

IMPLEMENTATION OF BGP IN A NETWORK
SIMULATOR

by

Tony Dongliang Feng

B.Sc., Zhongshang University, 1997

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the School
of

Computing Science

© Tony Dongliang Feng 2004

SIMON FRASER UNIVERSITY

April 2004

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

 ii

APPROVAL

Name: Tony Dongliang Feng

Degree: Master of Science

Title of Thesis: Implementation of BGP in a Network Simulator

Examining Committee:

Chair: Dr. Petra Berenbrink
Assistant Professor

 Dr. Ljiljana Trajkovic
Senior Supervisor
Professor

 Dr. Uwe Glässer
Supervisor
Associate Professor

 Dr. Qianping Gu
Examiner
Associate Professor
Computing Science, SFU

Date Approved:

 iii

ABSTRACT

Border Gateway Protocol (BGP) is the inter-domain routing protocol currently employed

in the Internet. Internet growth imposes increasing requirements on BGP performance. Recent

studies revealed that performance degradations in BGP are due to the highly dynamic nature of

the Internet. Undesirable properties of BGP, such as poor integrity, slow convergence, and

divergence, have been reported by the research community. Theoretical analysis and empirical

measurements have been employed in the past, albeit with certain limitations. Simulations allow

more realistic experiments with fewer simplifications than the theoretical approach. They also

provide more enhanced flexibility than empirical studies permit.

In this thesis, we describe the design and implementation of a BGP-4 model (ns-BGP) in

the network simulator ns-2 by porting the BGP-4 implementation from SSFNet. The ns-BGP

node is based on the existing ns-2 unicast node and the SSF.OS.BGP4 model from SSFNet. In

order to provide socket support and at the same time maintain the structure of SSF.OS.BGP4 , we

also ported to ns-2 TcpSocket, the socket layer implementation of SSFNet. In order to support the

IPv4 addressing and packet forwarding, the basic address classifier in ns-2 was replaced with a

new address classifier named IPv4Classifier. We also modified FullTcpAgent, the TCP agent

used by TcpSocket, to support user data transmission.

We performed a suite of validation tests to ensure that the ns-BGP model complies with

the BGP-4 specifications, including BGP-4 features such as: basic peer session management

(keep and drop peer), route selection, reconnection, internal BGP (iBGP), and route reflection.

Finally, in the scalability analysis of ns-BGP, we showed that the model scales with respect to the

number of peer sessions and the size of routing tables.

 iv

DEDICATION

To my wife Michelle, my mom and dad.

 v

ACKNOWLEDGEMENTS

I would like to give my special thanks to my advisor, Dr. Ljiljana Trajkovic , for her

guidance, support, and encouragement during my studies at Simon Fraser University. Thank you

for your valuable instructions and ideas regarding the research and your continuous and patient

advising regarding my academic writing.

My gratitude goes to Dr. Qianping Gu and Dr. Uwe Glässer for serving on my examining

committee. Thank you for your precious time in reviewing my thesis and providing insightful

comments and suggestions. I would also like to thank Dr. Petra Berenbrink for chairing the thesis

defense.

 I would like to express my sincere thanks to the people who helped me throughout this

project and without whom this thesis would not have been finished. Many thanks to Zheng Wang

for the implementation of TcpSocket, Rob Balantyne for the contribution of the IPv4Classifier,

and the author of SSF.OS.BGP4, Brain J. Premore, for providing an excellent BGP

implementation.

 My sincere thanks go to my fellow graduate students in the Communication Networks

Laboratory: Hao Johnson Chen, Hao Leo Chen, Jiaqing James Song, Qing Kenny Shao, Grace

Hui Zhang, Savio Lau, Nikola Cackov, and Nenad Laskovic , for their support and wonderful

friendship.

 vi

TABLE OF CONTENTS

Approval ...ii

Abstract..iii

Dedication..iv

Acknowledgements ..v

Table of Contents ..vi

List of Figures..ix

List of Tables ...xi

Abbreviations and Acronyms ...xii

Chapter 1: Introduction..1
1.1 BGP weaknesses..1

1.1.1 Poor integrity ...2
1.1.2 Slow convergence ..2
1.1.3 Divergence ...2

1.2 Employed approaches..3
1.2.1 Empirical measurement ...3
1.2.2 Analytical approach...3
1.2.3 Simulations ..4

1.3 Contribution...4
1.3.1 Implementation of a BGP-4 model in ns-2..4
1.3.2 Validation of the ns-BGP model..4
1.3.3 Analysis of the scalability property of ns-BGP ...5

1.4 Organization of the thesis ..5

Chapter 2: Background ..6
2.1 Inter-domain routing..6
2.2 BGP overview ...7

2.2.1 Peer session management ..7
2.2.2 Exchange routing information...8
2.2.3 Route processing..9
2.2.4 Route withdrawal...9
2.2.5 Route reflection ...9

2.3 ns-2 network simulator ..11
2.4 BGP implementation in SSFNet..12
2.5 Related work in BGP implementation...12

Chapter 3: Design and Implementation of ns -bgp...13

 vii

3.1 ns-2 unicast routing structure ..13
3.2 ns-BGP unicast routing structure...15

3.2.1 TcpSockets...17
3.2.2 IPv4Classifier ..18
3.2.3 rtModule/BGP..18
3.2.4 rtProtoBGP ..18
3.2.5 BGP_Timer ..18

3.3 Supported features ...19

Chapter 4: Validation Tests ...20
4.1 Route selection validation test ...20

4.1.1 Network topology ..21
4.1.2 BGP configuration and event scheduling ..21
4.1.3 Simulation results ..22

4.2 Reconnection validation test..24
4.2.1 Network topology ..24
4.2.2 BGP configuration and event scheduling ..24
4.2.3 Simulation results ..25

4.3 Route reflection validation test..29
4.3.1 Network topology ..29
4.3.2 BGP configuration...30
4.3.3 Traffic source and event scheduling ..30
4.3.4 Simulation results ..31

Chapter 5: Model Scalability ...36
5.1 Model Configuration...36

5.1.1 Topology families..36
5.1.2 Experiment parameters ..39
5.1.3 ns-BGP simulation phases ...40
5.1.4 ns-2 Calendar Scheduler ..40
5.1.5 Measurements ..41

5.2 Scalability: number of peer sessions ...42
5.2.1 Line topology...42
5.2.2 Ring topology ..45
5.2.3 Binary tree topology ..46
5.2.4 Grid topology...47
5.2.5 Clique topology ...48

5.3 Scalability: size of routing tables ..49
5.3.1 Line topology...49
5.3.2 Ring topology ..51
5.3.3 Binary tree topology ..52
5.3.4 Grid topology...53
5.3.5 Clique topology ...54

Chapter 6: Conclusions ...55

Appendix A: Test scripts for validation tests ..56
A.1 Route selection ..56

 viii

A.2 Reconnection...57
A.3 Route reflection ...58

Appendix B: Sample script for simulation phases ..61

Bibliography ...62

 ix

LIST OF FIGURES

Figure 2.1: Inter-domain and intra-domain routing protocols. ...6
Figure 2.2: BGP route processing. ..10
Figure 3.1: ns-2 unicast routing structure. ..14
Figure 3.2: Unicast routing structure of ns-BGP. ...16
Figure 4.1: Network topology used in the route selection validation test.21
Figure 4.2: Snapshots of simulation results in the route selection test.23
Figure 4.3: Network topology in the reconnection validation test.24
Figure 4.4: Snapshots of nam simulation results of reconnection test..............................27
Figure 4.5: Network topology employed in the route reflection validation test.30
Figure 4.6: Snapshots of simulation results for route reflection test.33
Figure 5.1 A line topology of size 6. ...37
Figure 5.2 A ring topology of size 6. ..37
Figure 5.3 A binary tree topology of size 15. ...38
Figure 5.4 A grid topology of size 16. ..38
Figure 5.5 A clique topology of size 6. ...39
Figure 5.6 Execution times of clique topologies (without jittered timers).41
Figure 5.7 Scattering events (left) along the time line by jittering the timers

(right)...41
Figure 5.8 Execution times of clique topologies (with jittered timers).42
Figure 5.9 Execution times for line topologies. Simulated time is 100 s.43
Figure 5.10 Memory utilization for line topologies. Simulated time is 100 s.44
Figure 5.11 Execution times for ring topologies. Simulated time is 100 s.45
Figure 5.12 Memory utilization for ring topologies. Simulated time is 100 s.45
Figure 5.13 Execution times for binary trees. Simulated time is 100 s.46
Figure 5.14 Memory utilization for binary trees. Simulated time is 100 s.46
Figure 5.15 Execution times for grid topologies. Simulated time is 100 s.47
Figure 5.16 Memory utilization for grid topologies. Simulated time is 100 s.47
Figure 5.17 Execution times for clique topologies. Simulated time is 100 s....................48
Figure 5.18: Memory utilization for clique topologies. Simulated time is 100 s.48
Figure 5.19 Execution times for the line topology. Simulated time is 10,000 s.50
Figure 5.20 Memory utilization for the line topology. Simulated time is 10,000 s50
Figure 5.21 Execution times for the ring topology. Simulated time is 10,000 s...............51

 x

Figure 5.22 Memory utilization for the ring topology. Simulated time is 10,000 s51
Figure 5.23 Execution times for the binary tree. Simulated time is 10,000 s.52
Figure 5.24 Memory utilization for the binary tree. Simulated time is 10,000 s52
Figure 5.25 Execution times for the grid topology. Simulated time is 10,000 s...............53
Figure 5.26 Memory utilization for the grid topology. Simulated time is 10,000 s.53
Figure 5.27 Execution times for the clique topology. Simulated time is 10,000 s.54
Figure 5.28: Memory utilization for the clique topology. Simulated time is

10,000 s. ...54

 xi

LIST OF TABLES

Table 4.1: IP addresses used in the route selection validation test.21
Table 4.2: Sequence of simulation events...22
Table 4.3: IP addresses used in the reconnection validation test.24
Table 4.4: Sequence of simulation events...25
Table 4.5: IP addresses used in the route reflection validation test.30
Table 4.6: Sequence of simulation events...31
Table 5.1: Default values of parameters used in experiments. ...39

 xii

ABBREVIATIONS AND ACRONYMS

Adj-RIBs-In set of RIBs for incoming routes from adjacent routers

Adj-RIBs-Out set of RIBs for outgoing routes from adjacent routers

AS autonomous system

BGP Border Gateway Protocol

BGP-4 Border Gateway Protocol version 4

CIDR classless inter-domain routing

DML Domain Modeling Language

EIGRP Enhanced Interior Gateway Routing Protocol

FSM finite state machine

eBGP external BGP

iBGP internal BGP

IDR inter-domain routing

IGP interior gateway protocol

IS-IS Intermediate System to Intermediate System

ISP Internet service provider

Loc-RIB RIB for locally used routes

MED Multiple Exit Discriminator

MPLS Multiprotocol Label Switching

 xiii

MRAI minimum route advertisement interval

NLRI Network Layer Reachability Information

OSPF Open Shortest Path First

RFC Request for Comments

RIB routing information base

RIP Routing Information Protocol

SSFNet Scalable Simulation Framework Network models

SSF.OS.BGP4 SSFNet BGP

VPN virtual private network

 1

CHAPTER 1:
INTRODUCTION

The Internet began as an academic experiment in the late 1960s and has become a world-

wide data network that is used for mission critical applications. The Internet is no longer owned

by a single entity. It is a conglomeration of tens of thousands of independently managed computer

networks.

