 bgp-id 10.0.1.1 
$bgp_agent1 cluster-id 1000 
$bgp_agent1 neighbor 10.0.2.1 route-reflector-client    
$bgp_agent1 neighbor 10.0.3.1 route-reflector-client 
$bgp_agent1 neighbor 10.0.4.1 route-reflector-client 
$bgp_agent1 neighbor 10.0.0.1 remote-as 0 
$bgp_agent1 neighbor 10.0.5.1 remote-as 0 
 
set bgp_agent5 [$n5 get-bgp-agent] 
$bgp_agent5 bgp-id 10.0.5.1 
$bgp_agent1 cluster-id 2000 
$bgp_agent5 neighbor 10.0.6.1 route-reflector-client 
$bgp_agent5 neighbor 10.0.7.1 route-reflector-client 
$bgp_agent5 neighbor 10.0.1.1 remote-as 0 
$bgp_agent5 neighbor 10.0.0.1 remote-as 0 
 
## SETUP CLIENTS 
set bgp_agent2 [$n2 get-bgp-agent] 
$bgp_agent2 bgp-id 10.0.2.1 
$bgp_agent2 neighbor 10.0.0.1 remote-as 0 
$bgp_agent2 neighbor 10.0.1.1 remote-as 0 
$bgp_agent2 neighbor 10.1.8.1 remote-as 1 
 
set bgp_agent3 [$n3 get-bgp-agent] 
$bgp_agent3 bgp-id 10.0.3.1 
$bgp_agent3 neighbor 10.0.0.1 remote-as 0 
$bgp_agent3 neighbor 10.0.1.1 remote-as 0 
 
set bgp_agent4 [$n4 get-bgp-agent] 
$bgp_agent4 bgp-id 10.0.4.1 
$bgp_agent4 neighbor 10.0.0.1 remote-as 0 
$bgp_agent4 neighbor 10.0.1.1 remote-as 0 
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set bgp_agent6 [$n6 get-bgp-agent] 
$bgp_agent6 bgp-id 10.0.6.1 
$bgp_agent6 neighbor 10.0.5.1 remote-as 0 
 
set bgp_agent7 [$n7 get-bgp-agent] 
$bgp_agent7 bgp-id 10.0.7.1 
$bgp_agent7 neighbor 10.0.5.1 remote-as 0 
$bgp_agent7 neighbor 10.2.9.1 remote-as 2 
 
## SETUP EBGP'S 
set bgp_agent8 [$n8 get-bgp-agent] 
$bgp_agent8 bgp-id 10.1.8.1 
$bgp_agent8 neighbor 10.0.2.1 remote-as 0 
 
set bgp_agent9 [$n9 get-bgp-agent] 
$bgp_agent9 bgp-id 10.2.9.1 
$bgp_agent9 neighbor 10.0.7.1 remote-as 0 
 
set udp0 [new Agent/UDP] 
$udp0 set dst_addr_ [$n4 strtoaddr 10.1.10.1] 
$udp0 set dst_port_ 0 
 
set cbr0 [ new Application/Traffic/CBR] 
$cbr0 set packetSize_ 20 
$cbr0 set interval_ 0.001 
$cbr0 attach-agent $udp0 
$ns attach-agent $n4 $udp0 
 
$ns at 0.23 "puts \"\n time: 0.23 \ 
                    \n cbr0 starts to send UDP segments to n10.\"" 
$ns at 0.23 "$cbr0 start" 
 
$ns at 0.25 "puts \"\n time: 0.25 \n n8 (ip_addr 10.1.8.1) \ 
                       defines a network 10.1.10.0/24.\"" 
$ns at 0.25 "$bgp_agent8 network 10.1.10.0/24" 
 
$ns at 0.35 "puts \"\n time: 0.35 \n n9 (ip_addr 10.2.9.1) \ 
                       defines a network 10.2.9.0/24.\"" 
$ns at 0.35 "$bgp_agent9 network 10.2.9.0/24" 
 
$ns at 20 "puts \"\n time: 20 \n cbr0 stops.\"" 
$ns at 20 "$cbr0 stop" 
 
$ns at 39.0 "puts \"\n time: 39  
                    \n dump routing tables in all BGP agents: \n\"" 
$ns at 39.0 "$bgp_agent0 show-routes" 
$ns at 39.0 "$bgp_agent1 show-routes" 
$ns at 39.0 "$bgp_agent2 show-routes" 
$ns at 39.0 "$bgp_agent3 show-routes" 
$ns at 39.0 "$bgp_agent4 show-routes" 
$ns at 39.0 "$bgp_agent5 show-routes" 
$ns at 39.0 "$bgp_agent6 show-routes" 
$ns at 39.0 "$bgp_agent7 show-routes" 
$ns at 39.0 "$bgp_agent8 show-routes" 
$ns at 39.0 "$bgp_agent9 show-routes" 
 
$ns at 40.0 "finish" 
 
proc finish {} { 
 global ns nf 
 $ns flush-trace 
 close $nf 
 puts "Simulation finished. Executing nam..." 
 exec nam reflection2  
 exit 0 
} 
 
puts "Simulation starts..." 
$ns run 
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APPENDIX B: SAMPLE SCRIPT FOR SIMULATION 
PHASES 

set line_size 16           ##  Line topology with 16 nodes. 
set route_number 1         ##  Each node announces one prefix. 
set finish_time 10000      ##  Simulated time is 10000 s. 
 
## 
# Phase 1: ns-2 simulator instance creation 
## 
set ns [new Simulator] 
 
## 
# Phase 2: node creation 
## 
$ns node-config -BGP ON 
for {set i 0} {$i < $line_size } {incr i} { 
   set n($i) [$ns node $i:10.0.$i.1] 
} 
$ns node-config -BGP OFF 
 
## 
# Phase 3: link creation 
## 
for {set i 0} {$i < [expr $line_size -1] } {incr i} { 
 $ns duplex-link $n($i) $n([expr $i + 1]) 1Mb 1ms DropTail 
} 
## 
# Phase 4: enable each BGP agent to be auto-config 
## 
for {set i 0} {$i < $line_size } {incr i} { 
set bgp_agent($i) [$n($i) get-bgp-agent] 
 $bgp_agent($i) set-auto-config 
} 
  
##  
# Phase 5: Other initialization  
## 
 
## 
# Phase 6: BGP session establishment 
## 
$ns at 0.0 “puts \”Begin establishing BGP sessions. \”” 
 
## 
# Phase 7: BGP message exchange 
## 
for {set i 0} {$i < $line_size } {incr i} { 
     for {set j 0} {$i < $route_number } {incr j} { 
 $ns at 20.0 “$bgp_agent($i) network $i.0.$route_number.0/24 
} 
 
## 
# Simulation terminates at 10000s 
## 
$ns at $finish_time "finish" 
 
proc finish {} { 
 exit 0 
} 
 
puts "Simulation starts..." 
$ns run 
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