
WM-195 1

  
Abstract— In this paper, we propose packet control algorithms 

to be deployed in intermediate network routers. They improve 
TCP performance in wireless networks with packet delay 
variations and long sudden packet delays. The ns-2 simulation 
results show that the proposed algorithms reduce the adverse 
effect of spurious fast retransmits and timeouts and greatly 
improve the goodput compared to the performance of TCP Reno. 
The TCP goodput was improved by ~30% in wireless networks 
with 1% packet loss. TCP performance was also improved in cases 
of long sudden delays. These improvements highly depend on the 
wireless link characteristics.  
 

Index Terms—TCP, packet control, wireless networks, packet 
delay, packet delay variation. 
 

I. INTRODUCTION 
he performance of Transmission Control Protocol (TCP) 
[1], [2] has greatly improved since 1988, when the 

congestion avoidance and control algorithms [3] were first 
introduced. TCP is currently the most widely used Internet 
transport protocol. In 2002, TCP traffic accounted for 95% of 
the IP network traffic [4]. This was due to a variety of popular 
Internet applications and protocols. Web (HTTP), file transfer 
(FTP), and e-mail (SMTP) rely on TCP as the underlying 
transport protocol. Internet applications that rely on TCP today 
are likely to do so in the future. With a growing deployment of 
wireless networks, it is important to support these applications 
in both wireline and wireless environments. Hence, wireless 
networks will also require good TCP performance.  

Wireless networks have different characteristics compared to 
wireline networks. TCP, which was carefully designed and 
tuned to perform well in wireline networks, suffers performance 
degradation when deployed in wireless networks. 

II. TRANSMISSION CONTROL PROTOCOL 
TCP is a connection-oriented transport layer protocol. It 

provides reliable byte stream services for data applications. Its 
key features include reliability, flow control, connection 
management, and congestion control. Major TCP versions are 
Tahoe [2], Reno [5], and NewReno [6]. They differ mainly in 
their congestion control algorithms. Tahoe, the original version 
of TCP, employs three congestion control algorithms: slow 
start, congestion avoidance, and fast retransmit. TCP Reno 
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extends Tahoe with a fast recovery mechanism. NewReno, the 
latest major version of TCP, modifies TCP Reno’s fast recovery 
algorithm and addresses the issue of partial acknowledgements 
(ACKs) [6]. 

Differences between the characteristics of wireline and 
wireless networks have significant impact on TCP performance. 
TCP was designed and optimized to perform well in wireline 
networks. Wireless links, with considerable packet losses due to 
link errors, delay variations, and long sudden delays, violate 
TCP’s essential design assumptions. Improving TCP 
performance in wireless networks has been an ongoing research 
activity since the mid 90’s. Most improvements dealt with 
TCP’s reaction to high bit error rate (BER) and TCP 
performance degradation due to delay and delay variation in 
wireless links. Performance of TCP’s congestion control 
algorithms particularly deteriorates when TCP is deployed in 
mixed wireline/wireless networks. We describe here TCP’s 
timer and window management, congestion control algorithms, 
and round-trip time (RTT) estimation. 

A. TCP Windows 
TCP maintains two windows to perform congestion control 

and avoidance: the receiver’s advertised window (rwnd) and the 
congestion window (cwnd). They define the maximum number 
of bytes the receiver may receive and the sender may send, 
respectively. The number of bytes that may be sent to the 
network is the minimum of the two. With rwnd sufficiently 
large, the larger the cwnd, the more data TCP can send, resulting 
in larger TCP throughput.  

The growth of the cwnd is ACK paced: with every segment 
that TCP sends, the receiver issues an ACK to acknowledge the 
receipt of the data. The receipt of the ACKs increases the cwnd 
and enables the sender to send more data. 

B. TCP Congestion Control Algorithms 
TCP packets may be lost due to link errors or network 

congestion. Since losses due to link errors in wireline networks 
are rare, TCP deals only with packet loss due to network 
congestion. Hence, packet loss always implies network 
congestion. TCP congestion avoidance and control [3] were 
first introduced when Internet experienced its first series of 
“congestion collapses.” 