Most Internet communications are based on data transfers over connections between pairs

of hosts. Routing is the act of moving data (usually divided into packets) across a network from a

source to a destination. Routing involves two basic activities: determining optimal routing paths

and transporting packets through a network. The latter activity is also called as packet

forwarding. Although packet forwarding is relatively straightforward, path determination can be

very complex [21].

Routing in the Internet is performed on two levels (intra-domain and inter-domain)

implemented by two sets of protocols. Interior gateway protocols (IGPs) [22], such as Routing

Information Protocol (RIP) [26], Enhanced Interior Gateway Routing Protocol (EIGRP, Cisco’s

proprie tary protocol) [22], Intermediate System to Intermediate System (IS-IS) [22], and Open

Shortest Path First (OSPF) [22], route packets within a single Autonomous System (intra-

domain). Exterior gateway protocols (EGPs) [22], such as EGP and Border Gateway Protocol

(BGP) [36], route packets between Autonomous Systems (inter-domain).

1.1 BGP weaknesses
As the de facto inter-domain routing protocol, BGP-4 was designed in the mid 90s for a

much smaller Internet. With the help of Classless Inter-domain Routing (CIDR) [4] and other

modifications, it has survived several years of Internet exponential growth. It is still an open

 2

research question how much growth BGP will be able to sustain [8]. Apart from growth issue, the

research community has identified three main weaknesses concerning BGP [10].

1.1.1 Poor integrity

Routing protocols of the Internet are vulnerable to attacks and BGP is no exception.

Misconfigured or deliberately malicious sources can disrupt overall Internet behavior by injecting

bogus routing information into the distributed BGP routing database (by modifying, forging, or

replaying BGP packets) [28].

1.1.2 Slow convergence
Labovitz et al., [25] measured routing changes in the Internet and showed that there can

be considerable delay in BGP convergence due to subsequent exploration of errant paths. They

observed that the delayed convergence bears an adverse effect on end-to-end traffic delay,

causing packet loss and intermittent disruption of connectivity.

Griffin and Premore [14] used simulations to show how convergence is affected by the

Minimum Route Advertisement Interval (MRAI) timer setting and to explore its impact on

various topologies. The ubiquitously used default value of the MRAI timer appears to be much

higher than necessary.

Mao et al., [27] showed that route flap damping can significantly exacerbate the

convergence times of relatively stable routes. Such abnormal behavior arises from the interaction

of flap damping with BGP path exploration during route withdrawal and route announcement.

1.1.3 Divergence

Varadhan et al., [38] analyzed route oscillations in simple ring topologies and showed

that the independently defined routing policies of different autonomous systems can cause BGP

to diverge and result in persistent route oscillations.

 3

Labovitz et al., [24] used large traces of BGP update messages to characterize the

instability of routes to destination prefixes. They also highlighted the adverse effects of inter-

domain routing instability.

Griffin et al., [16] established that the problem of checking the convergence properties is

NP-complete, even with full knowledge of the routing policies of each AS. In later efforts, Griffin

and Wilfong [17] presented a sufficient condition for a convergent routing system and proposed

an abstract model of BGP, called Simple Path Vector Protocol (SPVP), which can identify and

suppress policy-based oscillations.

1.2 Employed approaches
Various techniques, including theoretical analysis, empirical measurement, and

simulations, have been employed in previous research on BGP. Despite the useful results, both

theoretical and empirical approaches have certain limitations.

1.2.1 Empirical measurement
By collecting and analyzing genuine traffic data from the Internet, empirical studies have

reported certain unexpected pathological behavior of BGP [24], [25], [32]. Because the Internet is

a collection of independently managed entities, empirical measurements need to be well

considered, strategically deployed, and collaboratively maintained. The high cost to implement

system changes also makes it very difficult to perform controlled comparisons of protocol

variants.

1.2.2 Analytical approach

Most theoretical analyses have been aimed at proving fundamental properties of routing

protocols, such as whether they are guaranteed to converge [13], [15]-[18]. However, as the

network topologies and protocols become more and more complex, theoretical models that are

highly simplified have become increasingly inadequate for many practical scenarios.

 4

1.2.3 Simulations
Because of the drawback of empirical measurement and analytic methods, there has been

a considerable increase in the use of simulations for analysis of communication networks.

Simulations allow more realistic experiments with fewer simplifications than the theoretical

approach. They also provide more enhanced flexibility than empirical studies permit [34].

In a simulation scenario, there is full control of the system and desired modifications are

possible . It is more cost-effective to test proposed and novel extensions of network protocols

using simulations than to deploy them in a real system. The process of model development via

simulations requires the system to be well studied and understood. This process frequently

uncovers problems that were unknown or not well-understood. Finally, by using visual

representation (such as animation) to demonstrate the behavior of the system, a simulation feels

more “real” than other methods used for system analysis.

1.3 Contribution
The goal of this thesis is to describe the implementation, validation, and scalability

analysis of a BGP-4 model (ns-BGP) in the network simulator ns-2. A summary of the

contributions follows.

1.3.1 Implementation of a BGP-4 model in ns-2
We implemented a BGP-4 model, the current version of BGP, in the network simulator

ns-2 [30] by porting the BGP-4 implementation from SSFNet [35]. The new model is compliant

with the specification [37] and also includes several extensions and experimental features. The

model is well documented and hierarchically organized so that it can be easily understood,

modified, and extended.

1.3.2 Validation of the ns -BGP model

We have also implemented a suite of validation tests to verify the fundamental behavior

of ns-BGP. These validation tests cover the basic maintenance of peer session (keep and drop

 5

peer), route advertisement and withdrawal, route selection, internal BGP (iBGP), and route

reflection. These tests illustrated the validity of our ns-BGP implementation.

1.3.3 Analysis of the scalability property of ns -BGP

We analyzed the scalability properties of ns-BGP both with respect to the number of peer

sessions and the size of the routing tables under a variety of network topologies. The analysis

shows that the internal data structures and employed algorithms are scalable in terms of the

number of peer sessions and the size of routing tables.

1.4 Organization of the thesis
The thesis is organized as follows. In Chapter 2, we provide background on inter-domain

routing, BGP, ns-2, and SSFNet. The design and implementation of ns-BGP are described in

Chapter 3. Three validation tests for route selection, peer reconnection, and route reflection are

presented in Chapter 4. We analyze the scalability of ns-BGP in Chapter 5 and we conclude with

Chapter 6.

 6

CHAPTER 2:
BACKGROUND

Routers are devices that direct traffic between hosts. They build routing tables that contain

routing information about the best paths to all the destinations that they know how to reach. Inter-

domain routing protocols, such as BGP, were introduced because the intra-domain routing

protocols do not scale well in networks that go beyond the enterprise level, with thousands of

nodes and hundreds of thousands of routes [21]. In this chapter, we introduce the background

information regarding inter-domain routing, BGP, and the related BGP implementation.

2.1 Inter-domain routing
The Internet consists of thousands of interconnected Autonomous Systems (ASs) loosely

defined as a set of routers and networks under the same administration. A typical AS could be the

network of a university, corporation, or an Internet Service Provider (ISP). Each AS is identified

by a 16-bit AS number. This number is assigned by the numbering authorities in the way similar

to the IP address assignment. Routing through the Internet depends on routing between ASs

(inter-domain) and routing inside the ASs (intra-domain). Figure 2.1 shows the protocols

implementing these two categories of routing.

Figure 2.1: Inter-domain and intra-domain routing protocols.

 7

Inside a single domain, routers employ interior gateway protocols (IGPs) to discover and

exchange information about the internal networks to which they are directly connected. Routers

from different ASs use exterior gateway protocols (EGPs), such as BGP, to exchange reachability

information and determine the end-to-end path for packets traversing through multiple ASs. At

the boundary of each AS, BGP border routers exchange routing information of IP address blocks,

called prefixes. Each prefix consists of a 32-bit address and a mask length indicating the size of

the network. For example, 192.0.1.0/24 represents a block of 256 addresses ranging from

192.0.1.0 to 192.0.1.255.

2.2 BGP overview
BGP is categorized as a path vector protocol, a variant of distance vector protocol.

Instead of distributing link cost information, it propagates full path information to avoid cycles.

BGP employs TCP as its transport protocol, which ensures transport reliability and eliminates the

need for BGP to handle retransmission, acknowledgement, and sequencing. Routers that use BGP

are called BGP speakers. Two BGP speakers that participate in a BGP session are called

neighbors or peers. Peer routers exchange four types of messages: open, update, notification, and

keep-alive. The update message carries routing information while the remaining three messages

handle session management [37].

2.2.1 Peer session management

The routers that support BGP usually wait for BGP connections on port 179. A router that

wants to establish a peer session will first open a TCP connection to port 179 on the peer router.

Once the connection is set up, each side sends an open message to negotiate the session’s

parameters. In order to constantly monitor the reachability of their neighbors, the BGP routers

send regularly keep-alive messages. During the opening exchange, the BGP routers announce a

hold time, the maximum interval during which the peer should have to wait between successive

messages. Failure to receive a message during the interval specified by hold time, will indicate

 8

that the peer dose not function properly. If a BGP router receives an ill-formatted or erroneous

message, or if it fails to receive any message during a period longer than the hold time, it will

report the error to its peer by sending a notification message, delete all routes associated with this

connection, and then gracefully close the TCP connection [22].

2.2.2 Exchange routing information
To exchange routing information, two BGP routers first establish a peer session. After the

session is established, the peers then exchange their full routing tables via a series of BGP

messages. The routers are expected to memorize the paths provided by their peers. After the

initial route exchanges, each router sends only incremental updates for new or modified routes.

Update messages can contain two types of reachability information: advertisements and

withdrawals. An advertisement notifies its recipient of a new route to the destination prefix,

whereas a withdrawal revokes a route it announced before. Beside the reachable information, an

update message also contains a variable number of path attributes that describe the property of the

route, including AS path , next-hop, local preference, origin type, and multi-exit discriminator

(MED). The AS path attribute contains a list of the ASs the prefix has traversed. BGP uses the AS

path for both loop detection and path selection. Upon receipt of a BGP update, each router

examines the path vector and invalidates any route that includes the router’s own AS number in

the path. The next-hop attribute is the IP address of the router that must be used to reach the

announced network. The origin type attribute identifies how the origin AS learned about the

route: within the AS (static configuration), EGP (an obsolete exterior gateway protocol), or

injection from another routing protocol. These origin types are known as IGP, EGP, and

INCOMPLETE. The multiple exit discriminator attribute encourages the recipient to choose a

particular exit point for sending traffic to the neighboring AS. A local preference attribute may be

included in an iBGP message to help the recipient in ranking the paths learned from different

routers within the same AS.

 9

2.2.3 Route processing
There are two types of BGP peer sessions: external BGP (eBGP) for peers from different

ASs and internal BGP (iBGP) for peers from the same AS. A BGP router may receive multiple

paths to the same destination prefix from its eBGP and iBGP neighbors. Figure 2.2 shows the

steps of BGP route processing. The router first applies import polic ies to filter out unwanted

routes. For example, a BGP router may only accept advertisements with an AS path containing a

set of trusted ASs. The router then invokes a decision process to select exactly one best route for

each destination prefix by comparing the new routes to all other known routes to the same

destination. The router applies a sequence of steps to narrow the set of candidate routes to a single

choice. The best route will be installed in the router’s forwarding table, while unselected routes

are remembered for backup purposes.

Finally, the router applies export policies to manipulate attributes and decide whether to

advertise the route to neighboring ASs. If the route is advertised, the router may modify some of

the path attributes. It will at least add its own AS number to the AS path .

