
WM-195 1

Abstract— In this paper, we propose packet control algorithms

to be deployed in intermediate network routers. They improve
TCP performance in wireless networks with packet delay
variations and long sudden packet delays. The ns-2 simulation
results show that the proposed algorithms reduce the adverse
effect of spurious fast retransmits and timeouts and greatly
improve the goodput compared to the performance of TCP Reno.
The TCP goodput was improved by ~30% in wireless networks
with 1% packet loss. TCP performance was also improved in cases
of long sudden delays. These improvements highly depend on the
wireless link characteristics.

Index Terms—TCP, packet control, wireless networks, packet
delay, packet delay variation.

I. INTRODUCTION
he performance of Transmission Control Protocol (TCP)
[1], [2] has greatly improved since 1988, when the

congestion avoidance and control algorithms [3] were first
introduced. TCP is currently the most widely used Internet
transport protocol. In 2002, TCP traffic accounted for 95% of
the IP network traffic [4]. This was due to a variety of popular
Internet applications and protocols. Web (HTTP), file transfer
(FTP), and e-mail (SMTP) rely on TCP as the underlying
transport protocol. Internet applications that rely on TCP today
are likely to do so in the future. With a growing deployment of
wireless networks, it is important to support these applications
in both wireline and wireless environments. Hence, wireless
networks will also require good TCP performance.

Wireless networks have different characteristics compared to
wireline networks. TCP, which was carefully designed and
tuned to perform well in wireline networks, suffers performance
degradation when deployed in wireless networks.

II. TRANSMISSION CONTROL PROTOCOL
TCP is a connection-oriented transport layer protocol. It

provides reliable byte stream services for data applications. Its
key features include reliability, flow control, connection
management, and congestion control. Major TCP versions are
Tahoe [2], Reno [5], and NewReno [6]. They differ mainly in
their congestion control algorithms. Tahoe, the original version
of TCP, employs three congestion control algorithms: slow
start, congestion avoidance, and fast retransmit. TCP Reno

Manuscript received January 10, 2005. This work was supported in part by
the NSERC Grant No. 216844-03 and Canada Foundation for Innovation.

Wan G. Zeng and Ljiljana Trajković are with Simon Fraser University,
Burnaby, BC, V5A 1S6, Canada (e-mail: {wgzeng, ljilja}@cs.sfu.ca).

extends Tahoe with a fast recovery mechanism. NewReno, the
latest major version of TCP, modifies TCP Reno’s fast recovery
algorithm and addresses the issue of partial acknowledgements
(ACKs) [6].

Differences between the characteristics of wireline and
wireless networks have significant impact on TCP performance.
TCP was designed and optimized to perform well in wireline
networks. Wireless links, with considerable packet losses due to
link errors, delay variations, and long sudden delays, violate
TCP’s essential design assumptions. Improving TCP
performance in wireless networks has been an ongoing research
activity since the mid 90’s. Most improvements dealt with
TCP’s reaction to high bit error rate (BER) and TCP
performance degradation due to delay and delay variation in
wireless links. Performance of TCP’s congestion control
algorithms particularly deteriorates when TCP is deployed in
mixed wireline/wireless networks. We describe here TCP’s
timer and window management, congestion control algorithms,
and round-trip time (RTT) estimation.

A. TCP Windows
TCP maintains two windows to perform congestion control

and avoidance: the receiver’s advertised window (rwnd) and the
congestion window (cwnd). They define the maximum number
of bytes the receiver may receive and the sender may send,
respectively. The number of bytes that may be sent to the
network is the minimum of the two. With rwnd sufficiently
large, the larger the cwnd, the more data TCP can send, resulting
in larger TCP throughput.

The growth of the cwnd is ACK paced: with every segment
that TCP sends, the receiver issues an ACK to acknowledge the
receipt of the data. The receipt of the ACKs increases the cwnd
and enables the sender to send more data.

B. TCP Congestion Control Algorithms
TCP packets may be lost due to link errors or network

congestion. Since losses due to link errors in wireline networks
are rare, TCP deals only with packet loss due to network
congestion. Hence, packet loss always implies network
congestion. TCP congestion avoidance and control [3] were
first introduced when Internet experienced its first series of
“congestion collapses.”

TCP detects network congestion via duplicate ACKs and
timeouts. Each byte of the transmitted data is assigned a unique
sequence number (seqno). When a data packet loss occurs, TCP
receiver issues a duplicate ACK for any out-of-sequence data
packet received. Upon receiving a predefined number of
consecutive duplicate ACKs, TCP assumes that a packet is lost.