TCP detects network congestion via duplicate ACKs and 
timeouts. Each byte of the transmitted data is assigned a unique 
sequence number (seqno). When a data packet loss occurs, TCP 
receiver issues a duplicate ACK for any out-of-sequence data 
packet received.  Upon receiving a predefined number of 
consecutive duplicate ACKs, TCP assumes that a packet is lost. 
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In most TCP implementations, the threshold is set to three 
(known as three duplicate ACKs). Note, however, that when 
cwnd < 4 or the network is temporarily disconnected, the 
number of duplicate ACKs is less than three, and thus 
insufficient to trigger three duplicate ACKs. TCP handles this 
situation by keeping a timer called Retransmission Timeout 
(RTO). When the timer expires, it assumes packet loss [1], 
which triggers congestion control. TCP congestion control 
mechanism includes [7]: 
• increasing cwnd by one segment size per RTT and halving 

cwnd for every window experiencing a packet loss 
(Additive Increase Multiplicative Decrease, AIMD) 

• Retransmission Timeout (RTO), including exponential 
back-off when timeout occurs 

• slow start mechanism for initial probing of the available 
bandwidth 

• ACK clocking (self-clocking) the arrival of ACKs at the 
sender, used to trigger transmission of new data. 

TCP Reno congestion control algorithms are shown in Fig. 1 
[5]. 

 
Fig. 1. TCP congestion control algorithms. 

 
Slow Start:  At the onset of a TCP connection, TCP employs 

the slow start mechanism to probe the network capacity. Slow 
start is also employed after a packet loss is detected by the RTO 
mechanism. When the transmission starts, the sender’s cwnd is 
set to the initial window (IW) size. Congestion window cwnd is 
increased by at most SMSS (sender maximum segment size) 
bytes for each ACK received that acknowledges new data. The 
slow start threshold (ssthresh) may be arbitrarily high and could 
be reduced when congestion occurs. When congestion is 
detected by the RTO mechanism, cwnd is set to IW and ssthresh 
is set to 0.5×cwnd. In both situations, slow start is used as long 
as cwnd < ssthresh. Slow start ends when cwnd > ssthresh or 
when congestion is detected. When cwnd = ssthresh, the sender 
may use either slow start or congestion avoidance. 

Congestion Avoidance: If cwnd > ssthresh, congestion 
avoidance is employed to probe the network capacity more 
slowly than during the slow start. Congestion window cwnd is 
incremented by one full-size segment per RTT. In most cases, 
TCP operates in the congestion avoidance phase. Congestion 
avoidance ends only when congestion is detected. 

Fast Retransmit: When three duplicate ACKs are detected, 
TCP moves from congestion avoidance to fast retransmit. The 
incoming segments are considered out-of-order by the receiver 

when a packet loss occurs. For any out-of-order packet 
received, the receiver immediately sends a duplicate ACK 
acknowledging the next expected seqno. After receiving three 
duplicate ACKs, the sender retransmits what appears to be the 
lost packet without waiting for the retransmission timer to 
expire.  It uses the sequence number contained in the duplicate 
ACKs. Along with the retransmission, TCP also sets ssthresh to 






 ×= SMSSFlightSizessthresh 2,

2
max , 

where FlightSize is the size of the outstanding data in the 
network.  

Fast Recovery: Fast recovery takes place immediately after 
the sender performs fast retransmit. Here, a new ACK is defined 
as the ACK acknowledging the sequence number beyond the 
lost segment. TCP first inflates cwnd to SMSSssthresh ×+ 3 . 
This reflects the three segments that have left the network (three 
duplicate ACKs would require three packets to leave the 
network). For every additional duplicate ACK received, the 
sender increments cwnd by SMSS to reflect that an additional 
segment has left the network. This new cwnd may also allow the 
sender to transmit a new segment. When a new ACK is received, 
the sender sets cwnd to ssthresh to deflate the cwnd, and the 
congestion avoidance phase continues. 