2.2.4 Route withdrawal
If a router receives a withdrawal, it first removes the invalidated route from its record. If

the withdrawn route is currently the best route, the router looks into its backups and chooses a

new preferred route or marks the prefix as unreachable. If the network is unreachable, a

withdrawal must be sent to all peers who learned the route through earlier announcements.

2.2.5 Route reflection

In standard iBGP implementations, all BGP routers within the AS are fully meshed so

that external routing information is redistributed among all routers within the AS. This type of

implementation may present scaling problems when an AS has a large number of internal BGP

speakers. Route reflection provides one way to decrease BGP control traffic, minimizing the

number of update messages sent within an AS [2].

 10

Fi
gu

re
 2

.2
: B

G
P

ro
ut

e
pr

oc
es

si
ng

.

 11

The route reflection concept is based on the idea of appointing a concentration router

(reflector) to act as a focal point for iBGP sessions. In route reflection, BGP systems are arranged

in clusters. Each cluster consists of at least one router that acts as a route reflector, along with any

number of client peers. BGP peers outside the cluster are called nonclient peers. The route

reflector reflects (redistributes) routing information to every client peer and to all nonclient peers.

Because the route reflector redistributes routes within the cluster, the BGP routers in the cluster

do not have to be fully meshed.

When the route reflector receives a route, it selects the best path. Then, if the route

arrived from a nonclient peer, the route reflector sends the route to all client peers within the

cluster. If the route arrived from a client peer, the route reflector sends it to all nonclient peers and

to all client peers except the originator. During this process, none of the client peers sends routes

to other client peers.

2.3 ns-2 network simulator
We implemented ns-BGP as an extension to the latest version of ns-2 network simulator

(ns-2.27) [30]. ns-2 was developed at the ISI (University of Southern California). It was

originally developed as an extension to the REAL network simulator. ns-2 is currently part of the

collaborative VINT project involving USC/ISI, Xerox PARC, LBNL, and UC Berkeley. As one of

the most popular discrete event network simulators [1] , ns-2 supports simulation of TCP, routing,

and multicast protocols over wired and wireless networks. ns-2 is written in both C++ and OTcl

and employs an object-oriented paradigm. C++ is used for the low level implementation of packet

oriented processing, where performance is important. OTcl is a scripting language used for higher

level implementation, where flexibility is more important. A graphical animator nam is used to

visualize simulation results.

 12

2.4 BGP implementation in SSFNet
SSF.OS.BGP4 [33] is the BGP-4 model in the SSFNet [35] network simulation package.

SSFNet is a Java-based simulator for modeling large communication networks. It includes a

simulation kernel, an open source suite of network component models, a management suite, and a

configuration language called Domain Modeling Language (DML). SSF.OS.BGP4, implemented

in Java by Brian J. Premore [34], was designed with a purely object-oriented approach. A suite of

tests is included in SSF.OS.BGP4 to ensure that the model complies with the BGP-4

specifications [34]. We ported to ns-2 the class hierarchy that was used to implement the BGP-4

model in SSF.OS.BGP4.

2.5 Related work in BGP implementation
OPNET [31], a commercial network simulator, also provides substantial support for

BGP. However, differences between OPNET and ns-2 would have made porting the BGP model

from OPNET to ns-2 rather difficult. GNU Zebra (written in C) is a free routing software package

[19] that supports BGP [20] and other routing protocols. The Zebra BGP daemon has been

recently ported to ns-2 [6]. Our project has been developed in parallel. We preferred the

SSF.OS.BGP4 implementation because of its object oriented paradigm.

 13

CHAPTER 3:
DESIGN AND IMPLEMENTATION OF NS-BGP

The ns-BGP classes are derived from the existing ns-2 class hierarchy. A brief introduction

to the ns-2 unicast routing structure is first provided. Based on this structure, we describe the

unicast routing structure of the ns-BGP model and its supported features.

3.1 ns-2 unicast routing structure
The ns-2 unicast routing structure consists of the forwarding and the control planes [30],

as shown in Figure 3.1. Components of the forwarding plane are enclosed by an ellipse and

components of the control plane are enclosed by a trapezoid.

The forwarding plane is responsible for classifying and forwarding packets to the

destination nodes. It includes various types of connected classifiers and routing modules.

Classifiers deliver the incoming packets either to the appropriate agent or to the outgoing link. A

routing module manages a node’s classifier and provides an interface to the control plane.

Address classifier (classifier_) and port classifier (dmux_) are two types of classifiers (trapezoids)

in an ns-2 unicast node. A classifier_ examines the destination address of an arriving packet and

forwards the packet to the dmux_ if the node is the packet’s destination. Otherwise, the classifier_

sends the packet to a downstream node. The dmux_ forwards the packet to an agent

corresponding to the packet’s destination port number.

The control plane handles route computation and creation and the maintenance of routing

tables. It also implements specific routing algorithms. The components of the control plane are

route logic , route object, route peer, and routing protocol. The route logic is the centrally created

and maintained routing table. Route objects are employed only in simulations of dynamic routing.

The route object associated with a node acts as a coordinator for the node’s routing instances. A

 14

Fi
gu

re
 3

.1
: n

s-
2

un
ic

as
t r

ou
tin

g
st

ru
ct

ur
e.

 15

route peer object acts as a container object used by the routing protocol: it stores the address of

the peer agent, the metric, and the preference for each route advertised by the peer. Routing

protocols implement specific routing algorithms, such as distance vector and link state algorithms

[22].

3.2 ns-BGP unicast routing structure
The ns-BGP node is based on the existing ns-2 unicast node and the SSF.OS.BGP4

model from SSFNet. We converted the SSF.OS.BGP4 model to ns-2 and added the socket layer

as well as IPv4 addressing and packet forwarding schemes.

In order to provide socket support and at the same time maintain the structure of

SSF.OS.BGP4, we also ported to ns-2 TcpSocket, the socket layer implementation of SSFNet. In

order to support the IPv4 addressing and packet forwarding, the basic address classifier was

replaced with a new address classifier named IPv4Classifier. To support user data transmission,

we modified FullTcpAgent [30], the TCP agent for TcpSocket.

Figure 3.2 shows the unicast structure of ns-BGP. The address classifier classifier_ is an

IPv4Classifier. A new routing module rtModule/BGP manages the IPv4Classifier and is a

replacement of the basic routing module rtModule/Base. TcpSocket has been added to the

modified FullTcpAgent, encapsulating the TCP services into a socket interface. A new routing

protocol rtProtoBGP relies only on TcpSocket for packet transmission. rtProto/BGP has one

PeerEntry for each peer. PeerEntry establishes and closes a peer session and exchanges BGP

messages with a peer. Each instance of PeerEntry contains one AdjIn, one AdjOut, and a variable

BGP_Timer. LocRIB, AdjIn, and AdjOut correspond to the three parts of the BGP Routing

Information Base (RIB): Loc-RIB, Adj-RIBs-In, and Adj-RIBs-Out [37]. BGP_Timer provides

support for the BGP timing features (timers).

 16

Fi
gu

re
 3

.2
: U

ni
ca

st
 ro

ut
in

g
st

ru
ct

ur
e

of
 n

s-
B

G
P.

 17

The five important classes of ns-BGP are TcpSocket, IPv4Classifer, rtModule/BGP,

rtProtoBGP, and BGP_Timer.

3.2.1 TcpSockets

A socket is an Application Programming Interface (API) used in network

communications. Socket applications treat network connections as UNIX file descriptors. Similar

to files, communication endpoints can be written to, read from, or deleted.

The TcpSocket class is an implementation of the sockets API, similar to UNIX

implementations. Its most important functions are: bind, listen, connect, close, read, and write.

The TcpSocket interface involved implementation of blocking calls using the Continuation caller,

a class consisting of two callback functions: Success and Failure. Necessary data structures and

classes, such as queue classes that store the data and a TcpData class that contains the transmitted

user data, were also added to ns-2. The FullTcpAgent was modified to send and receive data

packets containing user data and to inform the corresponding TcpSocket of changes in the TCP

status.

We implemented blocking calls using Continuation caller, which is a container of two

callback functions: Success and Failure. Blocking function calls are widely used in network

programming environments. For example, if a user function is about to send a data packet using

socket service, the caller will be blocked until the socket connection succeeds (returns Success to

calling function) or fails (returns Failure to calling function). Network performance is often

unpredictable, due to traffic congestion for instance. In this case, Continuation caller can

synchronize the calling function and the called function.

We added the following data structures and classes to support TcpSocket capable of user

data transmission: SendQueue class that stores the data requested to be sent by sender TCP agent,

ReceiveQueue class that stores the received data from the sender, and TcpData class that contains

the transmitted user data.

 18

3.2.2 IPv4Classifier
The IPv4Classifier is derived from Classifier. It is implemented as one of the ns-2 dual

classes (in both C++ and OTcl). The IPv4Classifier uses map from the C++ Standard Template

Library to store and search the routing table. To classify an incoming packet, the IPv4Classifier

examines the packet’s destination address. It then matches this address in the routing table of the

classifier in order to find the route with the longest prefix match.

3.2.3 rtModule/BGP
The rtModule/BGP, a new routing module implemented in Tcl, provides a registration

interface. When a node is created, active route models must register with the node. This

registration replaces the existing classifier objects in the node.

3.2.4 rtProtoBGP
The rtProtoBGP class (Agent/rtProto/BGP) is implemented as an ns-2 dual class. An

instance of this class implements BGP-4 in a node. This new routing protocol performs all the

BGP operations: establishing BGP peer sessions, learning multiple paths via internal and external

BGP speakers, selecting the best path and storing it into the IP forwarding table (IPv4Classifier),

and managing the BGP finite state machine.

3.2.5 BGP_Timer
BGP_Timer is derived from the ns-2 TimerHandler class. It provides support for the BGP

timing features, such as the start-up timer, keep-alive timer, hold timer, and the Minimum Route

Advertisement Interval (MRAI) timer. During the auto-configuration process, a start-up timer is

scheduled for each BGP agents. When the start-up timer expires, it will bring up the BGP agent

(rtProtoBGP) to try to establish peer connections with its BGP neighbors. When a keep-alive

timer expires, it will trigger the BGP agent to send out a keep-alive message to its peer.

Expiration of a hold timer indicates the failure of a BGP agent to receive a message during the

hold time interval from a peer. In this case, the BGP agent will report the error to its peer by

 19

sending a notification message. The MRAI timers are used to space out by M seconds (default

value 30) consecutive updates for the same destination.

3.3 Supported features
The implementation of the ns-BGP is compliant with the BGP-4 specification RFC 1771

[37]. It includes several optional protocol extensions and additional experimental features. We

implemented experimental features: sender-side loop detection, withdrawal rate limiting,

unjittered Minimum Route Advertisement Interval timer, and per-peer and per-destination rate

limiting. Implemented optional features are Multiple Exit Discriminator, Aggregator,

Community, Originator ID, and Cluster List path attributes. We have also implemented route

reflection. Nevertheless, the current implementation does not support the multiprotocol

extensions for BGP-4 [3].

 20

CHAPTER 4:
VALIDATION TESTS

SSF.OS.BGP4 included a suite of tests that ensured that the SSF.OS.BGP4 model complies

with the BGP-4 specifications, including BGP-4 features such as: basic peer session maintenance

(keep-alive and hold timer operation), route advertisement and withdrawal, route selection,

internal BGP (iBGP), and route reflection [34]. We implemented most of these validation tests in

ns-2 and tested the same network topologies as employed in the SSFNet validation tests [33]. We

also introduced a new validation test for route reflection [2]. The test scripts used for validation

tests are included in Appendix A.

