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Abstract

A Wavelet based tool for the analysis of long range dependence is introduced and a related semi-

parametric estimator of the Hurst parameter. The estimator is shown to be unbiased under very

general conditions, and e�cient under Gaussian assumptions. It can be implemented very e�ciently

allowing the direct analysis of very large data sets, and is highly robust against the presence of de-

terministic trends, as well as allowing their detection and identi�cation. Statistical, computational

and numerical comparisons are made against traditional estimators including that of Whittle. The

estimator is used to perform a thorough analysis of the long range dependence in Ethernet traf-

�c traces. New features are found with important implications for the choice of valid models for

performance evaluation. A study of mono vs multi-fractality is also performed, and a preliminary

study of the stationarity with respect to the Hurst parameter and deterministic trends.

Keywords: Packet Tra�c, Wavelet Decomposition, Time-Scale Analysis, Long Range De-

pendence, Hurst Parameter, Parameter Estimation, Telecommunications Networks, Stationarity.

1 Introduction

There is now ample evidence that long term correlations are present in a wide range of generalised data

types, including many of those likely to form major components of telecommunications tra�c in high

speed networks. The best known example is given by the high quality Local Area Network Ethernet

traces of Leyland et.al. [24] recorded at Bellcore over a number of years under a variety of conditions.

These large data sets show very clearly the scale dependent properties of Ethernet tra�c, and in

particular the presence of long range dependence (LRD), for instance in the point process describing

frame arrival instants. Video tra�c [12] is another case of note. Beran et.al. demonstrate the presence

of long range dependence over a wide range of time scales in variable bit rate tra�c (VBR). Long range

dependence has also been found in other tra�c contexts, notably in Wide Area Networks [29], and in

Common Channel Signalling (CCSN/SS7) tra�c [17].

The question of the impact of such characteristics on network performance is the subject of much

current research, as well as considerable confusion and debate. What seems irrefutable however is that

LRD in real data does indeed impact signi�cantly on queueing delays [18], and that certain simpli�ed

analytical models of single server queues incorporating LRD corroborate this by exhibiting virtual work

distributions with tails which decay slower than the exponential decay familiar from Markovian models

[27] [11] [32] [13] [28]. In the absence however of a complete programme of data analysis, informed model
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selection, parameter estimation and �nally model veri�cation against relevant performance criteria, the

connection between LRD and performance metrics cannot be fully understood.

Among the outstanding issues in the list above, there are two of particular importance which we

contribute to in the present paper. The �rst is the primordial problem of data-analysis/parameter-

estimation in the presence of LRD. It is well known [10] that even the most elementary of classical

statistics require signi�cant revision in the face of long range dependence. For example, let x be a wide

sense stationary process in discrete time with LRD, by which we mean that the covariance function

x(k) takes the form

x(k) � ck�(2�2H)
; k! +1 (1.1)

c a positive constant, H 2 (0:5; 1). The Hurst parameter H measures long range dependence, H = 0:5

corresponding to the classical case of short range dependence. In this context, Beran ([10], p. 160)

shows that the distribution of �xn = (
P

k+n
i=k+1 xi)=n tends to a normal variable with increasing sample

size n, but at a slower rate than the classical
p
n. In fact the statistic

z(�; c ;H) =
�xn � �
��

n
1�H (1.2)

where �2
�
= c (H(2H � 1))�1, is asymptotically standard normal. Thus even the estimation of the

mean of a stationary process, because of the appearance of H as an exponent in (1.2), depends strongly

on the LRD phenomenon. The fact that this is true in general for statistics of LRD processes shows

that H is of central importance. It is vital that it be estimated well, and if joint parameter estimation

is impossible or impractical, that it be estimated �rst.

The main aim of the paper is to introduce an estimation tool from wavelet analysis [2, 3] which

provides a natural, statistically and computationally e�cient, estimator of the Hurst parameter H.

It is known [10] that simple traditional estimators can be seriously biased. Asymptotically unbiased

estimators derived from Gaussian Maximum Likelihood Estimation are available [10], [33], but these

are parametric methods which require a parameterized family of model processes to be chosen a priori,

and which cannot be implemented exactly in practice for large data sets (such as those here) due to high

computational complexity and memory requirements. Furthermore, they are not naturally matched to

the essentially simple scale behaviour of LRD. In contrast, wavelet analysis is �rst of all a tool which

studies the scale dependent properties of data directly via the coe�cients of a joint scale-time wavelet

decomposition. As such, very little needs to be assumed about the underlying process. Should evidence

of LRD be found, it then o�ers an unbiased semi-parametric estimator which can be very e�ciently

implemented using techniques from non-redundant multi-resolution analysis [3].

The wavelet based estimator has the additional virtue of robustness against an important class of non-

stationarity, namely the addition of deterministic trends. This is a particularly important advantage

in a LRD context where it is very di�cult in theory and in practice to distinguish between real trends

and long term sample path variations due to LRD. We show how the nature of trends in data can be

determined, and their e�ects on H estimation greatly reduced or even rigorously eliminated, by varying

a characteristic of the analysing wavelet known as the number of vanishing moments. A full discussion
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of stationarity is beyond the scope of this paper, however we believe that a real attempt to deal with

this issue is indispensable to any useful application of stationary LRD models to data. We therefore

discuss deterministic trends in some detail, and also perform a preliminary investigative analysis of the

variation of H with time in Ethernet data.