TCP Packet Control for Wireless Networks
Wan G. Zeng and Ljiljana Trajković

T

WM-195 2

In most TCP implementations, the threshold is set to three
(known as three duplicate ACKs). Note, however, that when
cwnd < 4 or the network is temporarily disconnected, the
number of duplicate ACKs is less than three, and thus
insufficient to trigger three duplicate ACKs. TCP handles this
situation by keeping a timer called Retransmission Timeout
(RTO). When the timer expires, it assumes packet loss [1],
which triggers congestion control. TCP congestion control
mechanism includes [7]:
• increasing cwnd by one segment size per RTT and halving

cwnd for every window experiencing a packet loss
(Additive Increase Multiplicative Decrease, AIMD)

• Retransmission Timeout (RTO), including exponential
back-off when timeout occurs

• slow start mechanism for initial probing of the available
bandwidth

• ACK clocking (self-clocking) the arrival of ACKs at the
sender, used to trigger transmission of new data.

TCP Reno congestion control algorithms are shown in Fig. 1
[5].

Fig. 1. TCP congestion control algorithms.

Slow Start: At the onset of a TCP connection, TCP employs

the slow start mechanism to probe the network capacity. Slow
start is also employed after a packet loss is detected by the RTO
mechanism. When the transmission starts, the sender’s cwnd is
set to the initial window (IW) size. Congestion window cwnd is
increased by at most SMSS (sender maximum segment size)
bytes for each ACK received that acknowledges new data. The
slow start threshold (ssthresh) may be arbitrarily high and could
be reduced when congestion occurs. When congestion is
detected by the RTO mechanism, cwnd is set to IW and ssthresh
is set to 0.5×cwnd. In both situations, slow start is used as long
as cwnd < ssthresh. Slow start ends when cwnd > ssthresh or
when congestion is detected. When cwnd = ssthresh, the sender
may use either slow start or congestion avoidance.

Congestion Avoidance: If cwnd > ssthresh, congestion
avoidance is employed to probe the network capacity more
slowly than during the slow start. Congestion window cwnd is
incremented by one full-size segment per RTT. In most cases,
TCP operates in the congestion avoidance phase. Congestion
avoidance ends only when congestion is detected.

Fast Retransmit: When three duplicate ACKs are detected,
TCP moves from congestion avoidance to fast retransmit. The
incoming segments are considered out-of-order by the receiver

when a packet loss occurs. For any out-of-order packet
received, the receiver immediately sends a duplicate ACK
acknowledging the next expected seqno. After receiving three
duplicate ACKs, the sender retransmits what appears to be the
lost packet without waiting for the retransmission timer to
expire. It uses the sequence number contained in the duplicate
ACKs. Along with the retransmission, TCP also sets ssthresh to

 ×= SMSSFlightSizessthresh 2,

2
max ,

where FlightSize is the size of the outstanding data in the
network.

Fast Recovery: Fast recovery takes place immediately after
the sender performs fast retransmit. Here, a new ACK is defined
as the ACK acknowledging the sequence number beyond the
lost segment. TCP first inflates cwnd to SMSSssthresh ×+ 3 .
This reflects the three segments that have left the network (three
duplicate ACKs would require three packets to leave the
network). For every additional duplicate ACK received, the
sender increments cwnd by SMSS to reflect that an additional
segment has left the network. This new cwnd may also allow the
sender to transmit a new segment. When a new ACK is received,
the sender sets cwnd to ssthresh to deflate the cwnd, and the
congestion avoidance phase continues.

C. Karn’s algorithm: RTT estimation and RTO
After a segment is transmitted, an ACK is expected by the

sender. If the RTO timer expires before the ACK is received, the
segment is retransmitted. This resynchronizes the transmission
in case the segment is lost. Therefore, if the calculated RTO is
too large, unnecessary time will be spent waiting for the timer to
expire. Thus, it will cause TCP performance degradation [1]. If
the calculated RTO is too small, the timer may expire
prematurely and cause unnecessary retransmissions.

RTT is estimated using Karn’s algorithm. RTO is calculated
based on the estimated RTT and the RTT deviation. TCP
measures the round-trip time of the ACKs for data segments and
this interval is called sample RTT. The moving average of RTT,
called a smoothed RTT (srtt), and the mean deviation (rttvar)
are calculated as:

srtt = (1 – g)×srtt + g×sampleRTT
rttvar = (1 – h)×rttvar – h×|sampleRTT – srtt|,

with recommended parameter values:
g = 0.125 and h = 0.25.