4.1 Route selection validation test
This test checks whether a BGP speaker chooses routes properly when there is more than

one path to a particular destination. BGP bases its decision on the values of path attributes.

Following is an ordered list of rules used to determine the best path (also shown in Figure 2.2):

? prefer the path with the largest Local Preference

? prefer the path with the shortest AS path

? prefer the path with the lowest multiple exit discriminator (MED)

? prefer external (eBGP) over internal (iBGP) paths

? prefer the path with the lowest IGP metric to the BGP next hop.

Since the Local Preference path attribute is not considered in this validation test, the best

route will be the route with the shortest AS path .

 21

4.1.1 Network topology
Figure 4.1 shows the network topology used for the simulation of route selection. The

network consists of three ASs. Each AS contains one node: AS 0, AS 1, and AS 2 contain node 0,

1, and 2, respectively. The IP address of each node is shown in Table 4.1. The addressing scheme

is: 10.(AS number).(node number).1.

Table 4.1: IP addresses used in the route selection validation test.

node 0 10.0.0.1

node 1 10.1.1.1

node 2 10.2.2.1

Figure 4.1: Network topology used in the route selection validation test.

4.1.2 BGP configuration and event scheduling
BGP agents were configured for each of the three nodes (0, 1, and 2). They are fully

meshed using external BGP (eBGP) connections. At 0.25 s, the BGP agent in node 0 advertises a

new route for IP address 10.0.0.0/24. At 39.0 s, ns-2 displays the all routing tables from BGP

agents. The simulation terminates at 40.0 s.

 22

4.1.3 Simulation results
The simulation sequence of events is shown in Table 4.2. Simulation results displayed by

nam are shown in Figure 4.2.

Table 4.2: Sequence of simulation events.

0.0503 s

Figure 4.2(a): TCP SYN segments are exchanged between BGP peers,

establishing the underlying TCP connections.

0.2507 s Figure 4.2(b): Node 0 originates an update message advertising to node 1 and

node 2 the route for network 10.0.0.0/24.

0.2525 s Figure 4.2(c): Nodes 1 and 2 propagate the route advertisement to each other.

(a) Establishing TCP connections (0.0503 s).

(b) Node 0 advertises a route (0.2507 s).

 23

(c) Nodes 1 and 2 propagate the route (0.2525 s).

Figure 4.2: Snapshots of simulation results in the route selection test.

During the simulation run, node 1 and node 2 both learned two routes for the IP address

10.0.0.0/24 originated by node 0. One of these two routes is received directly from node 0 (Figure

4.2(b)), while the other route is exchanged between nodes 1 and 2 (Figure 4.2(c)). We first

consider node 1. The AS path of the route that node 1 received directly from node 0 contains only

AS 0, thus, the length of this route’s AS path is 1. The AS path of the route that received from

node 2 contains AS 0 and AS 2, thus, the AS path length is 2. According to the rules of the best

route selection, node 1 should favor the route that it received directly from node 0 over the route

received from node 2. Node 2 followed similar decision processes.

The routing tables from the BGP agents at 39.0 s show (status codes are: * valid, > best, i

– internal) the proper choices of the best route in three nodes:

BGP routing table of node0
BGP table version is 2, local router ID is 10.0.0.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0/24 self - - -

BGP routing table of node1 node name
BGP table version is 1, local router ID is 10.1.1.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path AS path
*> 10.0.0.0/24 10.0.0.1 - - - 0
 destination IP address
BGP routing table of node2
BGP table version is 1, local router ID is 10.2.2.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0/24 10.0.0.1 - - - 0

 24

4.2 Reconnection validation test
This test checks the ability of a BGP speaker to re-establish a peer session with a former

peer. In this test, a BGP speaker establishes two peer sessions, but the session with one of them is

later broken. The two BGP speakers that are disconnected then attempt to re-establish a session.

4.2.1 Network topology
Figure 4.3 shows the network topology used for simulation of route reconnection. The

network consists of three ASs. Each AS contains one node: AS 0, AS 1, and AS 2 contain nodes

0, 1, and 2, respectively. The IP address of each node is shown in Table 4.3. We used the same

addressing scheme as in Section 4.1: 10.(AS number).(node number).1.

Table 4.3: IP addresses used in the reconnection validation test.

node 0 10.0.0.1

node 1 10.1.1.1

node 2 10.2.2.1

Figure 4.3: Network topology in the reconnection validation test.

4.2.2 BGP configuration and event scheduling
BGP agents are configured for each of the three nodes (0, 1, and 2). External BGP

(eBGP) connections exist between nodes 0 and 1, as well as nodes 0 and 2. For nodes 0 and 2, the

 25

values for hold timer and keep-alive timer intervals of BGP agents are default values (hold time:

90 s, keep-alive: 30 s) suggested in RFC 1771 [37]. In order to observe the reconnection behavior

of ns-BGP, we increase the keep-alive timer interval of the BGP agent in node 1 to 200 s. By

doing so, BGP agent in node 0 will not receive any keep-alive message before its hold timer

expires, which will trigger the session re-establishment.

At 0.25 s, the BGP agent in node 0 advertises a new route for IP address 10.0.0.0/24. At

0.35 s, the BGP agent in node 1 advertises a new route for IP address 10.1.1.0/24. At 0.45 s, the

BGP agent in node 2 advertises a route for IP address 10.2.2.0/24. At 28 s, 90.38 s, and 119.0 s,

ns-2 displays all routing tables from BGP agents. The simulation terminates at 120.0 s.

4.2.3 Simulation results
The simulation sequence of events is shown in Table 4.4. Simulation results displayed by

nam are shown in Figure 4.4.

Table 4.4: Sequence of simulation events.

0.0503 s

Figure 4.4(a): TCP SYN segments are exchanged between BGP peers,

establishing the underlying TCP connections.

0.2507 s Figure 4.4(b): node 0 originates an update message advertising to both nodes 1

and 2 the route for network 10.0.0.0/24.

0.3507 s Figure 4.4(c): node 1 originates an update message advertising to node 0 the route

for network 10.1.1.0/24.

0.3523 s Figure 4.4(d): node 0 propagates to node 2 the route for network 10.1.1.0/24.

92.2034 s Figure 4.4(e): in node 0, the hold timer for the peer session with node 1 expires.

Node 0 sends a notification message to node 1 informing it of the error and sends

 26

a route withdrawal to node 2 revoking the route for network 10.1.1.0/24.

92.2534 s Figure 4.4(f): node 0 re-establishing the underlying TCP connection with node 1.

92.4021 s Figure 4.4(g): after the session re-establishment, nodes 0 and 1 exchange routing

information.

92.4038 s Figure 4.4(h): node 0 propagates to node 2 the route for network 10.1.1.0/24.

(a) Establishing TCP connections (0.0503 s).

(b) Node 0 originates a route to nodes 1 and 2 (0.2507 s).

(c) Node 1 originates a route to node 0 (0.3507 s).

(d) Node 0 propagates the route to node 2 (0.3523 s).

 27

(e) Node 0 sends a notification to node 1 and a withdrawal to node 2 (92.2034 s).

(f) Node 0 re-establishing TCP connection with node 1 (92.2534 s).

(g) Node 0 and 1 exchange routing information (92.4021 s).

(h) Node 0 propagates the route to node 2 (92.4038 s)

Figure 4.4: Snapshots of nam simulation results of reconnection test.

The routing tables from all BGP agents at 28 s, 90.38 s, and 119 s, respectively , illustrate

that every BGP agents learned the routes announced by other BGP agents by 28 s. At 90.38 s, due

to the failure of the peer session between nodes 0 and 1, nodes 0 and 2 already removed the route

for network 10.1.1.0/24 that was originated by node 1. Node 1 also deleted the routes for

networks 10.0.0.0/24 and 10.2.2.0/24, which it learned from node 0. After the re-establishment of

their peer session, nodes 0 and 1 exchanged all the routing information they had and the routing

tables converged for the second time at 119 s.

 28

time: 28
dump routing tables in all BGP agents:

BGP routing table of node0
BGP table version is 10, local router ID is 10.0.0.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0/24 self - - -
*> 10.1.1.0/24 10.1.1.1 - - - 1
*> 10.2.2.0/24 10.2.2.1 - - - 2

BGP routing table of node1
BGP table version is 16, local router ID is 10.1.1.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0/24 10.0.0.1 - - - 0
*> 10.1.1.0/24 self - - -
*> 10.2.2.0/24 10.0.0.1 - - - 0 2

BGP routing table of node2
BGP table version is 10, local router ID is 10.2.2.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0/24 10.0.0.1 - - - 0
*> 10.1.1.0/24 10.0.0.1 - - - 0 1
*> 10.2.2.0/24 self - - -

 time: 90.38
 dump routing tables in all BGP agents:

BGP routing table of node0
BGP table version is 23, local router ID is 10.0.0.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0/24 self - - -
*> 10.2.2.0/24 10.2.2.1 - - - 2

BGP routing table of node1
BGP table version is 42, local router ID is 10.1.1.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.1.1.0/24 self - - -

BGP routing table of node2
BGP table version is 23, local router ID is 10.2.2.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0/24 10.0.0.1 - - - 0
*> 10.2.2.0/24 self - - -

 29

 time: 119
 dump routing tables in all BGP agents:

BGP routing table of node0
BGP table version is 30, local router ID is 10.0.0.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0/24 self - - -
*> 10.1.1.0/24 10.1.1.1 - - - 1
*> 10.2.2.0/24 10.2.2.1 - - - 2

BGP routing table of node1
BGP table version is 56, local router ID is 10.1.1.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0/24 10.0.0.1 - - - 0
*> 10.1.1.0/24 self - - -
*> 10.2.2.0/24 10.0.0.1 - - - 0 2

BGP routing table of node2
BGP table version is 30, local router ID is 10.2.2.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0/24 10.0.0.1 - - - 0
*> 10.1.1.0/24 10.0.0.1 - - - 0 1
*> 10.2.2.0/24 self - - -

4.3 Route reflection validation test
Implementing route reflection can help address the scalability problem in iBGP

connections. However, without a full BGP mesh inside the AS, redundancy and reliability

become an issue. If a route reflector fails, its clients will become isolated. Redundancy requires

the existence of multiple route reflectors in a cluster where clients can simultaneously peer with

multiple routers. If one route reflector fails, the other(s) should still be available. The goal of this

simulation test is to validate the behavior of multip le reflectors inside a BGP cluster [21].

4.3.1 Network topology
Figure 4.5 shows the network topology employed for simulation of route reflection. The

network consists of three ASs: AS 0 containing eight nodes (0 through 7), AS 1 containing two

nodes (8 and 10), and AS 2 with a single node (9). The address of each node is shown in Table

4.5. The addressing scheme is: 10.(AS number).(node number).1.

 30

Table 4.5: IP addresses used in the route reflection validation test.

Nodes: 0 through 7 10.0.0.1 though 10.0.7.1

Nodes: 8 and 10 10.1.8.1 and 10.1.10.1

Node: 9 10.2.9.1

Figure 4.5: Network topology employed in the route reflection validation test.

4.3.2 BGP configuration
AS 0 contains two clusters. The first cluster contains two reflectors: nodes 0 and 1. The

reflection clients of nodes 0 and 1 are nodes 2, 3, and 4. The second cluster has one reflector node

(5), with nodes 6 and 7 as its clients. The three reflectors (nodes 0, 1, and 5) are fully connected

via iBGP sessions. External BGP (eBGP) peer sessions exist between nodes 2 and 8, as well as

between nodes 7 and 9.