The second objective of the paper is the analysis of Ethernet data using the wavelet based estima-

tor. Although substantial work has already been done, and the presence and impact of LRD clearly

established, we show that there are important things to learn about the structure of the data before

quantitatively accurate models for performance evaluation purposes can be proposed. The issues we

consider are important for tra�c modelling in general, and not only for the Ethernet tra�c we consider

here. Thus we go further than the published studies [24] [18] which concentrate on the time series of

interarrival instants. We measure in addition other aspects of the data to gain insight into the process

of the arriving work itself. This is motivated by insights from analytical studies [27] [11], which show

that the precise structure of arriving work is crucial, LRD in itself cannot determine performance. For

example [11] [23] [36], the GI|M|1 queue with interarrivals of in�nite variance has a LRD arrival

process but classical exponentially distributed queue tails. On the other hand Weibullian (stretched

exponential) tails are found for the Fractional Brownian Storage Model of Norros [27] and for the super-

position of a large number of small peak-rate ON/O� uid sources [11]. Even more extreme behaviour

is found for superpositions of large peak-rate ON/O� uid sources, that is power law tails with in�nite

expectation [32] (See also [13] and [28] for related results). Our extended analysis of the Bellcore data

reveals some striking features with important implications for the choice of a model capable of capturing

the work arrival process. We also discuss the issue of mono vs multi-fractal modelling, and conclude

that the data traces are well described by mono-fractals.

In a second paper we use these insights to select a speci�c compact model, and test it extensively

against real data in simulation experiments.

The remainder of the paper is set out as follows. In section 2 we introduce wavelets, wavelet analysis,

and the wavelet based estimator of H. Its theoretical properties are compared to that of the Whittle

estimator and its Discrete version, as well as classical alternatives. Numerical comparisons against the

Discrete Whittle estimator are given.

In section 3 stationarity is briey discussed, and a full account of the wavelet estimator's properties

with respect to deterministic trends. Numerical examples compare its performance against the Discrete

Whittle estimator.

In section 4 we introduce briey the nature of the Ethernet data sets and their �rst order statistics. We

then show how each trace can be analysed from di�erent points of view, and give the results of a wavelet

based LRD analysis for each. The implications for model choice are discussed. The multi-fractal nature

of the data is investigated and �nally a preliminary result on the stationarity with respect to H.

Finally in section 5 we summarize the main results.
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2 Wavelet-based Analysis of Long-Range Dependence

2.1 The long-range dependence phenomenon

Although new to telecommunications, the long-range dependence phenomenon has long been recognised

in many �elds including hydrology, turbulence, biology and semiconductor physics. It is commonly

accepted that the de�nition of LRD is the slow power-law decrease of the autocorrelation function of a

wide sense stationary process expressed in equation (1.1) withH > 0:5, corresponding to the divergence

of the autocorrelation sum. An equivalent statement for the spectrum �x(�) of x is

�x(�) � cf j�j1�2H; � ! 0 (2.1)

where cf = �
�1
c�(2H � 1) sin(� � �H), and � is the Gamma function. Thus the LRD processes

belong to the class of random processes which take the form 1=j�j� for a range of frequencies � close

to 0. The LRD phenomenon is also closely related to the properties of scale invariance, self-similarity

and hence fractals, and is therefore often associated with statistically self-similar processes such as the

Fractional Brownian Motion [26].

Note that we denote by x both a wide sense stationary process, and a realisation of it referred to as a

signal, depending on the context.

2.2 Multiresolution analysis and discrete wavelet transform: a short review

A multiresolution analysis (MRA) consists in a collection of nested subspaces fVjgj2Z , satisfying the

following set of properties [14]:

� i)
T
j2Z

Vj = f0g,
S
j2Z

Vj is dense in L
2(R)

� ii) Vj � Vj�1

� iii) x(t) 2 Vj  ! x(2jt) 2 V0

� iv) There exists a function �0(t) in V0, called the scaling function, such that the collection f�0(t�

k); k 2 Zg is an unconditional Riesz basis for V0

Similarly, the scaled and shifted functions f�j;k(t) = 2�j=2�0(2
�j
t�k); k 2 Zg constitute a Riesz basis

for the space Vj . Performing a multiresolution analysis of the signal x means successively projecting it

into each of the approximation subspaces Vj :

approxj(t) = ( ProjVjx)(t) =
X
k

ax(j; k)�j;k(t) :

Since Vj � Vj�1, approxj is a coarser approximation of x than is approxj�1 and therefore, the key

idea of the MRA consists in examining the loss of information, that is the detail, when going from one

approximation to the next, coarser one: detailj(t) = approxj�1(t) � approxj(t). The MRA analysis
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shows that the detail signals detailj can be directly obtained from projections of x onto a collection of

subspaces, the Wj , called the wavelet subspaces. Moreover, the MRA theory shows that there exists

a function  0, called the mother wavelet, to be derived from �0, such that its templates f j;k(t) =