C. Karn’s algorithm: RTT estimation and RTO 
After a segment is transmitted, an ACK is expected by the 

sender. If the RTO timer expires before the ACK is received, the 
segment is retransmitted. This resynchronizes the transmission 
in case the segment is lost. Therefore, if the calculated RTO is 
too large, unnecessary time will be spent waiting for the timer to 
expire. Thus, it will cause TCP performance degradation [1]. If 
the calculated RTO is too small, the timer may expire 
prematurely and cause unnecessary retransmissions. 

RTT is estimated using Karn’s algorithm. RTO is calculated 
based on the estimated RTT and the RTT deviation. TCP 
measures the round-trip time of the ACKs for data segments and 
this interval is called sample RTT. The moving average of RTT, 
called a smoothed RTT (srtt), and the mean deviation (rttvar) 
are calculated as: 

srtt = (1 – g )×srtt + g×sampleRTT 
rttvar =  (1 – h )×rttvar – h×|sampleRTT – srtt|, 

with recommended parameter values: 
g = 0.125 and h = 0.25. 

RTO is calculated as: 
RTO = srtt + 4× rttvar. 

III. CHARACTERISTICS OF WIRELESS NETWORKS 
Mobile connectivity provided by wireless networks allows 

users to access information anytime and anywhere. The growth 
of cellular telephone systems is accompanied with a growing 
number of wireless-enabled laptops and personal digital 
assistants (PDAs). Cellular networks evolved from 1G analog 
systems to 2G systems (GSM and PDC), 2.5G systems (GPRS 
and PDC-P), and 3G systems (Wideband CDMA and 
cdma2000). During the past decade, the quality of wireless links 
has been improved in terms of BER and link bandwidth. 
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Wireless networks still exhibit the following characteristics: 

A. High bit error rate (BER) 
Wireless networks experience random losses. BER in 

wireless networks is significantly higher than in wireline 
networks. Packet error rates range from 1% in microcell 
wireless networks up to 10% in macrocell networks [4]. Even 
with optimized link layer retransmission algorithms in 3G 
networks, packet error rate remains ~1%. 

B. Long and varying delay 
Wireless links have a large latency. Typical RTTs in 2.5G 

and 3G networks vary from a few hundred milliseconds to one 
second. Furthermore, they are likely to experience sudden delay 
changes (delay spikes) greatly exceeding the typical RTT [8]. 
(Delay spike is defined as a sudden increase in the latency of a 
communication path [8].) Wireless WANs have a typical 
latency of up to 1 s. [9]. These delay changes may cause 
spurious TCP timeouts. Wireless links experience delay 
changes due to link recovery, temporary disconnections, traffic 
priority, and link/MAC layer protocols [9]. 

C. Bandwidth 
Bandwidth of cellular networks increased as they evolved 

from 1G analog systems to 2G systems (10–20 kbps for uplink 
and downlink), to 2.5G (10–20 kbps uplink and 10–40 kbps 
downlink), and 3G systems (up to 64 kbps uplink and 384 kbps 
downlink) [8]. Data rates vary due to mobility and the 
interference from other users [8]. Mobile users share the 
bandwidth within a cell. As users move among cells, they affect 
the bandwidth available to other users. Furthermore, a user may 
move to another cell with higher or lower bandwidth. These 
factors cause variable wireless link data rates. TCP was 
designed to handle the changes in bandwidth with its 
self-clocking scheme. However, a sudden increase in RTT 
could still cause spurious timeouts. 

D. Path asymmetry 
Cellular 2.5G and 3G systems employ asymmetric uplink and 

downlink data rates. 

IV. IMPROVING TCP PERFORMANCE 
A number of solutions have been proposed to solve the 

problem of non-congestion related packet losses misinterpreted 
by TCP [10] – [12] and to reduce the impact of delays and delay 
variations on TCP performance in wireless networks [4], [9], 
[13] – [15]. 

A. Wireless Link Errors 
The main characteristic of a wireless network is the high BER 

on its links. It violates the fundamental assumption of TCP that 
packet loss caused by link error is negligible (<< 1%) [3] and 
that packet loss is caused only by network congestion. High 
BER in wireless networks causes packet loss regardless of 
network congestion. The main cause for TCP's performance 
degradation in a mixed wireless/wireline environment is its 
inability to detect the origin of the packet loss. 