4.3.3 Traffic source and event scheduling
A constant bit rate (CBR) traffic source attached to node 4 employs UDP as its transport

protocol. It sends segments of 20 bytes every millisecond to the IP address of node 10

(10.1.10.1). The traffic source begins sending UDP segments at 0.23 s and stops sending them at

20.0 s. At 0.25 s, the BGP agent in node 8 sends a route advertisement for a network 10.1.10.0/24

that is within its AS (AS 1). At 0.35 s, the BGP agent in node 9 sends a route advertisement for

 31

network 10.2.9.0/24 (AS 2). At 39.0 s, ns-2 displays all routing tables for BGP agents. The

simulation terminates at 40.0 s.

4.3.4 Simulation results

The simulation sequence of events is shown in Table 4.6. Simulation results displayed by

nam are shown in Figures 4.6(a)–(g).

Table 4.6: Sequence of simulation events.

0.0503 s

Figure 4.6(a): TCP SYN segments are exchanged between BGP peers,

establishing the underlying TCP connections.

0.2505 s Figure 4.6(b): node 8 originates an update message advertising the route for

network 10.1.10.0/24.

0.2525 s Figure 4.6(c): node 2 propagates the route advertisement to nodes 0 and 1.

0.2561 s Figure 4.6(d): route reflectors (nodes 0 and 1) reflect the route advertisement

to their clients (nodes 3 and 4) and to their iBGP peers.

0.2568 s Figure 4.6(e): node 5 reflects the route advertisement to its clients (nodes 6

and 7). Because node 4 now knows the route to network 10.1.10.0/24, the

UDP segment will be forwarded to node 10. Before node 4 knowing this

route, the UDP segments sending out by the traffic source are dropped at

node 4.

0.2578 s Figure 4.6(f): the second UDP segment is sent to the destination (node 10).

Node 7 propagates the route advertisement to node 9.

0.2580 s Figure 4.6(g): UDP segments are delivered to node 10.

 32

(a) Establishing TCP connections (0.0503 s).

(b) Node 8 originates a route (0.2505 s).

(c) Node 2 propagates the route to nodes 0 and 1 (0.2525 s).

(d) Nodes 0 and 1 reflect the routes to nodes 3 and 4 (0.2561 s).

 33

(e) Node 4 sends a UDP segment to node 10. Node 5 reflects the route to

nodes 6 and 7 (0.2568 s).

(f) Node 4 sends the second UDP segment. Node 7 propagates the route

to node 9 (0.2578 s).

(g) Four UDP segments are being delivered to node 10 (0.2580 s).

Figure 4.6: Snapshots of simulation results for route reflection test.

By the end of the simulation run, every BGP node knows routes to 10.1.10.0/24 and

10.2.9.0/24. Routing tables for BGP agents at 39.0 s are:

BGP routing table of node0
BGP table version is 2, local router ID is 10.0.0.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.1.10.0/24 10.0.2.1 - - - 1 i
*> 10.2.9.0/24 10.0.7.1 - - - 2 i

BGP routing table of node1

 34

BGP table version is 2, local router ID is 10.0.1.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.1.10.0/24 10.0.2.1 - - - 1 i
*> 10.2.9.0/24 10.0.7.1 - - - 2 i

BGP routing table of node2
BGP table version is 4, local router ID is 10.0.2.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.1.10.0/24 10.1.8.1 - - - 1
*> 10.2.9.0/24 10.0.7.1 - - - 2 i

BGP routing table of node3
BGP table version is 4, local router ID is 10.0.3.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.1.10.0/24 10.0.2.1 - - - 1 i
*> 10.2.9.0/24 10.0.7.1 - - - 2 i

BGP routing table of node4
BGP table version is 4, local router ID is 10.0.4.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.1.10.0/24 10.0.2.1 - - - 1 i
*> 10.2.9.0/24 10.0.7.1 - - - 2 i

BGP routing table of node5
BGP table version is 2, local router ID is 10.0.5.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.1.10.0/24 10.0.2.1 - - - 1 i
*> 10.2.9.0/24 10.0.7.1 - - - 2 i

BGP routing table of node6
BGP table version is 2, local router ID is 10.0.6.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.1.10.0/24 10.0.2.1 - - - 1 i
*> 10.2.9.0/24 10.0.7.1 - - - 2 i

BGP routing table of node7
BGP table version is 2, local router ID is 10.0.7.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.1.10.0/24 10.0.2.1 - - - 1 i
*> 10.2.9.0/24 10.2.9.1 - - - 2

BGP routing table of node8
BGP table version is 3, local router ID is 10.1.8.1
Status codes: * valid, > best, i - internal.

 35

 Network Next Hop Metric LocPrf Weight Path
*> 10.1.10.0/24 self - - -
*> 10.2.9.0/24 10.0.2.1 - - - 0 2

BGP routing table of node9
BGP table version is 3, local router ID is 10.2.9.1
Status codes: * valid, > best, i - internal.
 Network Next Hop Metric LocPrf Weight Path
*> 10.1.10.0/24 10.0.7.1 - - - 0 1
*> 10.2.9.0/24 self - - -

 36

CHAPTER 5:
MODEL SCALABILITY

As the size and complexity of simulated networks grow, it is important to address the

scalability properties of simulation models. Such properties include execution speed and memory

requirements of a simulation experiment [29]. The ns-BGP model should scale both with respect

to the number of peer sessions and the size of routing tables. Our simulation experiments were

performed on a 1.6 GHz Intel Xeon host with 2 GBytes of memory and a RedHat Linux 9.0

operating system.

5.1 Model Configuration
In validation tests, we verified the ns-BGP model using three small scale networks. In

contrast, the experiments performed in the scalability analysis are quite larger in terms of the

network topology and its size. Some experiments used in the scalability analysis contain up to

10,000 nodes and 10,000 peer sessions. Experiments with such large scale networks require

further configuration of the ns-BGP model.

5.1.1 Topology families
Our scalability analysis is based on several simpler topologies that are similar to

subgraphs of the Internet’s AS graph. BGP’s behavior of these subgraphs is expected to be an

important indicator of its behavior in more general topologies. Finding a closer behavioral

relationship between the individual components and the Internet topologies would require further

study [34].

 We first introduce several definitions to simplify the explanation of the experiments. A

simple AS is an AS containing only one BGP router and no host [34]. Every AS in the

experiments of scalability analysis is a simple AS. A topology of size n has n simple ASs and,

 37

therefore, n BGP routers referred as R0, R1, …, Rn-1. eBGP connections are established between

each router Ri and its neighbors that are connected to Ri by physical links.

The first family of experiment is performed on a line topology. A line topology of size n

is a topology with n simple ASs with routers R0, R1, …, Rn-1, such that there is link between Ri and

Ri+1 for i = 0, 1, …, n-2. Figure 5.1 shows a line topology of size 6.

Figure 5.1 A line topology of size 6.

A ring topology of size n is a topology with n simple ASs with routers R0, R1, …, Rn-1,

such that there is a link between Ri and Ri+1 for i = 0, 1, …, n-2, as well as a link between R0 and

Rn-1. Figure 5.2 illustrates a ring topology of size 6.

Figure 5.2 A ring topology of size 6.

A binary tree topology of size n (n = 2m-1, where m is the tree height) is a topology with

n simple ASs with routers R0, R1, …, Rn-1, such that there are links between Ri and R2i, as well as

Ri and R2i+1 for i = 0, 1, …, 2m-1-2. Figure 5.3 illustrates a binary tree topology of size 15.

 38

Figure 5.3 A binary tree topology of size 15.

A grid topology of size n (n = m2 , where m is the grid length) to be a topology in which

there are n simple ASs with routers R0, R1, …, Rn-1, such that there is link between Rx and Ry

(where x = im + j, y = km + l and {|i-k| , |j -l|} = {0,1}) for x,y = 0, 1, …, n-1, x ? y, Figure 5.4

illustrates a grid topology of size 16.

Figure 5.4 A grid topology of size 16.

A clique topology of size n is a topology with n simple ASs with routers R0, R1, …, Rn-1,

such that there is link between Ri and Rj, for i, j = 0, 1, …, n-1, i ? j. Figure 5.5 illustrates a clique

topology of size 6.

 39

Figure 5.5 A clique topology of size 6.

5.1.2 Experiment parameters

BGP’s behavior can be changed by a set of parameters. The default values for the

parameters that are applied in all experiments are list in Table 5.1:

Table 5.1: Default values of parameters used in experiments.

Parameter description Default

hold-time interval 90 s

keep-alive interval 30 s

MRAI 30 s

jitter keep-alive interval yes

jitter MRAI yes

jitter start-up timer interval yes

The first three parameters are interval values for the BGP timers. They are set to the

default values suggested in [37]. We introduce jitter factors to the keep-alive interval, the MRAI,

 40

and the start-up timer interval to avoid performance degradation of the ns-2 scheduler, as

described in Section 5.1.4 with more details.

5.1.3 ns-BGP simulation phases

Each BGP simulation described in this chapter contains seven phases. An ns-2 simulator

instance is created during phase 1. The execution time and memory usage of this phase are

identical for every simulation experiment and are small enough to be ignored. Nodes and links are

created in phases 2 and 3, respectively. All BGP agents are enabled to be auto-configured by the

ns-BGP model during phase 4. In phase 5, initialization of the simulator, such as the creation of

the central routing table (Route Logic), is performed. The time and memory usage of phase 4 and

5 are also negligible and are ignored. During phase 6, each BGP agent establishes peer sessions

with its neighbors. In phase 7, after all peer sessions are established successfully, BGP messages

(keep-alive and/or update messages) are exchanged between the peering BGP agents. A sample

Otcl script containing information of simulation phases is given in Appendix B.

5.1.4 ns-2 Calendar Scheduler

ns-2 is an event-driven simulator. The scheduler runs by selecting the next earliest event,

executing it to completion, and returning to execute the next event [30]. The Calendar Queue

data structure used by the default Calendar Scheduler is described by Brown [7]. It is a priority

queue specially designed for the event set problem.

Performance of the Calendar Scheduler is affected by the distribution of event times. As

the network topology grows, more synchronous BGP agents schedule events for the same time

instance. Large number of events scheduled at the few time instances can cause the scheduling

time (cumulative execution time of the scheduler) to increase exponentially, as shown in Figure

5.6. In order to reduce the synchronization, we scatter the events by introducing random jitter

factors to the BGP start-up, keep-alive, and MRAI timers. Figure 5.7 shows the effect of jittered

timers on the distribution of event times. While the jittered scheduling times no longer increase

 41

exponentially with the number of peer sessions, they are affected by the introduced random

factors as shown in Figure 5.8.

0 200 400 600 800 1000 1200 1400
0

500

1000

1500

Number of peer sessions

Ex
ec

ut
io

n
tim

e
(s

)
Total
Scheduling time
Node and link creation

Figure 5.6 Execution times of clique topologies (without jittered timers).

Figure 5.7 Scattering events (left) along the time line by jittering the timers (right).

5.1.5 Measurements
We measured execution time and memory usage of the ns-BGP model in every

simulation phase. Besides collecting the statistics for an individual phase, we also calculated total

sum of the statistics from different phases. The sum of phases 2 (node creation) and 3 (link

creation) is named node and link creation. ns-BGP is the sum of phase 6 (session establishment)

and phases 7 (message exchange). The total time is almost equal to the sum of node and link

 42

creation and ns-BGP, since the statistics of phases 1 (simulator instance creation), phase 4

(enabling auto-configuration), phase 5 (initialization of the simulator) are small enough to be

ignored.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

Number of peer sessions

E
xe

cu
tio

n
tim

e
(s

)

Total
Scheduling time
Node and link creation

Figure 5.8 Execution times of clique topologies (with jittered timers).