2�j=2 0(2
�j
t� k); k 2 Zg constitute a Riesz basis for Wj :

detailj(t) = ( Proj
Wj
x)(t) =

X
k

dx(j; k) j;k(t) :

Basically, the MRA consists in rewriting the information in x as a collection of details at di�erent

resolutions and a low-resolution approximation:

x(t) = approx
J
(t) +

P
j=J
j=1 detailj(t)

=
P

k
ax(J; k)�J;k(t) +

P
J

j=1

P
k
dx(j; k) j;k(t)

(2.2)

The approx
j
essentially being coarser and coarser approximations of x means that �0 needs to be a

low-pass function. The detailj , being an information `di�erential', indicates rather that  0 is a band-

pass function, and therefore a small wave, a wavelet. More precisely, the MRA shows that the mother

wavelet must satisfy
R
 0(t)dt = 0 and that its Fourier transform obeys j	0(�)j � �N ; � ! 0 where N

is a positive integer called the number of vanishing moments of the wavelet [14].

Given a scaling function �0 and mother-wavelet  0, the discrete (or non redundant) wavelet transform

(DWT) is a mapping from L
2(R)! l

2(Z) given by

x(t)! ffax(J; k); k 2 Zg; fdx(j; k); j = 1; : : : ; J; k 2 Zgg (2.3)

These coe�cients are de�ned through inner products of x with two sets of functions:

ax(j; k) = hx;
�

�j;ki
dx(j; k) = hx;

�

 j;ki

)
(2.4)

where
�

 j;k (resp.,
�

�j;k) are shifted and dilated templates of
�

 0 (resp.,
�

�0), called the dual mother

wavelet (resp., the dual scaling function), and whose de�nition depends on whether one chooses to

use an orthogonal, semi-orthogonal or bi-orthogonal DWT (see e.g., [14, 6]). They can practically

be computed by a fast recursive �lter-bank-based pyramidal algorithm whose computational cost is

extremely low (see e.g., [14]).

2.3 The Wavelet-based H Estimator

De�nitionof the estimator. The coe�cient jdx(j; k)j2measures the amount of energy in the analyzed

signal about the time instant 2jk and frequency 2�j�0, where �0 is an arbitrary reference frequency

selected by the choice of  0. It has been suggested [2, 3] that a useful spectral estimator can be designed

by performing a time average of the jdx(j; k)j2 at a given scale, that is

�̂x(2
�j
�0) =

1

nj

X
k

jdx(j; k)j2 ; (2.5)
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where nj is the available number of wavelet coe�cients at octave j. Essentially nj = 2�jn where n

is the length of the data. �̂x(�) is therefore a measure of the amount of energy that lies within a

given bandwidth around the frequency � and can therefore be regarded as a statistical estimator for

the spectrum �x(�) of x. In fact one can show [3] that, when x is a wide sense stationary process, the

expectation of �̂x is

IE�̂x(2
�j
�0) =

Z
�x(�)2

jj	0(2
j
�)j2d� (2.6)

where 	0 denotes the Fourier transform of the analysing wavelet  0. From this relation, one sees that

�̂x su�ers from the standard convolutive bias, that is the spectrum to be estimated is mixed within a

frequency range corresponding to the frequency width of the analysing window at scale j. The crucial

point here is that for LRD signals this bias reduces naturally to a simple form, enabling an unbiased

estimation of H. To see this, recall the spectral behaviour (2.1) and assume for the moment that this

form holds for all frequencies. The bias equation (2.3) can then be rewritten as

IE�̂x(2
�j
�0) = cf j2�jj(1�2H)

R
j�j(1�2H)j	0(�)j2d�

= �x(2
�j
�0)j�0j(2H�1)

R
j�j(1�2H)j	0(�)j2d�

�
(2.7)

From equation (2.7), one sees that in the case of 1=j�j� processes the standard convolutive bias turns

into a multiplicative one. Moreover, this multiplicative constant is independent of the analyzing scale

j. It is therefore possible to design an estimator Ĥ for the parameter H from a simple linear regression

of log2(�̂x(2
�j
�0)) on j, that is

log2(�̂x(2
�j
�0) = log2(

1

nj

X
k

jdx(j; k)j2) = (2Ĥ � 1)j + ĉ (2.8)

where ĉ estimates log2(cf
R
j�j(1�2H)j	0(�)j2d�), provided that the integral

Z
j�j(1�2H)j	0(�)j2d� (2.9)

converges. Performing a weighted-least squares �t between the scales (octaves) j1 and j2 yields the

following explicit formula for the estimator of H

Ĥ(j1; j2) �
1

2

"Pj2

j=j1
Sjj�j �

Pj2

j=j1
Sjj

Pj2

j=j1
Sj�jPj2

j=j1
Sj

Pj2

j=j1
Sjj

2 � (
Pj2

j=j1
Sjj)2

+ 1

#
(2.10)

where �j = log2

�
1
nj

P
k
jdx(j; k)j2

�
and the weight Sj = (n ln2 2)=2j+1 is the inverse of the theoretical

asymptotic variance of �j[1, 3].