RTO is calculated as:
RTO = srtt + 4× rttvar.

III. CHARACTERISTICS OF WIRELESS NETWORKS
Mobile connectivity provided by wireless networks allows

users to access information anytime and anywhere. The growth
of cellular telephone systems is accompanied with a growing
number of wireless-enabled laptops and personal digital
assistants (PDAs). Cellular networks evolved from 1G analog
systems to 2G systems (GSM and PDC), 2.5G systems (GPRS
and PDC-P), and 3G systems (Wideband CDMA and
cdma2000). During the past decade, the quality of wireless links
has been improved in terms of BER and link bandwidth.

WM-195 3

Wireless networks still exhibit the following characteristics:

A. High bit error rate (BER)
Wireless networks experience random losses. BER in

wireless networks is significantly higher than in wireline
networks. Packet error rates range from 1% in microcell
wireless networks up to 10% in macrocell networks [4]. Even
with optimized link layer retransmission algorithms in 3G
networks, packet error rate remains ~1%.

B. Long and varying delay
Wireless links have a large latency. Typical RTTs in 2.5G

and 3G networks vary from a few hundred milliseconds to one
second. Furthermore, they are likely to experience sudden delay
changes (delay spikes) greatly exceeding the typical RTT [8].
(Delay spike is defined as a sudden increase in the latency of a
communication path [8].) Wireless WANs have a typical
latency of up to 1 s. [9]. These delay changes may cause
spurious TCP timeouts. Wireless links experience delay
changes due to link recovery, temporary disconnections, traffic
priority, and link/MAC layer protocols [9].

C. Bandwidth
Bandwidth of cellular networks increased as they evolved

from 1G analog systems to 2G systems (10–20 kbps for uplink
and downlink), to 2.5G (10–20 kbps uplink and 10–40 kbps
downlink), and 3G systems (up to 64 kbps uplink and 384 kbps
downlink) [8]. Data rates vary due to mobility and the
interference from other users [8]. Mobile users share the
bandwidth within a cell. As users move among cells, they affect
the bandwidth available to other users. Furthermore, a user may
move to another cell with higher or lower bandwidth. These
factors cause variable wireless link data rates. TCP was
designed to handle the changes in bandwidth with its
self-clocking scheme. However, a sudden increase in RTT
could still cause spurious timeouts.

D. Path asymmetry
Cellular 2.5G and 3G systems employ asymmetric uplink and

downlink data rates.

IV. IMPROVING TCP PERFORMANCE
A number of solutions have been proposed to solve the

problem of non-congestion related packet losses misinterpreted
by TCP [10] – [12] and to reduce the impact of delays and delay
variations on TCP performance in wireless networks [4], [9],
[13] – [15].

A. Wireless Link Errors
The main characteristic of a wireless network is the high BER

on its links. It violates the fundamental assumption of TCP that
packet loss caused by link error is negligible (<< 1%) [3] and
that packet loss is caused only by network congestion. High
BER in wireless networks causes packet loss regardless of
network congestion. The main cause for TCP's performance
degradation in a mixed wireless/wireline environment is its
inability to detect the origin of the packet loss.

When a packet loss is detected, TCP employs congestion
control algorithms to reduce the transmission rate. A single
packet loss on the link will cause duplicate ACKs and cwnd to
be reduced by half according to the fast retransmit and fast
recovery algorithms. TCP resolves the congestion in the
network by lowering its transmission rate. However, lowering
the transmission rate will degrade TCP performance if the
packet loss is not caused by congestion.

One approach to improving TCP performance is to reduce the
adverse effect of wireless link errors. Proposed solutions either
hide the wireless link error from the TCP sender or make the
sender aware of the causes of segment losses. The first approach
resolves the error within the wireless domain without the TCP
sender being aware of the error. These solutions often modify
the base station and/or the mobile host. If the link error is well
shielded from the sender, modifying the sender is not necessary.
The examples are I-TCP [10], M-TCP [16], and Snoop [12],
[17]. The second approach explicitly makes the sender aware of
the wireless link error by handling differently segment losses
caused by wireless link errors and losses due to network
congestion. This approach requires the base station to send
explicit congestion messages to the sender or a mechanism to
detect the causes of loss at the sender. An example is TCP
Westwood [18].

Based on the design principles [4], the solutions may also be
categorized as: split connection (I-TCP [10]), link layer
retransmission (Snoop [12]), and end-to-end (TCP Westwood
[18], WTCP [19]).