The clock OTcl command was used to retrieve timestamps with millisecond precision at

the beginning of each phase and at the end of simulation. These timestamps were used to

calculate the execution time of each phase. The malloc C library call was employed to calculate

the dynamic memory utilization using a modification of the approach proposed in [29].

5.2 Scalability: number of peer sessions
In this section, we illustrate the ns-BGP model’s scalability with respect to the number of

peer sessions, by examining the execution time and memory usage of BGP.

5.2.1 Line topology

Execution times of different phases for networks with the line topology are shown as

functions of the number of peer sessions in Figure 5.9. The total execution time increases

 43

nonlinearly with the number of peer sessions. The total execution time, including the scheduling

time as one of its components, is affected by the randomness (jitter) introduced to the BGP timers.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

800

Number of peer sessions

E
xe

cu
tio

n
tim

e
(s

)

Total
Total (excluding scheduling)
Session establishment
ns-BGP (excluding scheduling)
Session establishment (excluding scheduling)
Node and link creation
Scheduling time
Keep-alive message exchange

Figure 5.9 Execution times for line topologies. Simulated time is 100 s.

In order to exclude the effect of the randomized scheduling time, we examine the total

(excluding scheduling) execution time, which is calculated by subtracting the scheduling time

from the total execution time. As shown in Figure 5.9, the total (excluding scheduling) execution

time increases smoothly, but still shows a slight exponential trend.

The total (excluding scheduling) execution time mainly cons ists of two parts: the node

and link creation and ns-BGP (excluding scheduling) execution times. Because nodes and links

are created before the simulation begins, the node and link creation time is not affected by the

scheduler performance. However, the slight exponential trend shown by the total (excluding

scheduling) execution time results from the node and link creation time. The node and link

creation are not a part of the ns-BGP model. Since the performance degradation it caused is not

severe, we have not attempted to improve the node and link creation processes in ns-2.

 44

Similar to the total (excluding scheduling) time, the ns-BGP (excluding scheduling) time

is calculated to exclude the affect of the randomized scheduling time. The ns-BGP (excluding

scheduling), which is the actual contribution of the ns-BGP model to the execution time,

increases linearly. The session establishment (excluding scheduling) and keep-alive message

exchange execution times are also measured. The keep-alive message exchange execution time

fluctuates with the scheduling time as shown in Figure 5.9. The session establishment (excluding

scheduling) execution time increases linearly and is very close to the ns-BGP (excluding

scheduling) execution time. This implies that the ns-BGP model spent most of its execution time

in session establishment and only a small portion in exchanging keep-alive message.

Memory utilizations of different simulation phases and their linear dependence on the

number of peer sessions are show in Figure 5.10. We calculated a total memory usage of 54.21

Kbytes per peer.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6
x 10

5

Number of peer sessions

M
em

or
y

ut
ili

za
tio

n
(K

by
te

)

Total
Session establishment
Node and link creation
Keep-alive message exchange

Figure 5.10 Memory utilization for line topologies. Simulated time is 100 s.

 45

5.2.2 Ring topology
The ns-BGP (excluding scheduling) execution time and the total memory usage of the

ring topologies increase linearly in the number of peer sessions, as shown in Figures 5.11 and

5.12. We calculated a total memory usage of 54.21 Kbytes per peer.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

800

Number of peer sessions

E
xe

cu
tio

n
tim

e
(s

)

Total
Total (excluding scheduling)
Session establishment
ns-BGP (excluding scheduling)
Session establishment (excluding scheduling)
Node and link creation
Scheduling time
Keep-alive message exchange

Figure 5.11 Execution times for ring topologies. Simulated time is 100 s.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6
x 10

5

Number of peer sessions

M
em

or
y

ut
ili

za
tio

n
(K

by
te

)

Total
Session establishment
Node and link creation
Keep-alive message exchange

Figure 5.12 Memory utilization for ring topologies. Simulated time is 100 s.

 46

5.2.3 Binary tree topology
The ns-BGP (excluding scheduling) execution time and total memory usage of the binary

tree topologies increase linearly in the number of peer sessions, as shown in Figures 5.13 and

5.14. We calculated a total memory usage of 54.3 Kbytes per peer.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

700

Number of peer sessions

E
xe

cu
tio

n
tim

e
(s

)

Total
Total (excluding scheduling)
Session establishment
ns-BGP (excluding scheduling)
Session establishment (excluding scheduling)
Node and link creation
Scheduling time
Keep-alive message exchange

Figure 5.13 Execution times for binary trees. Simulated time is 100 s.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Number of peer sessions

M
em

or
y

ut
ili

za
tio

n
(K

by
te

)

Total
Session establishment
Node and link creation
Keep-alive message exchange

Figure 5.14 Memory utilization for binary trees. Simulated time is 100 s.

 47

5.2.4 Grid topology
The ns-BGP (excluding scheduling) execution time and total memory usage of the grid

topologies increase linearly in the number of peer sessions, as shown in Figures 5.15 and 5.16.

We calculated a total memory usage of 47.7 Kbytes per peer.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

Number of peer sessions

E
xe

cu
tio

n
tim

e
(s

)

Total
Total (excluding scheduling)
Session establishment
ns-BGP (excluding scheduling)
Session establishment (excluding scheduling)
Node and link creation
Scheduling time
Keep-alive message exchange

Figure 5.15 Execution times for grid topologies. Simulated time is 100 s.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Number of peer sessions

M
em

or
y

ut
ili

za
tio

n
(K

by
te

)

Total
Session establishment
Node and link creation
Keep-alive message exchange

Figure 5.16 Memory utilization for grid topologies. Simulated time is 100 s.

 48

5.2.5 Clique topology
The ns-BGP (excluding scheduling) execution time and total memory usage of the clique

topologies increase linearly in the number of peer sessions, as shown in Figures 5.17 and 5.18.

We calculated a total memory usage of 43.8 Kbytes per peer.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

100

200

300

400

500

600

700

Number of peer sessions

E
xe

cu
tio

n
tim

e
(s

)

Total
Total (excluding scheduling)
Session establishment
ns-BGP (excluding scheduling)
Session establishment (excluding scheduling)
Node and link creation
Scheduling time
Keep-alive message exchange

Figure 5.17 Execution times for clique topologies. Simulated time is 100 s.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Number of peer sessions

M
em

or
y

ut
ili

za
tio

n
(K

by
te

)

Total
Session establishment
Node and link creation
Keep-alive message exchange

Figure 5.18: Memory utilization for clique topologies. Simulated time is 100 s.

 49

5.3 Scalability: size of routing tables
In this section, we analyze the scalability of the ns-BGP model with respect to the size of

routing tables. We examine the execution time and memory usage of BGP simulations with five

topologies. The experiments in this section are performed on topologies with static sizes unlike

the experiments shown in Section 5.2. The five static topologies used are: line, ring, grid , and

clique topologies of size 16 and a binary tree topology of size 15. In order to analyze the model’s

scalability with respect to the size of routing tables M, each node is configured to send M/16 (line,

ring, grid, clique topologies) or M/15 routes (binary tree topology) to its peers. After the process

converged, the routing table of each node should contain M routes.

5.3.1 Line topology
Execution times for different simulation phases for the line topology as functions of the

size of routing tables are shown in Figure 5.19. Given the small topology size, the node and link

creation and session establishment execution times are close to zero. On the other hand, the total

and message exchange execution times are similar, which implies that the simulator spent most of

its time in exchanging BGP messages (keep-alive and update). The total and message exchange

execution times increase linearly.

The topologies used for this scalability analysis have small number of peer sessions. For

an instance, the line topology of size 16 has 15 peer sessions. Hence, very few events are

scheduled for the same time instance and, thus, the scheduler performs well. The scheduling

times are very small, less than 0.5% of the total execution times. Therefore, we only show the

total, session establishment, node and link creation, and the message exchange execution times.

Memory utilizations for different simulation phases and their linear dependence on the

size of routing tables are show in Figure 5.20. We calculated a total memory usage of 20.88

Kbytes per route.

 50

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

50

100

150

200

250

300

350

400

450

500

Size of routing tables

E
xe

cu
tio

n
tim

e
(s

)

Total
Session establishment
Node and link creation
Message exchange

Figure 5.19 Execution times for the line topology. Simulated time is 10,000 s.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

1

2

3

4

5

6

7

8

9

10
x 10

5

Size of routing tables

M
em

or
y

ut
ili

za
tio

n
(K

by
te

)

Total
Session establishment
Node and link creation
Message exchange

Figure 5.20 Memory utilization for the line topology. Simulated time is 10,000 s

 51

5.3.2 Ring topology
Similar to the line topology, we found that the ns-BGP (excluding scheduling) execution

time and memory usage of the ring topology both increase linearly in the size of routing tables, as

shown in Figures 5.21 and 5.22. We calculated a total memory usage of 24.97 Kbytes per route.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

50

100

150

200

250

300

350

400

450

Size of routing tables

E
xe

cu
tio

n
tim

e
(s

)

Total
Session establishment
Node and link creation
Message exchange

Figure 5.21 Execution times for the ring topology. Simulated time is 10,000 s.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1

2

3

4

5

6

7

8
x 10

5

Size of routing tables

M
em

or
y

ut
ili

za
tio

n
(K

by
te

)

Total
Session establishment
Node and link creation
Message exchange

Figure 5.22 Memory utilization for the ring topology. Simulated time is 10,000 s

 52

5.3.3 Binary tree topology
The ns-BGP (excluding scheduling) execution time and total memory usage of the binary

tree topology increase linearly in the size of routing tables, as shown in Figures 5.23 and 5.24.

We calculated a total memory usage of 19.28 Kbytes per route.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

50

100

150

200

250

300

350

400

450

500

550

Size of routing tables

E
xe

cu
tio

n
tim

e
(s

)

Total
Session establishment
Node and link creation
Message exchange

Figure 5.23 Execution times for the binary tree. Simulated time is 10,000 s.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

1

2

3

4

5

6

7

8

9
x 10

5

Size of routing tables

M
em

or
y

ul
til

iz
at

io
n

(K
by

te
s)

Total
Session establishment
Node and link creation
Message exchange

Figure 5.24 Memory utilization for the binary tree. Simulated time is 10,000 s

 53

5.3.4 Grid topology
The ns-BGP (excluding scheduling) execution time and total memory usage of the grid

topology increase linearly in the size of routing tables, as shown in Figures 5.25 and 5.26. We

calculated a total memory usage of 60.54 Kbytes per route.

0 2000 4000 6000 8000 10000 12000 14000
0

50

100

150

200

250

300

350

400

450

Size of routing tables

E
xe

cu
tio

n
tim

e
(s

)

Total
Session establishment
Node and link creation
Message exchange

Figure 5.25 Execution times for the grid topology. Simulated time is 10,000 s.

0 2000 4000 6000 8000 10000 12000 14000
0

1

2

3

4

5

6

7

8

9
x 10

5

Size of routing tables

M
em

or
y

ut
ili

za
tio

n
(K

by
te

)

Total
Session establishment
Node and link creation
Message exchange

Figure 5.26 Memory utilization for the grid topology. Simulated time is 10,000 s.

 54

5.3.5 Clique topology
The ns-BGP (excluding scheduling) execution time and total memory usage of the clique

topology increase linearly in the size of routing tables, as shown in Figures 5.27 and 5.28. We

calculated a total memory usage of 67.25 Kbytes per route.