Bias of Ĥ. The above de�nition for Ĥ holds provided that (2.1) holds for all frequencies and that

(2.6) converges. We can relax the �rst condition since in (2.7) we are free to choose only the range of

scales over which (2.1) does hold.
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Now consider the convergence of (2.9). In fact estimation problems in the presence of LRD often arise

from the singular behaviour of 1=j�j� spectra at � = 0 which causes such integrals to diverge. When

designing [6] the mother-wavelet  0, one is free to select one of its important characteristics, namely

the number N of vanishing moments. N is an integer such that

8k = 0; 1; : : : ; N � 1;

Z
t
k
 0(t)dt � 0: (2.11)

Clearly, this parameter also controls the behaviour of the Fourier transform of the wavelet about � = 0:

j	0(�)j = O(�N ); � ! 0 :

It is easy to check that provided

N > H � 1; (2.12)

the behaviour of j	0(�)j2 at the origin will be at enough to balance the singularity of the long-range

dependent spectrum, thus ensuring the convergence of (2.6). When this inequality is satis�ed, we have

shown that the log-log regression-based H estimator is asymptotically unbiased, and in practice has

very low bias even for short data sets [3].

E�ciency of Ĥ. It is known [10, 34] that in the presence of LRD the standard sample estimator

(1=n
P

k
x
2
k
)) for second order statistics such as the variance of the process x has very poor statistical

properties, because a time-average is performed over strongly correlated data. In the wavelet coe�cient

representation space, it has been shown [20] that for LRD processes with parameter H:

IEdx(j; k)dx(j; k
0) = O

�
jk� k0j2H�2�2N

�
; jk � k0j ! 1 : (2.13)

This clearly shows that the correlation structure of the transformed data, that is the data represented

through the wavelet coe�cients, is not LRD provided the no-bias condition N > H � 1 is satis�ed, in

contrast to the LRD of the original data. This reduction is a non-trivial e�ect due to the combination

of the analysing-wavelet being band-pass with N vanishing moments (i.e, 	0(�) � �N ; � ! 0), and the

wavelet basis being built from the dilation operator (i.e., 2j=2	0(2
j
�) � 	0(�); � ! 0). Such a reduction

in the correlation range allows the use of the standard sample variance estimator 1=nj
P

k
jdx(j; k)j2

to estimate �x(2
j
�0). More precisely, under Gaussian and quasi-decorrelation of the wavelet coe�cient

hypotheses and in the asymptotic limit, a closed-form for the variance of the estimate of H can be

obtained and is given by

�
2
Ĥ
= var Ĥ(j1; j2) =

2

nj1 ln
2 2

1� 2J

1� 2�(J+1)(J2 + 4) + 2�2J
(2.14)

where J = j2 � j1 is the number of octaves involved in the linear �t and nj1 = 2�j1n is the number

of available coe�cients at scale j1. It can be shown that this variance is the smallest possible, that is

equal to the Cramer-Rao bound, for a given J . For further details on this estimator, see [2, 3].
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Con�dence intervals. From the above closed-from for the variance estimation (therefore under

Gaussian and asymptotic assumptions), one can derive a con�dence interval:

Ĥ � �
Ĥ
z� � H � Ĥ + �

Ĥ
z�

where z� is the 1 � � quantile of the standard Gaussian distribution, i.e. P (z � z�) = �. All the

results presented below, both in numerical simulations and actual data analysis, were computed with

� = 0:025 (i.e., 95% con�dence intervals), based on the above hypotheses.

Importance of N , the number of vanishing moments. The possibility of choosing N provides

a very powerful means of detecting and identifying trends in the data and of cancelling their e�ects, as

explained in detail in section 3.

N also plays a central role in the variance of Ĥ. The above theoretical relations regarding bias and

variance shows that the larger N is, the better the estimation. However, this theoretical improvement

with increasing N is balanced by the increase of the number of wavelet coe�cients polluted by border

e�ects (due to the �nite length of the data), resulting in a diminishing number of available wavelet

coe�cients and therefore an increase of variance. A good practical compromise seems to be N ' H+1.

An elegant solution to this trade-o� would be the use of wavelets that live on an interval [31] which

take care of border e�ects in a clever way so as to avoid the decrease of available coe�cients when

increasing N1.

Choosing the wavelet or the wavelet transform. Up to now we have restricted, for the sake

of clarity, our de�nition of the H�parameter estimation to the DWT framework. It can however be

extended to any redundant wavelet transform (the continuous wavelet transform, for instance) without

di�culty. We have shown in detail in [3, 4] that despite its redundancy and a much higher computational

cost, the performance of the estimator using a redundant wavelet transform is not superior to that given

by the DWT, neither theoretically nor practically, except in some speci�c situations.