When a packet loss is detected, TCP employs congestion 
control algorithms to reduce the transmission rate. A single 
packet loss on the link will cause duplicate ACKs and cwnd to 
be reduced by half according to the fast retransmit and fast 
recovery algorithms. TCP resolves the congestion in the 
network by lowering its transmission rate. However, lowering 
the transmission rate will degrade TCP performance if the 
packet loss is not caused by congestion. 

One approach to improving TCP performance is to reduce the 
adverse effect of wireless link errors. Proposed solutions either 
hide the wireless link error from the TCP sender or make the 
sender aware of the causes of segment losses. The first approach 
resolves the error within the wireless domain without the TCP 
sender being aware of the error. These solutions often modify 
the base station and/or the mobile host. If the link error is well 
shielded from the sender, modifying the sender is not necessary. 
The examples are I-TCP [10], M-TCP [16], and Snoop [12], 
[17]. The second approach explicitly makes the sender aware of 
the wireless link error by handling differently segment losses 
caused by wireless link errors and losses due to network 
congestion. This approach requires the base station to send 
explicit congestion messages to the sender or a mechanism to 
detect the causes of loss at the sender. An example is TCP 
Westwood [18]. 

Based on the design principles [4], the solutions may also be 
categorized as: split connection (I-TCP [10]), link layer 
retransmission (Snoop [12]), and end-to-end (TCP Westwood 
[18], WTCP [19]). 

B. Wireless Link Delays 
Wireless networks have larger latency and delay variations 

than wireline networks. Long sudden delays during data 
transfers are common in GPRS wireless WANs [9], [13]. 
Furthermore, experimental [13] and analytical [15] data 
indicate that mobility increases packet delay and delay variation 
and degrades the throughput of TCP connections in wireless 
environments. Three major adverse effects are: spurious fast 
retransmit, spurious timeouts, and ACK compression. 

Spurious fast retransmit: Its primary source is the link delay. 
It can also be caused by a spurious timeout. TCP generates a 
duplicate ACK whenever an out-of-order data segment is 
received. The number of out-of-order segments that had arrived 
consecutively prior to this segment is called the re-ordering 
length [13]. Thus, the re-ordering length represents the number 
of duplicate ACKs expected to arrive at the TCP sender. Fig. 2 
shows no segment loss or network congestion. Nevertheless, 
fast retransmit is triggered because TCP misinterprets the 
duplicate ACKs as packet loss and a sign of network congestion. 
This event is called spurious fast retransmit. 

TCP sender halves its congestion window to reduce the 
transmission rate in response to fast retransmits. As illustrated in 
Fig. 2, a packet was held in a queue by the hiccup (a delay 
generator [13]) at time 37.7 s (marked +) and then retransmitted 
after six segments at time 41.9 s (marked → ). Upon receiving 
the six segments prior to receiving the queued segment, the 
receiver generates six duplicate ACKs, triggering a fast 
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retransmit. 

 
Fig. 2. The effect of packet re-ordering [13]. 

 
Spurious timeout: It may occur on links with long sudden 

delays. With its RTO timer, TCP is designed to handle even 
large gradual changes in delays. Nevertheless, TCP cannot 
handle well long sudden delays because it is unable to adjust its 
RTO fast enough. When the RTO timer expires, TCP assumes 
that the outstanding packets are lost and triggers the congestion 
control. 

Spurious timeout is illustrated in Fig. 3. The three arrows 
show three critical events. The sudden long delay on the link 
occurs at 5 s. The first arrow indicates the moment when the 
TCP sender’s RTO timer expires. TCP sender assumes that the 
previously sent packets are lost. The cwnd is reduced to the 
initial window (two segments). TCP then retransmits the first 
two unacknowledged segments. At 11 s, the link delay 
terminates (marked by the second arrow). The sender receives 
the first new ACK and starts recovering from timeouts by 
entering the slow start phase. All the unacknowledged segments 
are to be retransmitted. Since some ACKs on the wireless link 
have also been delayed, they accumulate and arrive together at 
the sender when the link recovers. This causes a burst of data 
segments to be sent. This is known as ACK compression. The 
retransmission unnecessarily utilizes the scarce wireless 
bandwidth and may potentially increase the recovery time. 