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

Size of routing tables

E
xe

cu
tio

n
tim

e
(s

)

Total
Session establishment
Node and link creation
Message exchange

Figure 5.27 Execution times for the clique topology. Simulated time is 10,000 s.

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

9
x 10

5

Size of routing tables

M
em

or
y

ut
ili

za
tio

n
(K

by
te

)

Total
Session establishment
Node and link creation
Message exchange

Figure 5.28: Memory utilization for the clique topology. Simulated time is 10,000 s.

 55

CHAPTER 6:
CONCLUSIONS

In this thesis, we presented the architecture and implementation of ns-BGP, a BGP-4

model for the ns-2 network simulator. ns-BGP enables simulation and evaluation of BGP protocol

and its variants. The validation test illustrated the validity of the ns-BGP implementation. Our

scalability analysis was based on various network topologies. It shows that the internal data

structures and employed algorithms are scalable in terms of the number of peer sessions and the

size of routing tables. The ns-BGP implementation also includes several optional BGP features.

As for feature work, more realistic network topologies and routing polices can be

employed to simulate genuine behavior of the Internet. Additional features, such as route flap

damping, policy routing, and multiprotocol extension, may be added to the existing ns-BGP

model. These features will help compare the performance of various algorithms for route flap

damping, study the detailed behavior of BGP policy routing, and evaluate new technologies that

are based on the multiprotocol extension, such as BGP/MPLS (Multiprotocol Label Switching)

VPN (virtual private network).

 56

APPENDIX A: TEST SCRIPTS FOR VALIDATION TESTS

A.1 Route selection

select.tcl

puts ""
puts "SELECT Validation Test: "
puts ""
puts " A \"triangle\" consisting of three ASes. Each AS has one"
puts " BGP-speaking router. Each router is connected directly to"
puts " the routers in each neighboring AS."
puts ""
puts " AS----AS "
puts " \\ / "
puts " \\ / "
puts " AS "
puts ""

set nf [open select.nam w]
set ns [new Simulator]
$ns namtrace-all $nf

$ns node-config -BGP ON
set n0 [$ns node 0:10.0.0.1]
set n1 [$ns node 1:10.1.1.1]
set n2 [$ns node 2:10.2.2.1]
$ns node-config -BGP OFF

$ns duplex-link $n0 $n1 1Mb 1ms DropTail
$ns duplex-link $n0 $n2 1Mb 1ms DropTail
$ns duplex-link $n1 $n2 1Mb 1ms DropTail

set bgp_agent0 [$n0 get-bgp-agent]
$bgp_agent0 bgp-id 10.0.0.1
$bgp_agent0 neighbor 10.1.1.1 remote-as 1
$bgp_agent0 neighbor 10.2.2.1 remote-as 2

set bgp_agent1 [$n1 get-bgp-agent]
$bgp_agent1 bgp-id 10.1.1.1
$bgp_agent1 neighbor 10.0.0.1 remote-as 0
$bgp_agent1 neighbor 10.2.2.1 remote-as 2

set bgp_agent2 [$n2 get-bgp-agent]
$bgp_agent2 bgp-id 10.2.2.1
$bgp_agent2 neighbor 10.0.0.1 remote-as 0
$bgp_agent2 neighbor 10.1.1.1 remote-as 1

$ns at 0.25 "puts \"\n time: 0.25 \n n0 (ip_addr 10.0.0.1) \
 defines a network 10.0.0.0/24.\""
$ns at 0.25 "$bgp_agent0 network 10.0.0.0/24"

$ns at 39.0 "puts \"\n time: 39 \
 \n dump routing tables in all BGP agents: \n\""
$ns at 39.0 "$bgp_agent0 show-routes"
$ns at 39.0 "$bgp_agent1 show-routes"
$ns at 39.0 "$bgp_agent2 show-routes"

$ns at 40.0 "finish"

proc finish {} {

 57

 global ns nf
 $ns flush-trace
 close $nf
 puts "Simulation finished. Executing nam..."
 exec nam select.nam
 exit 0
}

puts "Simulation starts..."
$ns run

A.2 Reconnection

reconnect.tcl

puts ""
puts "RECONNECT Validation Test:"
puts ""
puts " Three ASes connected in a line, each with one router."
puts " AS 1 AS 0 AS 2"
puts " n1 }------{ n0 }------{ n2"
puts ""

set nf [open reconnect.nam w]
set ns [new Simulator]
$ns namtrace-all $nf

$ns node-config -BGP ON
set n0 [$ns node 0:10.0.0.1]
set n1 [$ns node 1:10.1.1.1]
set n2 [$ns node 2:10.2.2.1]
$ns node-config -BGP OFF

$ns duplex-link $n0 $n1 1Mb 1ms DropTail
$ns duplex-link $n0 $n2 1Mb 1ms DropTail

set bgp_agent0 [$n0 get-bgp-agent]
$bgp_agent0 bgp-id 10.0.0.1
$bgp_agent0 neighbor 10.1.1.1 remote-as 1
$bgp_agent0 neighbor 10.2.2.1 remote-as 2

set bgp_agent1 [$n1 get-bgp-agent]
$bgp_agent1 bgp-id 10.1.1.1
$bgp_agent1 neighbor 10.0.0.1 remote-as 0
$bgp_agent1 neighbor 10.0.0.1 keep-alive-time 200

set bgp_agent2 [[$n2 get-module BGP] get-bgp-agent]
$bgp_agent2 bgp-id 10.2.2.1
$bgp_agent2 neighbor 10.0.0.1 remote-as 0

$ns at 0.25 "puts \"\n time: 0.25 \n n0 (ip_addr 10.0.0.1) \
 defines a network 10.0.0.0/24.\""
$ns at 0.25 "$bgp_agent0 network 10.0.0.0/24"
$ns at 0.35 "puts \"\n time: 0.35 \n n1 (ip_addr 10.1.1.1) \
 defines a network 10.1.1.0/24.\""
$ns at 0.35 "$bgp_agent1 network 10.1.1.0/24"
$ns at 0.45 "puts \"\n time: 0.45 \n n2 (ip_addr 10.2.2.1) \
 defines a network 10.2.2.0/24.\""
$ns at 0.45 "$bgp_agent2 network 10.2.2.0/24"

Network converges at 27.25*.
$ns at 28.0 "puts \"\n time: 28 \
 \n dump routing tables in all BGP agents: \n\""
$ns at 28.0 "$bgp_agent0 show-routes"
$ns at 28.0 "$bgp_agent1 show-routes"
$ns at 28.0 "$bgp_agent2 show-routes"

 58

At 90.35, HoldTimer of bgp_agent0 expired, bgp_agent0 will
1. drop peer with bgp_agent1,
2. withdrawl route that learned from bgp_agent1

Connection closing finished at 90.36*.
$ns at 90.38 "puts \"\n time: 90.38 \
 \n dump routing tables in all BGP agents: \n\""
$ns at 90.38 "$bgp_agent0 show-routes"
$ns at 90.38 "$bgp_agent1 show-routes"
$ns at 90.38 "$bgp_agent2 show-routes"

Network converges at 117.50* again after reconnection.
$ns at 119.0 "puts \"\n time: 119 \
 \n dump routing tables in all BGP agents: \n\""

$ns at 119 "$bgp_agent0 show-routes"
$ns at 119 "$bgp_agent1 show-routes"
$ns at 119 "$bgp_agent2 show-routes"

$ns at 120.0 "finish"

proc finish {} {
 global ns nf
 $ns flush-trace
 close $nf
 puts "Simulation finished. Executing nam..."
 #exec nam reconnect.nam
 exit 0
}

puts "Simulation starts..."
$ns run

#* These times are recorded with "jitter_factor_seed" set to 12345.
(Please see file bgp/global.h)

A.3 Route reflection

reflection2.tcl

puts ""
puts "REFLECTION2 VALIDATION TEST:"
puts ""
puts " Three ASes(AS0, AS1 and AS2) connected in a line, the middle "
puts " one(AS0) containing eight BGP routers, the others just one each."
puts " AS0 has two clusters: cluster 1000 and 2000. Cluster 1000 has "
puts " two reflectors: n0 and n1. n2, n3 and n4 are reflection clients of "
puts " both n0 and n1. Cluster 2000 contains one reflector n5, which has"
puts " n6 and n7 as its reflection clients. "
puts ""
puts " AS 1 AS 0 AS 2 "
puts " n8 }------{ n0-7 }------{ n9 "
puts ""

set nf [open reflection2.nam w]
set ns [new Simulator]
$ns namtrace-all $nf

$ns node-config -BGP ON
set n0 [$ns node 0:10.0.0.1]
set n1 [$ns node 0:10.0.1.1]
set n2 [$ns node 0:10.0.2.1]
set n3 [$ns node 0:10.0.3.1]
set n4 [$ns node 0:10.0.4.1]
set n5 [$ns node 0:10.0.5.1]
set n6 [$ns node 0:10.0.6.1]

 59

set n7 [$ns node 0:10.0.7.1]
set n8 [$ns node 1:10.1.8.1]
set n9 [$ns node 2:10.2.9.1]
$ns node-config -BGP OFF
set n10 [$ns node 1:10.1.10.1]

SETUP INTER-REFRECTOR LINKS
$ns duplex-link $n0 $n1 1Mb 1ms DropTail
$ns duplex-link $n0 $n5 1Mb 1ms DropTail
$ns duplex-link $n1 $n5 1Mb 1ms DropTail

SETUP REFRECTOR-CLIENT LINKS
$ns duplex-link $n0 $n2 1Mb 1ms DropTail
$ns duplex-link $n0 $n3 1Mb 1ms DropTail
$ns duplex-link $n0 $n4 1Mb 1ms DropTail
$ns duplex-link $n1 $n2 1Mb 1ms DropTail
$ns duplex-link $n1 $n3 1Mb 1ms DropTail
$ns duplex-link $n1 $n4 1Mb 1ms DropTail
$ns duplex-link $n5 $n6 1Mb 1ms DropTail
$ns duplex-link $n5 $n7 1Mb 1ms DropTail

SETUP INTRA-AS LINKS
$ns duplex-link $n8 $n10 1Mb 1ms DropTail

SETUP EBGP LINKS
$ns duplex-link $n2 $n8 1Mb 1ms DropTail
$ns duplex-link $n7 $n9 1Mb 1ms DropTail

SETUP REFRECTORS
set bgp_agent0 [$n0 get-bgp-agent]
$bgp_agent0 bgp-id 10.0.0.1
$bgp_agent0 cluster-id 1000
$bgp_agent0 neighbor 10.0.2.1 route-reflector-client
$bgp_agent0 neighbor 10.0.3.1 route-reflector-client
$bgp_agent0 neighbor 10.0.4.1 route-reflector-client
$bgp_agent0 neighbor 10.0.1.1 remote-as 0
$bgp_agent0 neighbor 10.0.5.1 remote-as 0

set bgp_agent1 [$n1 get-bgp-agent]
$bgp_agent1 bgp-id 10.0.1.1
$bgp_agent1 cluster-id 1000
$bgp_agent1 neighbor 10.0.2.1 route-reflector-client
$bgp_agent1 neighbor 10.0.3.1 route-reflector-client
$bgp_agent1 neighbor 10.0.4.1 route-reflector-client
$bgp_agent1 neighbor 10.0.0.1 remote-as 0
$bgp_agent1 neighbor 10.0.5.1 remote-as 0

set bgp_agent5 [$n5 get-bgp-agent]
$bgp_agent5 bgp-id 10.0.5.1
$bgp_agent1 cluster-id 2000
$bgp_agent5 neighbor 10.0.6.1 route-reflector-client
$bgp_agent5 neighbor 10.0.7.1 route-reflector-client
$bgp_agent5 neighbor 10.0.1.1 remote-as 0
$bgp_agent5 neighbor 10.0.0.1 remote-as 0