Within the DWT, another interesting question is the choice of the mother-wavelet. In [1, 3] it was

shown that for the estimation of H, the only property of the wavelet that matters is its number of

vanishing moments. Whether the wavelets are symmetrical or not, form an orthonormal, semi- or bi-

orthonormal basis or not, makes no theoretical nor signi�cant practical di�erence. The reason why

we chose Daubechies wavelets is not orthonormality but the fact that they have a �nite time support

(that eases the handling of border e�ects), and that they form a basis where the number of vanishing

moments can be naturally increased. Moreover increasing N does not result in an excessive extension

of their time support. They are however certainly not the only choice.

2.4 Comparison with Standard Estimators

Time-domain estimators. By de�nition, the LRD phenomenon is related to the power-law be-

haviour of certain second-order statistics (variance, covariance,. . . ) of the process with respect to the

duration T of observation. Many estimators of H are therefore based on the idea of measuring the

1We thank a reviewer for suggesting this improvement which will be implemented in the next version of the tool.
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slope of a linear �t in a log-log plot. The so-called variogram or R=S estimators are famous examples of

this approach but are known to have poor statistical performance, notably high bias and sub-optimal

variance. For a detailed review of these and other estimators, see [10], or [35]. There is however a time

domain estimator with better properties known as the Allan variance [7], which consists in measuring

the expectation of squared di�erence of averages of the data within windows of length T ,

VA(T ) =
1

K

KX
k=1

 Z
tk

tk�T

x(u)du �
Z

tk+T

tk

x(u)du

!2

;

where K is the number of segments of size T in the data. This quantity also behaves as a power-law of

T when LRD is present and allows a non-biased estimation of H. In fact [21], the Allan variance can

be rephrased in term of the wavelet-based estimator, provided that the Haar wavelet is used, thus

VA(T = 2j�1T0) = IEjdx(j; k)j2 ;

where T0 is an arbitrary (small) sampling period. The improved properties of the Allan variance-based

H estimator are explained by its belonging to the wavelet-based framework, which can therefore be seen

as a generalization whereby the simple N = 1 Haar analysing function, which takes the value 2�1=2

over [0; T0=2], �2�1=2 over [T0=2; 1], and zero elsewhere, is replaced by functions (or wavelets) of higher

N .

Frequency-domain estimation. LRD causes the spectrum of a process to behave as a power-law

for frequencies close to 0. It is therefore natural to think of using spectral estimation to measure H. A

standard spectral estimator consists in averaging smoothed periodograms computed on di�erent pieces

of the data,

�̂2(�) =

PX
k=1

j
Z
x(t� kL)wL(t) exp({2��t)dtj2

where P is the number of data pieces, L their length, and wL a weighting window. It has been

shown in detail [2, 3] that when applied to 1=j�j� signals, such a spectral estimator results in an

estimator of H, based on a linear �t in a log(�) vs log(�̂2(�)) plot, which is strongly biased. Basically,

this is because a constant-bandwidth (�� = constant) spectral estimation is performed which in no

way matches the 1=j�j� structure of the spectrum to be analyzed. In contrast, the wavelet-based

quantity 1=nj
P

k
jdx(j; k)j2 can be read as a spectral estimate with a constant relative bandwidth

(�=�� = constant), which perfectly matches a power-law shaped spectrum [2, 3].

2.5 Wavelet vs Discrete-Whittle Estimation

The Discrete-Whittle Estimator. Maximum likelihood Estimation (MLE), the best known fully

parametric method, o�ers a coherent approach to estimator design which is capable of producing an

unbiased, asymptotically e�cient estimator for H (as well as for other parameters). The Whittle

estimator consists of two analytic approximations to the exact Gaussian MLE, suggested by Whittle in
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1953 in order to avoid the huge computational complexity of the exact algorithm. In the 1980's [10] it

was shown that nothing is lost in this approximation, in the sense that asymptotically the estimator is

unbiased and e�cient, just as in the exact case.

The approximation essentially replaces the covariance matrix by an integral of a function of the

spectrum. As described in detail elsewhere [10], computational di�culties remain, motivating a fur-

ther approximation: the discretization of the frequency domain integration rewritten in terms of the

periodogram. It is this discrete version which we compare against in this section. Being based on

a parametric estimator, a speci�c family of processes must be chosen. We compare against the frac-

tional Brownian noise (fGn) and fractional ARIMA(0,d,0) processes (d = H � 1=2). For the numerical

comparisons here and in the next section, we use the Splus implementations described in Beran [10].

Statistical Comparison. Non-rigorous results of Graf [22, 10] suggest that the Discrete Whittle

(D-Whittle) estimator is also asymptotically unbiased and e�cient, at least in the fGn case. Assuming

that this is in fact the case for Gaussian process in general, the second order statistics of the D-Whittle

and wavelet estimators would then be asymptotically equivalent under Gaussian assumptions, both

attaining the Cramer-Rao minimum variance. They will not be identical in practice however, since in

the wavelet case not all scales are used in the estimation, but only the J scales where the asymptotic

scaling behaviour is actually observed, resulting in larger con�dence intervals. A numerical comparison

of the two estimators under non Gaussian conditions is given by Testsignal8 in table 1, for which

the marginal distributions are bimodal. We see that a failure of the Gaussian assumption biases the

D-Whittle estimator slightly, but does not e�ect the estimation by wavelet.