B. Wireless Link Delays
Wireless networks have larger latency and delay variations

than wireline networks. Long sudden delays during data
transfers are common in GPRS wireless WANs [9], [13].
Furthermore, experimental [13] and analytical [15] data
indicate that mobility increases packet delay and delay variation
and degrades the throughput of TCP connections in wireless
environments. Three major adverse effects are: spurious fast
retransmit, spurious timeouts, and ACK compression.

Spurious fast retransmit: Its primary source is the link delay.
It can also be caused by a spurious timeout. TCP generates a
duplicate ACK whenever an out-of-order data segment is
received. The number of out-of-order segments that had arrived
consecutively prior to this segment is called the re-ordering
length [13]. Thus, the re-ordering length represents the number
of duplicate ACKs expected to arrive at the TCP sender. Fig. 2
shows no segment loss or network congestion. Nevertheless,
fast retransmit is triggered because TCP misinterprets the
duplicate ACKs as packet loss and a sign of network congestion.
This event is called spurious fast retransmit.

TCP sender halves its congestion window to reduce the
transmission rate in response to fast retransmits. As illustrated in
Fig. 2, a packet was held in a queue by the hiccup (a delay
generator [13]) at time 37.7 s (marked +) and then retransmitted
after six segments at time 41.9 s (marked →). Upon receiving
the six segments prior to receiving the queued segment, the
receiver generates six duplicate ACKs, triggering a fast

WM-195 4

retransmit.

Fig. 2. The effect of packet re-ordering [13].

Spurious timeout: It may occur on links with long sudden

delays. With its RTO timer, TCP is designed to handle even
large gradual changes in delays. Nevertheless, TCP cannot
handle well long sudden delays because it is unable to adjust its
RTO fast enough. When the RTO timer expires, TCP assumes
that the outstanding packets are lost and triggers the congestion
control.

Spurious timeout is illustrated in Fig. 3. The three arrows
show three critical events. The sudden long delay on the link
occurs at 5 s. The first arrow indicates the moment when the
TCP sender’s RTO timer expires. TCP sender assumes that the
previously sent packets are lost. The cwnd is reduced to the
initial window (two segments). TCP then retransmits the first
two unacknowledged segments. At 11 s, the link delay
terminates (marked by the second arrow). The sender receives
the first new ACK and starts recovering from timeouts by
entering the slow start phase. All the unacknowledged segments
are to be retransmitted. Since some ACKs on the wireless link
have also been delayed, they accumulate and arrive together at
the sender when the link recovers. This causes a burst of data
segments to be sent. This is known as ACK compression. The
retransmission unnecessarily utilizes the scarce wireless
bandwidth and may potentially increase the recovery time.

The unnecessary retransmission of segments may introduce
an additional spurious fast retransmit. At 11.97 s, the
retransmitted segments arrive at the receiver. Since previously
transmitted segments have been received after the link
recovered, TCP receiver generates a duplicate ACK for every
out-of-order segment. These duplicate ACKs (ACK 136) are
shown between 11.97 s and 12.54 s. When the number of
duplicate ACKs exceeds the duplicate ACK threshold, another
spurious fast retransmit is triggered. This further worsens the
situation. A gap appears after 12.54 s (graph labeled seqno)
immediately after ACK 137 is received. During the fast
retransmit, for every duplicate ACK received, the sender
artificially inflates the cwnd by one segment and, if the cwnd
permits, transmits the next segment. (The change in cwnd is not
shown. It can be seen from the seqno showing new segments
that are sent with ACKs received.) When the new ACK 137 is

received (marked by the third arrow), the fast retransmit is
terminated and cwnd is deflated back to the size that it had at
11.97 s. No segments are transmitted during the period between
12.50 s and 13.10 s (graph labeled seqno) due to this decrease of
cwnd.

Fig. 3. Spurious timeout.

Eifel algorithm [13] was proposed to enhance TCP’s
adaptation to link delays in wireless networks. Both spurious
timeout and spurious fast retransmit are caused by TCP’s
retransmission ambiguity, which occurs when an ACK arrives
for a segment that has been retransmitted. Hence, there is no
indication which transmission is being acknowledged [20]. Eifel
algorithm is an end-to-end solution, which requires modifying
only the TCP sender. It first eliminates the retransmission
ambiguity by using additional information in the ACKs. Then, it
restores the payload and resumes transmission with the next
unsent segment [13]. Timestamp option is used to provide the
additional information to identify the segment that triggered the
duplicate ACK. Timestamp clock is stored in the header of
every outgoing segment and echoed back with its corresponding
ACK. The sender also keeps track of the timestamp of the first
retransmission. The received ACK can be identified by
comparing the timestamp stored in the sender with the
timestamp in the received ACK. If the ACK was triggered by
the original segment, spurious retransmission has occurred. The
sender then restores the cwnd and possibly RTO. Instead of
retransmitting the unacknowledged segments, the next unsent
segment is transmitted.