The unnecessary retransmission of segments may introduce 
an additional spurious fast retransmit. At 11.97 s, the 
retransmitted segments arrive at the receiver. Since previously 
transmitted segments have been received after the link 
recovered, TCP receiver generates a duplicate ACK for every 
out-of-order segment. These duplicate ACKs (ACK 136) are 
shown between 11.97 s and 12.54 s. When the number of 
duplicate ACKs exceeds the duplicate ACK threshold, another 
spurious fast retransmit is triggered. This further worsens the 
situation. A gap appears after 12.54 s (graph labeled seqno) 
immediately after ACK 137 is received. During the fast 
retransmit, for every duplicate ACK received, the sender 
artificially inflates the cwnd by one segment and, if the cwnd 
permits, transmits the next segment. (The change in cwnd is not 
shown. It can be seen from the seqno showing new segments 
that are sent with ACKs received.) When the new ACK 137 is 

received (marked by the third arrow), the fast retransmit is 
terminated and cwnd is deflated back to the size that it had at 
11.97 s. No segments are transmitted during the period between 
12.50 s and 13.10 s (graph labeled seqno) due to this decrease of 
cwnd. 

 
Fig. 3. Spurious timeout. 

 
 

Eifel algorithm [13] was proposed to enhance TCP’s 
adaptation to link delays in wireless networks. Both spurious 
timeout and spurious fast retransmit are caused by TCP’s 
retransmission ambiguity, which occurs when an ACK arrives 
for a segment that has been retransmitted. Hence, there is no 
indication which transmission is being acknowledged [20]. Eifel 
algorithm is an end-to-end solution, which requires modifying 
only the TCP sender. It first eliminates the retransmission 
ambiguity by using additional information in the ACKs. Then, it 
restores the payload and resumes transmission with the next 
unsent segment [13]. Timestamp option is used to provide the 
additional information to identify the segment that triggered the 
duplicate ACK. Timestamp clock is stored in the header of 
every outgoing segment and echoed back with its corresponding 
ACK. The sender also keeps track of the timestamp of the first 
retransmission. The received ACK can be identified by 
comparing the timestamp stored in the sender with the 
timestamp in the received ACK. If the ACK was triggered by 
the original segment, spurious retransmission has occurred. The 
sender then restores the cwnd and possibly RTO. Instead of 
retransmitting the unacknowledged segments, the next unsent 
segment is transmitted. 

Although Eifel algorithm effectively reduces the impact of 
spurious timeouts and spurious fast retransmits by eliminating 
the retransmission ambiguity, it has two major drawbacks: it 
requires modification of all TCP clients in the wireline domain 
and requires that both the sender and the receiver have the 
12-byte TCP timestamp option enabled in every segment and 
the corresponding ACKs. Furthermore, its performance in the 
cases of high link errors is questionable [14]. 

V. PROPOSED TCP WITH PACKET CONTROL  
We propose a set of packet control algorithms designed to 

avoid the adverse effect of long delays and delay variations on 
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TCP performance in wireless networks. We describe the 
algorithms, their implementation, and evaluate their 
performance using the ns-2 simulator [21]. 

A. Network Architecture 
Network architecture, shown in Fig. 4, represents a cellular 

network or a wireless LAN (WLAN). A mobile host (MH) 
initiates a TCP connection with a fixed host (FH) through a base 
station (BS), which is an edge node in the wireless network. 
TCP packets are sent from the FH to the MH through the BS and 
MH acknowledges every data packet received [15]. TCP data 
may be either a long lived FTP connection with a large volume 
of data traffic or a short lived HTTP connection with a typically 
smaller volume of data traffic. We assume that the condition of 
the wireless link may change with time (leading to variable 
wireless link delay), that the mobile device roams between cells, 
and that mobile applications have limited data bandwidth. 
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Fig. 4. Network architecture. 