Regarding the �rst order statistics, it is important to note that the D-Whittle estimator is only asymp-

totically unbiased (due to the periodogram) whilst the wavelet estimator is unbiased. This is illustrated

in �gure 1, where a comparison is made for di�erent values of H. We see that except for low H values,

that the D-Whittle point estimates fall further from the true value than the width of their con�dence

intervals. This is not the case for the wavelet estimates.

Computational issues. The D-Whittle estimator relies on the periodogram, which has a low compu-

tational cost. A minimization procedure is involved however which requires many repetitive evaluations,

leading to a signi�cantly higher overall cost. Moreover, problems of convergence to local minima rather

than to the absolute minimum may be encountered. On the other hand, the wavelet-based estimator

requires only the simple calculation of a DWT, which can be done in O(n) operations (even less than

that of a FFT) using the fast pyramidal �lter-bank based algorithm [25], followed by time-averaging.

For very large data sets the �lter-bank algorithm has another signi�cant advantage with respect to

memory usage. The signal can be split into blocks of a treatable size, and the separate calculations

combined to obtain the exact result for the signal as a whole. This does not imply any reduction in

the range of scales analysed. Because of these advantages, we say that the wavelet estimator is capable

of analysing continuous time signals. By this we mean that we are free to use a very high sampling

period T0 in the numerical discretization of the continuous time data, to capture accurately the �ne

detail of the signal. We cannot do this for the D-Whittle case as the size of the resulting discretized

signal would be prohibitive. In summary, The wavelet-based H estimator therefore leads to a simple,

low cost, scalable algorithm.
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Figure 1: Bias performance for �nite sample size. The wavelet estimator gives point estimates,
here based on (j1; j2) = (2; 6), where the true value always lies within the con�dence interval. This is
not the case for the two D-Whittle estimators, which are biased for �nite sample sizes, here 4096 points
of simulated fGn. .

Estimation vs analysis- the semi-parametric approach. The D-Whittle estimator solves many

of the computational problems of the Gaussian MLE approach, but the essential disadvantage of para-

metric methods remain, that a speci�c parametric family of processes must be chosen. In most practical

data analysis situations however, one has no idea of the exact correlation structure of the data, and

an inappropriate choice of parametric family can result in biased estimation, as seen in the D-Whittle

fARIMA results for fGn data of �gure 1. Compare also columns 4 and 5 of table 1. The wavelet esti-

mator on the other hand enables an analysis of the scale behaviour in a nearly hypothesis-free manner.

Thus the log2(2
j) vs log2(1=nj

P
k
jdx(j; k)j2) plot is a tool for the detection of LRD, the determination

of the range of scales (or equivalently, of frequencies) over which the power-law behaviour holds, and a

test for the presence of spurious trends as discussed in the next section. If scaling behaviour across a

range of scales j1 to j2 is observed, the wavelet estimator is then an e�ective semi-parametric technique

for the estimation of the corresponding H.

In common with all semi-parametric methods however, there is the problem of the arbitrary nature of

the cuto� scales or frequencies at which the LRD behaviour is taken to hold, i.e. the exact choice of

j1 and j2. Here the wavelet based estimator has a signi�cant advantage in practical terms because of

the reduction in variance property of the wavelet coe�cients across scales. In fact a relation similar

to that of equation (2.10) for the reduction across time holds true also for scales. It implies that the

estimation within a 1=j�j� regime is relatively independent across scales, allowing the beginning of such

a regime to be clearly identi�ed, if present. In other words, the short range correlation structure does

not pollute the estimation of the long range dependent structure, simplifying greatly the task of the
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choice of cuto� scale.

3 Stationarity

3.1 General Considerations

As discussed in the introduction, the testing of the stationarity hypothesis is particularly di�cult in

the presence of LRD where many classical statistical approaches cease to hold. Even without LRD

however, there is the fundamental problem that there are an in�nity of ways in which a process can

be non-stationary. Normally we must choose a particular model framework and test for stationarity

only against the types of non-stationarity encompassed by it. To assist in the process it is important

to include a priori information concerning the known \physics" of the problem. For example, in the

context of Ethernet tra�c the �rst thing to note is that it is clear that the data is not stationary,

because of the diurnal cycle, lunch breaks etc. On the other hand it is reasonable to expect that for

smaller timescales where network conditions are relatively stable, that stationarity will be a natural

and useful assumption. Linear trends for instance are not to be expected on a priori physical grounds.

The task in such a context is therefore to determine the time-scale at which we can reasonably assume

stationarity. Clearly we would like this to be as large as possible for both practical and statistical

reasons. Unfortunately we cannot explore this issue properly here, however we present in section 5

some simple results on the stationarity of the Ethernet traces with respect to the variation of H with

time. We now turn to address in detail a special but important case of non-stationarity, that of

generalised deterministic trends.

3.2 Deterministic Trends

Assume that the signal x(t) consists of stationary `data' s(t), plus some contaminating deterministic

function of time p(t) such that x(t) = s(t) + p(t). We would like to be able to measure H correctly for

the data, and detect and identify the trend.