Although Eifel algorithm effectively reduces the impact of
spurious timeouts and spurious fast retransmits by eliminating
the retransmission ambiguity, it has two major drawbacks: it
requires modification of all TCP clients in the wireline domain
and requires that both the sender and the receiver have the
12-byte TCP timestamp option enabled in every segment and
the corresponding ACKs. Furthermore, its performance in the
cases of high link errors is questionable [14].

V. PROPOSED TCP WITH PACKET CONTROL
We propose a set of packet control algorithms designed to

avoid the adverse effect of long delays and delay variations on

WM-195 5

TCP performance in wireless networks. We describe the
algorithms, their implementation, and evaluate their
performance using the ns-2 simulator [21].

A. Network Architecture
Network architecture, shown in Fig. 4, represents a cellular

network or a wireless LAN (WLAN). A mobile host (MH)
initiates a TCP connection with a fixed host (FH) through a base
station (BS), which is an edge node in the wireless network.
TCP packets are sent from the FH to the MH through the BS and
MH acknowledges every data packet received [15]. TCP data
may be either a long lived FTP connection with a large volume
of data traffic or a short lived HTTP connection with a typically
smaller volume of data traffic. We assume that the condition of
the wireless link may change with time (leading to variable
wireless link delay), that the mobile device roams between cells,
and that mobile applications have limited data bandwidth.

MH: mobile host
BS: base station
FH: fixed host
BSS: infrastructure

basic service set

FH

Wireline network

MH

MH

MH
BS

BSS

MH

MH

MH
MH BS

BSS/Cell

MH: mobile host
BS: base station
FH: fixed host
BSS: infrastructure

basic service set

FHFH

Wireline network

MH

MH

MH
BS

BSS

MHMH

MHMH

MHMH
BSBS

BSS

MH

MH

MH
MH BS

MHMH

MHMH

MHMH
MHMH BSBS

BSS/Cell

Fig. 4. Network architecture.

B. TCP with Packet Control
TCP with packet control consists of ACK and data packet

filters. The two filters improve TCP performance in mixed
wireline/wireless networks and maintain TCP’s end-to-end
semantics. They deal with wireless links with long sudden
delays and delay variations, handle handoffs, and maintain
regular TCP functions. They do not depend on end-user TCP
flavors.

The filters are to be deployed at the wireless network edge
(typically the BS). This is a TCP-aware link layer solution. The
algorithms keep track of TCP data and ACK packets received
from the FH and the MH, respectively. Packet control filters
forward packets to both client ends based on the information
gathered in the BS.
 1. ACK Filter: Packet control reacts to ACKs received from
the MH using the ACK filter. It drops the old ACKs and
duplicate ACKs classified according to the duplicate ACK
threshold defined by the user. It remembers the last new ACK
received from the wireless receiver, called the last received
ACK. When an ACK arrives, its ACK number is checked
against the last received ACK. We consider three cases:

Old ACK: The ACK is considered old if the ACK number has
already been received and/or is smaller than the last received
ACK. It is immediately dropped.

Duplicate ACK: If the newly received ACK number is
identical to the largest ACK currently received, it is considered
to be a duplicate. Packet control keeps track of the current
number of duplicate ACKs received at the BS. Based on the
number of duplicate ACKs received and the user-defined

duplicate ACK threshold, duplicate ACKs are evenly dropped
and are not sent to the sender. The number of ACKs to be
dropped is equal to the difference between the user-defined
duplicate ACK thresholds at the BS and at the FH. For example,
if the user-defined duplicate ACK threshold is 6 and TCP has
defined the three duplicate ACK threshold, every second
duplicate ACK is dropped.

New ACK: If the ACK number has not been previously
received, the ACK is considered new. The last wireless ACK is
updated, the counter for the current number of duplicate ACKs
is reset, and the ACK is forwarded to the sender.

The design of the ACK filter is based on the observation that
a wireless link has a high number of re-ordered segments, which
is the primary cause of spurious fast retransmit. By filtering
some duplicate ACKs at the BS, the spurious fast retransmit
may be reduced. If there is no packet loss in the network,
filtering duplicate ACKs results in better TCP performance.