B. TCP with Packet Control 
TCP with packet control consists of ACK and data packet 

filters. The two filters improve TCP performance in mixed 
wireline/wireless networks and maintain TCP’s end-to-end 
semantics. They deal with wireless links with long sudden 
delays and delay variations, handle handoffs, and maintain 
regular TCP functions. They do not depend on end-user TCP 
flavors. 

The filters are to be deployed at the wireless network edge 
(typically the BS). This is a TCP-aware link layer solution. The 
algorithms keep track of TCP data and ACK packets received 
from the FH and the MH, respectively. Packet control filters 
forward packets to both client ends based on the information 
gathered in the BS. 
 1. ACK Filter: Packet control reacts to ACKs received from 
the MH using the ACK filter. It drops the old ACKs and 
duplicate ACKs classified according to the duplicate ACK 
threshold defined by the user. It remembers the last new ACK 
received from the wireless receiver, called the last received 
ACK. When an ACK arrives, its ACK number is checked 
against the last received ACK. We consider three cases: 

Old ACK: The ACK is considered old if the ACK number has 
already been received and/or is smaller than the last received 
ACK. It is immediately dropped. 

Duplicate ACK: If the newly received ACK number is 
identical to the largest ACK currently received, it is considered 
to be a duplicate. Packet control keeps track of the current 
number of duplicate ACKs received at the BS. Based on the 
number of duplicate ACKs received and the user-defined 

duplicate ACK threshold, duplicate ACKs are evenly dropped 
and are not sent to the sender. The number of ACKs to be 
dropped is equal to the difference between the user-defined 
duplicate ACK thresholds at the BS and at the FH. For example, 
if the user-defined duplicate ACK threshold is 6 and TCP has 
defined the three duplicate ACK threshold, every second 
duplicate ACK is dropped. 

New ACK: If the ACK number has not been previously 
received, the ACK is considered new. The last wireless ACK is 
updated, the counter for the current number of duplicate ACKs 
is reset, and the ACK is forwarded to the sender. 

The design of the ACK filter is based on the observation that 
a wireless link has a high number of re-ordered segments, which 
is the primary cause of spurious fast retransmit. By filtering 
some duplicate ACKs at the BS, the spurious fast retransmit 
may be reduced. If there is no packet loss in the network, 
filtering duplicate ACKs results in better TCP performance. 

2. Data Filter: When the packet control receives a data 
segment from the FH, it passes it to the MH. The data filter at 
the BS is designed to prevent the spurious fast retransmit caused 
by spurious timeout. 

In the case of spurious timeout, retransmissions of the 
unacknowledged segments unnecessarily consume the scarce 
wireless link bandwidth and also trigger additional spurious fast 
retransmits. Therefore, their prevention is essential in solving 
spurious timeout. The data filter checks whether data segments 
have been acknowledged. The sequence number is checked 
against the last ACK received from the receiver. We consider 
two cases: 

New data segment or unacknowledged segment: If the 
segment has not been acknowledged, it is forwarded to the 
receiver. The segment is either a new data segment or an 
unacknowledged segment.  In the latter case, the system cannot 
distinguish whether the last transmission of the same segment 
has been received by the receiver or its ACK was lost. In both 
cases, even if the received segment is a retransmission, it should 
be forwarded. 

Acknowledged segment: This segment is a retransmission due 
to spurious timeout. This occurs because the ACK from the BS 
is lost or has not arrived at the FH. In both cases, the segment 
should be dropped. We consider that a loss of ACKs could 
occur even though the BER and the possibility of congestion for 
ACKs are small in wireline networks. For every two identical 
retransmitted segments received, an ACK is sent from the BS to 
the sender. Hence, unnecessary retransmissions are eliminated 
and the problem of lost ACKs is resolved. 

C. Design Considerations and Tradeoffs 
Packet control filters designed to deal with the wireless link 

delays have to be simple to implement.  
TCP option: Packet control has been designed as an option 

for TCP rather than a modification of TCP. Hence, it is less 
difficult to deploy in an existing network. 