One example is the fact that a slowly (power-law shaped) decaying trend added to a short range

dependent process s can generate autocovariance estimations with slowly decaying tails, which could

be incorrectly mistaken for evidence that x is stationary with LRD. The opposite problem can also

occur, that the data is LRD but this is masked by the overall non-stationary behaviour of x due to the

trend. Alternatively the presence of the trend may not be recognised, being confused with the local

statistical trends characteristic of LRD. In each case the trend may drastically bias the estimation of

H for the data s. We will show both from numerical simulations and theoretical arguments that the

wavelet-based estimator enables us to detect and even identify such trends, and to avoid their adverse

e�ects on the estimation of H.

In the paragraphs below we compare the wavelet and D-Whittle estimators over a number of test sig-

nals where deterministic trends have been added to a stationary signal of known H. Testsignal1 is

a realisation of Fractional Gaussian Noise (fGn) with H = 0:82, synthezised by a spectral method.

Testsignal2a to Testsignal2j consists of Testsignal1 plus linear deterministic trends of increasing ampli-
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tudes. In Testsignal3 to Testsignal7, quadratic (t2), quartic (t4), increasing power-law (t3=2), sinusoidal

(sin 2�f), and decreasing power law (t�1=4) trends have been added. In Testsignal8 the marginal of

the process was chosen to be bimodal and hence strongly non-Gaussian, whilst retaining H = 0:82 (see

section 2.5 for a discussion of this case). In Testsignal9 and Testsignal10 decreasing and increasing

power-law trends respectively were added to ordinary Gaussian noise (H = 0:5). The magnitude of

the trend for (most of) these test signals is given in the third column of Table 1 as a multiple of their

respective sample variances.

For each of these signal types we studied the e�ect of increasing the trend amplitude (the magnitude of

the trend across the entire trace in units of the trace sample variance is shown in the third column of

Table 1). We found that the D-Whittle estimates were at �rst una�ected, and then became increasingly

biased, �nally saturating at absurd values. This is to be expected of a parametric estimator, as it is

based in an essential way on the assumption that no trend is present. The main purpose then of the

following discussion, and of Table 1 in particular, is to illustrate and contrast the robustness of the

wavelet estimator across a wide range of conditions, rather than to demonstrate the failure of the D-

Whittle estimator. In particular we are not interested in trying to quantify at what trend amplitudes

the D-Whittle estimation become seriously a�ected as a function of trend type. Note that since we

are interested in evaluating the polluting e�ect of a deterministic addition to a single realisation of a

process, we must compare the estimates of H obtained with and without the trend against each other,

and not against the real value of H!

Linear trends. Let us focus �rst of all on linear trends, since this is the simplest case which is most

often of interest. Figure 2 clearly shows that the D-Whittle estimates in the presence of a linear trend

depart progressively from the correct value as the amplitude of the trend increases. This is because

there is no allowance for a trend in the underlying parametric model. When the trend grows to the

same magnitude as the data, Whittle's method does its best to interpolate between the two. On the

other hand, the wavelet-based estimates remain constant whatever the amplitude of the trend, provided

that one uses wavelets with N � 2.

Polynomial trends. Now consider polynomial trends of higher degree (see Testsignal3 and Testsig-

nal4 in table 1). Once again we observe that whereas Whittle estimates fail whenever the amplitude

of the trend becomes too large, the wavelet-based estimation remains accurate provided that the N of

the wavelet is tuned to the degree P of the polynomial trend p(t), that is provided

N � P + 1 :

To explain this, recall that a wavelet  0 with N vanishing moments is, by de�nition (equation 2.11),

orthogonal to the space of polynomials of degree less than or equal to N � 1. Hence the details dp(j; k)

corresponding to p(t) vanish provided that N � P + 1. It follows that the estimation of H will not

be a�ected by the presence of the trend, as it is entirely absent from the details of the signal, i.e.

dx(j; k) = ds(j; k). This can also be given a useful spectral interpretation. The Fourier transform of

a polynomial of order P consists, within the distribution theory framework, in the P�th derivative of

the Dirac impulse function �(P )(�). The frequency content of a polynomial is therefore concentrated at
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Testsignal Signal type Trend size Whittle-fGn Wh-fARIMA Wavelet D]