2. Data Filter: When the packet control receives a data
segment from the FH, it passes it to the MH. The data filter at
the BS is designed to prevent the spurious fast retransmit caused
by spurious timeout.

In the case of spurious timeout, retransmissions of the
unacknowledged segments unnecessarily consume the scarce
wireless link bandwidth and also trigger additional spurious fast
retransmits. Therefore, their prevention is essential in solving
spurious timeout. The data filter checks whether data segments
have been acknowledged. The sequence number is checked
against the last ACK received from the receiver. We consider
two cases:

New data segment or unacknowledged segment: If the
segment has not been acknowledged, it is forwarded to the
receiver. The segment is either a new data segment or an
unacknowledged segment. In the latter case, the system cannot
distinguish whether the last transmission of the same segment
has been received by the receiver or its ACK was lost. In both
cases, even if the received segment is a retransmission, it should
be forwarded.

Acknowledged segment: This segment is a retransmission due
to spurious timeout. This occurs because the ACK from the BS
is lost or has not arrived at the FH. In both cases, the segment
should be dropped. We consider that a loss of ACKs could
occur even though the BER and the possibility of congestion for
ACKs are small in wireline networks. For every two identical
retransmitted segments received, an ACK is sent from the BS to
the sender. Hence, unnecessary retransmissions are eliminated
and the problem of lost ACKs is resolved.

C. Design Considerations and Tradeoffs
Packet control filters designed to deal with the wireless link

delays have to be simple to implement.
TCP option: Packet control has been designed as an option

for TCP rather than a modification of TCP. Hence, it is less
difficult to deploy in an existing network.

A link layer solution in BS: Packet control requires
modification in the BS only. No modifications are required at
the end users. Furthermore, it can be deployed incrementally

WM-195 6

because it does not require changes in the protocol stack.
Scalable: With proper implementation, packet control filters

only require retaining few constant state variables, and, hence,
require minimal additional memory in the BS.

Handoff: Packet control does not require additional
operations during handoffs, such as additional memory
requirements or message exchanges, and will not adversely
affect handoffs.

VI. IMPLEMENTATION OF TCP WITH PACKET CONTROL
We implemented TCP packet control in the ns-2.26 simulator

[21] on RedHat Linux 9.
Fig. 5 illustrates the logic flow of the ACK filter. The variable

numOfLastDupAck indicates the number of duplicate ACKs
that have been received for the last received wireless ACK. It is
updated when a new ACK is received. It is then used, along with
the user-defined duplicate ACK threshold (redefine3DupAck),
to determine whether an ACK should be sent or dropped. The
next duplicate ACK to be sent (nextDupAckToSend) is
calculated as:

−=

3
3

1
DupAckredefine
upAcknumOfLastDkSentnumOfDupAc

() ,
3
31 DupAckredefinekSentnumOfDupAc

ToSendnextDupAck

×+

=

where numOfDupAckSent is the number of duplicate ACKs that
should be sent, triggered by the previous duplicate ACKs
received. This ensures that duplicate ACKs will be evenly sent
to the sender according to the user-defined duplicate ACK
threshold in the BS.

Fig. 5. Packet control: ACK filter.

Fig. 6 shows the logic flow of data filter. The variable
lstRetransWiredDataPkt stores the segment numbers of
retransmitted segments from the FH. A retransmitted segment is
defined as a segment with the sequence number smaller or equal
to the largest ACK number that has already been sent to the FH.
These retransmitted segments are dropped. The number of
retransmissions for each retransmitted segment
(m_iNumOfRtm) is kept for each segment in the list. An ACK

for a segment is generated and sent to the FH for every second
retransmission of the same segment. This handles the rare
situations when an ACK is lost on the path from the BS to the
FH.

Fig. 6. Packet control: Data filter.

VII. PERFORMANCE OF TCP WITH PACKET CONTROL
The simulated network is shown in Fig. 7. A wired link

connects the FH to the BS, while a wireless link connects the BS
and the MH.

Fig. 7. Simulated network setup.