SETUP CLIENTS
set bgp_agent2 [$n2 get-bgp-agent]
$bgp_agent2 bgp-id 10.0.2.1
$bgp_agent2 neighbor 10.0.0.1 remote-as 0
$bgp_agent2 neighbor 10.0.1.1 remote-as 0
$bgp_agent2 neighbor 10.1.8.1 remote-as 1

set bgp_agent3 [$n3 get-bgp-agent]
$bgp_agent3 bgp-id 10.0.3.1
$bgp_agent3 neighbor 10.0.0.1 remote-as 0
$bgp_agent3 neighbor 10.0.1.1 remote-as 0

set bgp_agent4 [$n4 get-bgp-agent]
$bgp_agent4 bgp-id 10.0.4.1
$bgp_agent4 neighbor 10.0.0.1 remote-as 0
$bgp_agent4 neighbor 10.0.1.1 remote-as 0

 60

set bgp_agent6 [$n6 get-bgp-agent]
$bgp_agent6 bgp-id 10.0.6.1
$bgp_agent6 neighbor 10.0.5.1 remote-as 0

set bgp_agent7 [$n7 get-bgp-agent]
$bgp_agent7 bgp-id 10.0.7.1
$bgp_agent7 neighbor 10.0.5.1 remote-as 0
$bgp_agent7 neighbor 10.2.9.1 remote-as 2

SETUP EBGP'S
set bgp_agent8 [$n8 get-bgp-agent]
$bgp_agent8 bgp-id 10.1.8.1
$bgp_agent8 neighbor 10.0.2.1 remote-as 0

set bgp_agent9 [$n9 get-bgp-agent]
$bgp_agent9 bgp-id 10.2.9.1
$bgp_agent9 neighbor 10.0.7.1 remote-as 0

set udp0 [new Agent/UDP]
$udp0 set dst_addr_ [$n4 strtoaddr 10.1.10.1]
$udp0 set dst_port_ 0

set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 20
$cbr0 set interval_ 0.001
$cbr0 attach-agent $udp0
$ns attach-agent $n4 $udp0

$ns at 0.23 "puts \"\n time: 0.23 \
 \n cbr0 starts to send UDP segments to n10.\""
$ns at 0.23 "$cbr0 start"

$ns at 0.25 "puts \"\n time: 0.25 \n n8 (ip_addr 10.1.8.1) \
 defines a network 10.1.10.0/24.\""
$ns at 0.25 "$bgp_agent8 network 10.1.10.0/24"

$ns at 0.35 "puts \"\n time: 0.35 \n n9 (ip_addr 10.2.9.1) \
 defines a network 10.2.9.0/24.\""
$ns at 0.35 "$bgp_agent9 network 10.2.9.0/24"

$ns at 20 "puts \"\n time: 20 \n cbr0 stops.\""
$ns at 20 "$cbr0 stop"

$ns at 39.0 "puts \"\n time: 39
 \n dump routing tables in all BGP agents: \n\""
$ns at 39.0 "$bgp_agent0 show-routes"
$ns at 39.0 "$bgp_agent1 show-routes"
$ns at 39.0 "$bgp_agent2 show-routes"
$ns at 39.0 "$bgp_agent3 show-routes"
$ns at 39.0 "$bgp_agent4 show-routes"
$ns at 39.0 "$bgp_agent5 show-routes"
$ns at 39.0 "$bgp_agent6 show-routes"
$ns at 39.0 "$bgp_agent7 show-routes"
$ns at 39.0 "$bgp_agent8 show-routes"
$ns at 39.0 "$bgp_agent9 show-routes"

$ns at 40.0 "finish"

proc finish {} {
 global ns nf
 $ns flush-trace
 close $nf
 puts "Simulation finished. Executing nam..."
 exec nam reflection2
 exit 0
}

puts "Simulation starts..."
$ns run

 61

APPENDIX B: SAMPLE SCRIPT FOR SIMULATION
PHASES

set line_size 16 ## Line topology with 16 nodes.
set route_number 1 ## Each node announces one prefix.
set finish_time 10000 ## Simulated time is 10000 s.

Phase 1: ns-2 simulator instance creation

set ns [new Simulator]

Phase 2: node creation

$ns node-config -BGP ON
for {set i 0} {$i < $line_size } {incr i} {
 set n($i) [$ns node $i:10.0.$i.1]
}
$ns node-config -BGP OFF

Phase 3: link creation

for {set i 0} {$i < [expr $line_size -1] } {incr i} {
 $ns duplex-link $n($i) $n([expr $i + 1]) 1Mb 1ms DropTail
}

Phase 4: enable each BGP agent to be auto-config

for {set i 0} {$i < $line_size } {incr i} {
set bgp_agent($i) [$n($i) get-bgp-agent]
 $bgp_agent($i) set-auto-config
}

Phase 5: Other initialization

Phase 6: BGP session establishment

$ns at 0.0 “puts \”Begin establishing BGP sessions. \””

Phase 7: BGP message exchange

for {set i 0} {$i < $line_size } {incr i} {
 for {set j 0} {$i < $route_number } {incr j} {
 $ns at 20.0 “$bgp_agent($i) network $i.0.$route_number.0/24
}

Simulation terminates at 10000s

$ns at $finish_time "finish"

proc finish {} {
 exit 0
}

puts "Simulation starts..."
$ns run

 62

BIBLIOGRAPHY

 [1] J. Banks, J. Carson II, B. Nelson, and D. Nicol, Discrete-Event System Simulation.
Upper Saddle River, NJ: Prentice Hall, 2001.

 [2] T. Bates, R. Chandra, and E. Chen, “BGP route reflection – an alternative to full

mesh IBGP,” RFC 2796, April 2000.

 [3] T. Bates, Y. Richter, R. Chandra, and D. Katz, “Multiprotocol extensions for BGP-

4,” RFC 2858, June 2000.

 [4] T. Bates, P. Smith, and G. Huston, CIDR Report: http://www.cidr-report.org.

Accessed: April 10, 2004.

 [5] I. Beijnum, BGP. Sebastopol, CA: O’Reilly, 2002.

 [6] BGP++: http://www.ece.gatech.edu/research/labs/MANIACS/BGP++. Accessed:

April 10, 2004.

 [7] R. Brown, “Calendar queues: a fast O(1) priority queue implementation for the

simulation event set problem,” Communication of the ACM, vol. 31, no. 10, pp.
1120-1227, October1988.

 [8] T. Bu, L. Gao, and D. Towsley, “On routing table growth,” in Proc. of Global

Internet Symposium, Taipei, Taiwan, November 2002.

 [9] E. Chen and J. Stewart, “A framework for inter-domain route aggregation,” RFC

2519, February 1999.

[10] N. Feamster and H. Balakrishnan, “Towards a logic for wide-area Internet routing, ”

in Proc. SIGCOMM, Karlsruhe, Germany, August 2003, pp. 88-100.

[11] T. D. Feng, R. Ballantyne, and Lj. Trajkovic, “Implementation of BGP in a ne twork

simulator,” to be presented at the Applied Telecommunication Symposium, ATS '04,
Arlington, Virginia, April 2004.

[12] L. Gao, “On inferring autonomous system relationships in the Internet,” in Proc.

GLOBECOM, San Francisco, CA, November 2000, pp. 378-396.

[13] L. Gao and J. Rexford. “Stable Internet routing without global coordination,” in

Proc. SGIMETRICS, Santa Clara, CA, June 2000, pp. 307-317.

 63

[14] T. Griffin and B. Premore, “An experimental analysis of BGP convergence time,” in
Proc. ICNP, Riverside, CA, November 2001, pp. 53-61.

[15] T. Griffin and G. Wilfong, “An analysis of BGP convergence properties,” in Proc.

SIGCOMM, Cambridge, MA, August 1999, pp. 277-288.

[16] T. Griffin and G. Wilfong, “A safe path vector protocol,” in Proc. INFOCOM,

Anchorage, Alaska, April 2001, pp. 490-499.

[17] T. Griffin, F. Shepherd, and G. Wilfong, “Policy disputes in path-vector protocols,”

in Proc. ICNP, Toronto, Canada, October 1999, pp. 21-30.

[18] T. Griffin, F. Shepherd, and G. Wilfong, “The stable paths problem and interdomain

routing,” IEEE Transactions on Networking, vol. 10, no. 2, pp. 232-243, April 2002.

[19] GNU Zebra: http://www.zebra.org. Accessed: April 10, 2004.

[20] GNU Zebra BGP daemon: http://www.zebra.org/zebra/BGP.html#BGP. Accessed:

April 10, 2004.

[21] S. Halabi and D. McPherson, Internet Routing Architectures. Indianapolis, IN: Cisco

Press, 2000.

[22] C. Huitema, Routing in the Internet. Upper Saddle River, NJ: Prentice Hall, 2000.

[23] N. Hutchinson and L. Peterson, “The x-kernel: an architecture for implementing

network protocols,” IEEE Transactions on Software Engineering, vol. 17, no. 1, pp.
64-76, January 1991.

[24] C. Labovitz, G. Malan, and F. Jahanian “Origins of Internet routing instability,” in

Proc. INFOCOM, New York, NY, March 1999, pp. 218-226.

[25] C. Labovitz, R. Wattenhofer, S. Venkatachary, and A. Ahuja, “The impact of

Internet policy and topology on delayed routing convergence,” in Proc. INFOCOM,
Anchorage, AK, April 2001, pp. 537-546.

[26] G. Malkin, “RIP version 2,” RFC 2453, November 1998.
.
[27] Z. Mao, R. Govindan, G. Varghese, and R. Katz. “Route flap damping exacerbates

Internet routing convergence,” in Proc. SIGCOM, Pittsburgh, PA, August 2002, pp.
221-233.

[28] S. Murphy, “BGP security vulnerabilities analysis,” Internet draft, June 2003.

[29] D. Nicol, “Scalability of network simulators revisited,” in Proc. CNDS, Orlando, FL,

February 2003.

 64

[30] ns manual: http://www.isi.edu/nsnam/ns/doc/index.html. Accessed: April 10, 2004.

[31] OPNET BGP: http://www.opnet.com/products/bgp.html. Accessed: April 10, 2004.

[32] V. Paxson, “End to end routing behavior in the Internet,” IEEE/ACM Transactions

on Networking, vol. 5, no. 5, pp. 601-615, October 1997.

[33] B. Premore, SSFNet BGP User’s Guide: http://www.ssfnet.org/bgp/user-guide-

ps.zip. Accessed: April 10, 2004.

[34] B. Premore, An Analysis of Convergence Properties of the Border Gateway Protocol

Using Discrete Event Simulation, Ph.D. thesis, Dartmouth College, May 2003.

[35] SSFNet: http://www.ssfnet.org/homePage.html. Accessed: April 10, 2004.

[36] J. Stewart III, BGP4: Inter-Domain Routing in the Internet. Reading, MA: Addison-

Wesley, 1998.

[37] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” RFC 1771, March

1995.

[38] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations in inter-

domain routing,” ISI Tech. Rep. 96-631, February 1996.

[39] C. Villamizar, R. Chandra, and R. Govindan, “BGP route flap damping,” RFC 2439,

November 1998.