A link layer solution in BS: Packet control requires 
modification in the BS only. No modifications are required at 
the end users. Furthermore, it can be deployed incrementally 
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because it does not require changes in the protocol stack. 
Scalable: With proper implementation, packet control filters 

only require retaining few constant state variables, and, hence, 
require minimal additional memory in the BS. 

Handoff: Packet control does not require additional 
operations during handoffs, such as additional memory 
requirements or message exchanges, and will not adversely 
affect handoffs. 

VI. IMPLEMENTATION OF TCP WITH PACKET CONTROL 
We implemented TCP packet control in the ns-2.26 simulator 

[21] on RedHat Linux 9. 
Fig. 5 illustrates the logic flow of the ACK filter. The variable 

numOfLastDupAck indicates the number of duplicate ACKs 
that have been received for the last received wireless ACK. It is 
updated when a new ACK is received. It is then used, along with 
the user-defined duplicate ACK threshold (redefine3DupAck), 
to determine whether an ACK should be sent or dropped. The 
next duplicate ACK to be sent (nextDupAckToSend) is 
calculated as: 








−=

3
3

1
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upAcknumOfLastDkSentnumOfDupAc  
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where numOfDupAckSent is the number of duplicate ACKs that 
should be sent, triggered by the previous duplicate ACKs 
received. This ensures that duplicate ACKs will be evenly sent 
to the sender according to the user-defined duplicate ACK 
threshold in the BS. 

 
Fig. 5. Packet control: ACK filter. 

 
Fig. 6 shows the logic flow of data filter. The variable 
lstRetransWiredDataPkt stores the segment numbers of 
retransmitted segments from the FH. A retransmitted segment is 
defined as a segment with the sequence number smaller or equal 
to the largest ACK number that has already been sent to the FH. 
These retransmitted segments are dropped. The number of 
retransmissions for each retransmitted segment 
(m_iNumOfRtm) is kept for each segment in the list. An ACK 

for a segment is generated and sent to the FH for every second 
retransmission of the same segment. This handles the rare 
situations when an ACK is lost on the path from the BS to the 
FH. 

 
Fig. 6. Packet control: Data filter. 

VII. PERFORMANCE OF TCP WITH PACKET CONTROL 
The simulated network is shown in Fig. 7. A wired link 

connects the FH to the BS, while a wireless link connects the BS 
and the MH. 

 

Fig. 7. Simulated network setup.  

A. Scenario I: Link Delay Variation with Small Delay 
This scenario is used to investigate TCP’s reaction to link 

delay variations. For 20 seconds, FTP data are being sent from 
the FH to the MH in TCP packets of 1,040 bytes (default in 
ns-2). Link delay variation is introduced at 0.5 s. Links employ 
DropTail queues. The simulation results show improvement in 
TCP performance. The number of cwnd reductions vs. time is 
shown in Fig. 8. Due to the spurious fast retransmit caused by 
link delay variation, TCP without packet control has the largest 
number of cwnd reductions, which also implies the largest 
number of fast retransmits. TCP with packet control and the 
user-defined duplicate ACK threshold set to 12 has the smallest 
number of cwnd reductions. The larger the duplicate ACK 
threshold, the more duplicate ACKs will be dropped and fewer 
fast retransmits will be performed by TCP. These fast 
retransmits are spurious and reducing them results in higher 
TCP performance. Graph with no packet control and graph with 
user-defined duplicate ACK threshold of three overlap, 
validating the implementation of the filters. Since TCP sender 
also has the threshold of three, no duplicate ACKs are dropped 
and the two cases coincide. 

Variations of cwnd are shown in Fig. 9. Since larger duplicate 
ACK threshold in packet control results in fewer spurious fast 
retransmits, cwnd remains large. Cwnd is directly related to 
TCP’s throughput. TCP’s performance may also be examined 

FH MH BS 

1 Mbps 

5 msec delay

250 Kbps

170 msec 
variable delay 
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by observing the goodput shown in Fig. 10. With an appropriate 
user-defined duplicate ACK threshold, TCP with packet control 
successfully reduces the number of spurious fast retransmits. It 
may improve TCP goodput by ~100%. 

 

 
Fig. 8. Link delay variation: number of cwnd reductions. 