A. Scenario I: Link Delay Variation with Small Delay
This scenario is used to investigate TCP’s reaction to link

delay variations. For 20 seconds, FTP data are being sent from
the FH to the MH in TCP packets of 1,040 bytes (default in
ns-2). Link delay variation is introduced at 0.5 s. Links employ
DropTail queues. The simulation results show improvement in
TCP performance. The number of cwnd reductions vs. time is
shown in Fig. 8. Due to the spurious fast retransmit caused by
link delay variation, TCP without packet control has the largest
number of cwnd reductions, which also implies the largest
number of fast retransmits. TCP with packet control and the
user-defined duplicate ACK threshold set to 12 has the smallest
number of cwnd reductions. The larger the duplicate ACK
threshold, the more duplicate ACKs will be dropped and fewer
fast retransmits will be performed by TCP. These fast
retransmits are spurious and reducing them results in higher
TCP performance. Graph with no packet control and graph with
user-defined duplicate ACK threshold of three overlap,
validating the implementation of the filters. Since TCP sender
also has the threshold of three, no duplicate ACKs are dropped
and the two cases coincide.

Variations of cwnd are shown in Fig. 9. Since larger duplicate
ACK threshold in packet control results in fewer spurious fast
retransmits, cwnd remains large. Cwnd is directly related to
TCP’s throughput. TCP’s performance may also be examined

FH MH BS

1 Mbps

5 msec delay

250 Kbps

170 msec
variable delay

WM-195 7

by observing the goodput shown in Fig. 10. With an appropriate
user-defined duplicate ACK threshold, TCP with packet control
successfully reduces the number of spurious fast retransmits. It
may improve TCP goodput by ~100%.

Fig. 8. Link delay variation: number of cwnd reductions.

Fig. 9. Link delay variation: cwnd.

Fig. 10. Link delay variation: goodput.

B. Scenario II: Link Delay Variation with Small Delay and
Link Errors
This scenario investigates the case with 1% bidirectional

packet loss in the wireless link. Link layer retransmission

protocols in 3G networks, such as RLP in 3G1X and RLC in
UMTS, ensure that packet loss probability is less than 1% on the
wireless link. TCP goodput is shown in Fig. 11. With
user-defined duplicate ACK threshold of 9, TCP with packet
control achieves ~30% improvement.

Fig. 11. Link delay variation (1% segment loss): goodput.

C. Scenario III: Spurious Timeout
We also investigate TCP’s reaction to sudden large delay

increase. A delay of 6 s is introduced at 5 s in the wireless link.
The reaction of TCP without packet control to the long sudden
delay was shown in Fig. 3. Identical simulation scenario, with
packet control enabled, is used to generate the results shown in
Fig. 12. They illustrate that TCP recovers faster (indicated by
the third arrow) than in the case shown in Fig. 3.

Fig. 12. TCP with packet control: spurious timeout.

A comparison of TCP goodput is shown in Fig. 13. The

improvement is highly dependent on the path characteristics.

D. Delay Generator
Delays in ns-2 simulations are generated by a delay

generator. We implemented two types of delays: short delay
variations and relatively long sudden delays.

Short delay variations are generated based on the
measurements of packet delays in wireless data networks [15].

WM-195 8

The configuration for evaluating TCP performance was based
on CDMA 1xRTT network architecture. A mobile host in a
wireless network was connected to a host PC in a wired local
area network (LAN) through a single BS. The “ping”
application was generated by the Internet control message
protocol (ICMP) ECHO. Ping packets were sent from the PC in
the LAN to the mobile terminal moving at pedestrian speed. The
delays vary from 179 ms to 1 s in a 3G1X system [15] and are in
agreement with the “ping” latencies [22].

Fig. 13. TCP with packet control: goodput.

Delay values used in simulations are shown in Table I [15].

Each case is simulated with a uniform distribution generated by
the ns-2 random generator. The wireline link delay was kept
constant at 5 ms.

A long delay was generated by a timer. The one-way wireless
link delay was kept constant at 170 ms. This value is close to the
300 ms average RTT [15]. The sudden increase of delay was
simulated for 6 s, which was sufficiently long to cause a regular
TCP timeout with at least one exponential back-off.

TABLE I
WIRELESS DELAYS FOR MOBILE TERMINALS

RTT
(%)

Total
RTT
(ms)

Wireline
RTT
(ms)

Wireless
RTT
(ms)

Wireless
link delay

(ms)
80 316 – 400 10 306 – 390 153 – 195
10 400 – 460 10 390 – 450 195 – 225
8 460 - 605 10 450 – 595 225 – 297
2 605 - 1252 10 595 - 1242 297 – 621

VIII. CONCLUSION
In this paper, we proposed packet control filters to improve

TCP performance in wireless networks with delay variations
and long sudden delays. TCP connections were simulated in a
mixed wireline and wireless network using the ns-2 simulator.
The simulation results show that the proposed algorithms
reduce spurious fast retransmit and spurious timeouts in TCP.
They improve TCP’s throughput, goodput, and bandwidth
consumption. Goodput of TCP Reno is improved by ~100% in
networks with delay variations and by ~30% in networks with

1% packet losses in the wireless link. In cases of long sudden
delays, TCP performance is also improved, depending on the
path characteristics. Packet control filters can be conveniently
deployed at the intermediate routers to control the transmission
of TCP segments and ACKs. Future improvements may include
more accurate delay generators and multi-connection simulation
scenarios while using genuine wireless traffic traces for
performance evaluations.

REFERENCES
[1] W. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Reading, MA:

Addison-Wesley, Professional Computing Series, 1984.
[2] Information Sciences Institute, “Transmission control protocol,” IETF

RFC 793, Sept. 1981.
[3] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM

SIGCOMM, Stanford, CA, Aug. 1988, pp. 314–329.
[4] I. Stojmenovic, Handbook of Wireless Networks and Mobile Computing.

New York, NY: John Wiley & Sons, 2002.
[5] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” IETF

RFC 2581, Apr. 1999.
[6] S. Floyd and T. Henderson, “The NewReno modification to TCP’s fast

recovery algorithm,” IETF RFC 2582, Apr. 1999.
[7] S. Floyd, “A report on recent developments in TCP congestion control,”

IEEE Communications Magazine, vol. 39, no. 4, pp. 84–90, Apr. 2001.
[8] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov,

“TCP over second (2.5G) and third (3G) generation wireless networks,”
IETF RFC 3481, Feb. 2003.

[9] A. Gurtov, “Effect of delays on TCP performance,” in Proc. IFIP
Personal Wireless Communications (PWC'01), Aug. 2001.

[10] A. Bakre and B. R. Badrinath, “I-TCP: indirect TCP for mobile hosts,” in
Proc. 15th International Conference on Distributed Computing Systems
(ICDCS), Vancouver, BC, May 1995, pp. 136–143.

[11] K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for wireless IP
communications,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 4, pp. 747–756, May 2004.

[12] H. Balakrishan, S. Seshan, E. Amir, and R. H. Katz, “Improving TCP/IP
performance over wireless networks,” in Proc. ACM MobiCom, Berkeley,
CA, Nov. 1995, pp. 2–11.

[13] R. Ludwig and R. H. Katz, “The Eifel algorithm: making TCP robust
against spurious retransmission,” ACM Computer Communications
Review, vol. 30, no. 1, pp. 30–36, Jan. 2000.

[14] S. Fu, M. Atiquzzaman, and W. Ivancic, “Effect of delay spike on SCTP,
TCP Reno, and Eifel in a wireless mobile environment,” in Proc.
International Conference on Computer Communications and Networks,
Miami, FL, Oct. 2002, pp. 575–578.

[15] K. Luo and A. O. Fapojuwo, “Impact of terminal mobility on TCP
congestion control performance,” in Proc. 3rd IASTED International
Conference on Wireless and Optical Communications, Banff, Canada,
July 2003, pp. 360–365.

[16] K. Brown and S. Singh, “M-TCP: TCP for mobile cellular networks,”
ACM SIGCOMM Computer Communication Review, vol. 27, no. 5, pp.
19–42, Oct. 1997.

[17] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby
“Performance enhancing proxies,” Internet Draft [Online]. Available:
http://community.roxen.com/developers/idocs/drafts/draft-ietf-pilc-pep-
04.html.

[18] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, and R. Wang, “TCP
Westwood: end-to-end congestion control for wired/wireless networks,”
Wireless Networks (WINET), vol. 8, no. 5, pp. 467–479, Sept. 2002.

[19] P. Sinha, N. Venkitaraman, R. Sivakumar, and V. Bhargavan, “WTCP: a
reliable transport protocol for wireless wide-area networks,” in Proc.
ACM MobiCom, Seattle, WA, Aug. 1999, pp. 231–241.

[20] P. Karn and C. Partridge, “Improving round-trip time estimates in reliable
transport protocol,” ACM Transactions on Computer Systems, vol. 9, no.
4, pp. 364–373, Nov. 1991.

[21] ns–2 [Online]. Available: http://www.isi.edu/nsnam/ns.
[22] M. C. Chan and R. Ramjee, “TCP/IP performance over 3G wireless links

with rate and delay variation,” in Proc. ACM MobiCom, Atlanta, GA,
Sept. 2002, pp. 71–82.