 

 
Fig. 9. Link delay variation: cwnd. 

 

 
 

Fig. 10. Link delay variation: goodput. 

B. Scenario II: Link Delay Variation with Small Delay and 
Link Errors 
This scenario investigates the case with 1% bidirectional 

packet loss in the wireless link. Link layer retransmission 

protocols in 3G networks, such as RLP in 3G1X and RLC in 
UMTS, ensure that packet loss probability is less than 1% on the 
wireless link. TCP goodput is shown in Fig. 11. With 
user-defined duplicate ACK threshold of 9, TCP with packet 
control achieves ~30% improvement. 

 

 
Fig. 11. Link delay variation (1% segment loss): goodput. 

 

C.  Scenario III: Spurious Timeout 
We also investigate TCP’s reaction to sudden large delay 

increase. A delay of 6 s is introduced at 5 s in the wireless link. 
The reaction of TCP without packet control to the long sudden 
delay was shown in Fig. 3. Identical simulation scenario, with 
packet control enabled, is used to generate the results shown in 
Fig. 12. They illustrate that TCP recovers faster (indicated by 
the third arrow) than in the case shown in Fig. 3. 
 

 
Fig. 12. TCP with packet control: spurious timeout. 

 
A comparison of TCP goodput is shown in Fig. 13. The 

improvement is highly dependent on the path characteristics.  

D. Delay Generator 
Delays in ns-2 simulations are generated by a delay 

generator. We implemented two types of delays: short delay 
variations and relatively long sudden delays. 

Short delay variations are generated based on the 
measurements of packet delays in wireless data networks [15]. 
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The configuration for evaluating TCP performance was based 
on CDMA 1xRTT network architecture. A mobile host in a 
wireless network was connected to a host PC in a wired local 
area network (LAN) through a single BS. The “ping” 
application was generated by the Internet control message 
protocol (ICMP) ECHO. Ping packets were sent from the PC in 
the LAN to the mobile terminal moving at pedestrian speed. The 
delays vary from 179 ms to 1 s in a 3G1X system [15] and are in 
agreement with the “ping” latencies [22].  

 
 

 
Fig. 13. TCP with packet control: goodput. 

 
Delay values used in simulations are shown in Table I [15]. 

Each case is simulated with a uniform distribution generated by 
the ns-2 random generator. The wireline link delay was kept 
constant at 5 ms.  

A long delay was generated by a timer. The one-way wireless 
link delay was kept constant at 170 ms.  This value is close to the 
300 ms average RTT [15]. The sudden increase of delay was 
simulated for 6 s, which was sufficiently long to cause a regular 
TCP timeout with at least one exponential back-off. 
 

TABLE I 
WIRELESS DELAYS FOR MOBILE TERMINALS  

 
RTT 
(%) 

Total 
RTT 
(ms) 

Wireline 
RTT 
(ms) 

Wireless 
RTT  
(ms) 

Wireless 
link delay 

(ms) 
80 316 – 400 10 306 – 390 153 – 195 
10 400 – 460 10 390 – 450 195 – 225 
8 460 - 605 10 450 – 595 225 – 297 
2 605 - 1252 10 595 - 1242 297 – 621 

VIII. CONCLUSION  
In this paper, we proposed packet control filters to improve 

TCP performance in wireless networks with delay variations 
and long sudden delays. TCP connections were simulated in a 
mixed wireline and wireless network using the ns-2 simulator. 
The simulation results show that the proposed algorithms 
reduce spurious fast retransmit and spurious timeouts in TCP. 
They improve TCP’s throughput, goodput, and bandwidth 
consumption. Goodput of TCP Reno is improved by ~100% in 
networks with delay variations and by ~30% in networks with 

1% packet losses in the wireless link. In cases of long sudden 
delays, TCP performance is also improved, depending on the 
path characteristics. Packet control filters can be conveniently 
deployed at the intermediate routers to control the transmission 
of TCP segments and ACKs. Future improvements may include 
more accurate delay generators and multi-connection simulation 
scenarios while using genuine wireless traffic traces for 
performance evaluations. 
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