1 fGn (H=0.82) - 0.80 0.86 0.82 D1

2f +at 4:61 0.88 0.94 0.81 D2

3 +at2 0:676 0.80 0.86 0.82 D3

4 +at4 3:8� 1011 1.00 1.50 1.97 D1

2.95 D2

3.71 D3

0.80 D4

0.82 D5

0.82 D6

5 +at3=2 432 1.00 1.50 0.86 D1

0.81 D4

6 +a sin 2�ft 2:70 0.86 0.92 0.78 D1

nf � 3 0.82 D3

7 +at�1=4 15:8 0.88 0.95 0.99 D1

0.81 D3

8 non-Gaussian - 0.79 0.85 0.81 D1

9 Gn +at�1=4 7 0.63 0.66 0.501 D2

10 Gn +at1=4 7 0.76 0.80 0.507 D2

Table 1: Bias comparison with deterministic trends. Comparison of D-Whittle and wavelet-based
H estimates for test signals consisting of deterministic trends p(t) of di�erent kinds superimposed on
simulated fractional Gaussian noise with H = 0:82 (Testsignal1). Each test signal has n = 4096 points.
The con�dence intervals are not reproduced as they are of the same order of magnitude (� 0:02) for
all three estimators. D] stands for the standard Daubechies wavelets with ] vanishing moments. Note
that D1 is also the Haar wavelet. The trend size is calculated as (maxt p(t) �mint p(t))=�, where � is
the sample variance of the data s(t). For Testsignal6 there are �3 periods across the trace.
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Figure 2: Bias comparison with linear trends. D-Whittle fGn and wavelet-based H estimates for a
fractional Gaussian noise (H = 0:82) with superimposed linear trends of increasing amplitude. The bias
in the Whittle estimate drastically increases with increasing trend, whilst the wavelet estimation remains
essentially constant, provided that the analysing wavelet possesses at least two vanishing moments.
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the null frequency and since wavelets are band-pass functions, in fact satisfying j	(�)j = O(�N ); � ! 0,

they will be blind to a given polynomial for N su�ciently large.

Arbitrary trends. When the trend is not polynomial but some smooth function, we observe that

increasing N still helps to cancel its inuence and very accurate estimates for H are recovered, whereas

again the D-Whittle estimator gives values whose bias increases with the amplitude of the trend.

Testsignal5 to Testsignal7 in table 1 are examples for very large, moderate, and large amplitude re-

spectively. This can be interpreted in at least two ways. First, selecting a N will e�ectively cancel the

part of the trend which can be e�ciently approximated by polynomials of degree N � 1. Increasing N

would therefore approximately cancel any smooth function. The second interpretation is again from

the spectral viewpoint. Smooth trends have, in most cases, an important frequency content near � = 0.

The LRD phenomenon basically consists of a power-law behaviour of the spectrum near � = 0 and in

general this overlap signi�cantly complicates analysis and estimation. To see why choosing wavelets

with high N signi�cantly improves this situation consider the power-law trend p(t) = at
�, a a con-

stant. The wavelet coe�cients read dp(j; k) = 2j(�+1=2)C
R
j�j�(�+1)	0(�) exp({2�k�)d� where C is

a constant independent of the scale j. It can checked numerically that for a given j, the magnitude

of these coe�cients decreases with increasing N . Increasing N therefore enlarges the range of scales

where jdp(j; k)j � jds(j; k)j, that is where the e�ect of the trend is negligible.

The upper plot in �gure 3 shows that when using the Haar Wavelet (N = 1) to analyze Testsignal5, a

large number of scales, j = 4 to j = 9, are corrupted by the presence of the t3=2 trend, preventing an

accurate estimate of H or even the detection of the LRD. However with a Daubechies4-wavelet (N = 4),

the log-log plot falls close to a straight line (note that there is no data point at scale 9 for D4 due

to insu�cient data). In Testsignal6 the corrupting trend consists of a low-frequency sinewave. The

bottom plot in �gure 3 shows that when analysed with the Haar Wavelet the polluting e�ect of the sine

is numerically important across scales j = 6 to j = 9. With a Daubechies4-wavelet (N = 4), the e�ect

of the trend is concentrated in scale j = 8, enabling the inclusion of octaves 6 and 7 in the regression.

This can be explained using the spectral interpretation above. Increasing N causes the Daubechies

wavelet to tend to an ideal band-pass �lter, thereby concentrating the e�ect of the sine waveform onto

a single scale.

The results for Testsignal7 in table 1 show that the D-Whittle estimator can be biased even by a trend

that tends to zero. Testsignal9 gives the same result for H = 0:5, a particularly interesting case as

it illustrates that the D-Whittle estimator is biased by a power-law decreasing trend for short range

dependent data of �nite length. This is in contrast to the asymptotic lack of bias for the exact MLE

and Whittle estimators (see [10], p143). Testsignal10 is similar to Testsignal5 but with H = 0:5 and a

trend of smaller amplitude.

Experimental procedure and the identi�cation of trends. In practice one does not usually

know the form of the trend, nor even necessarily that there is one. The correct experimental procedure

therefore consists of performing estimations with increasing N . Successive estimates will change rapidly

until N is large enough to eliminate the polynomial components of the trend, followed by a slower

convergence to the �nal estimate as trend components of a more general form are gradually eliminated.
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Figure 3: Eliminating non-polynomial trends. We compare the wavelet analysis of a fractional
Gaussian noise (H = 0:82) using wavelets with di�erent numbers of vanishing moments N , in the

presence of corrupting deterministic trends, top: Testsignal5 (t3=2 with large amplitude), bottom:
Testsignal6 (sin 2�ft with moderate amplitude and nf � 3, n = 4096). When N = 1, the e�ect of the
trend is felt over a wide range of scales, preventing a correct estimation ofH. Increasing N concentrates
their inuence onto a very small number of scales, thereby widening the range of scales J available for
the estimation.
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Heuristic yet reliable identi�cation of trends can therefore be obtained by examining the speed and

nature of the convergence with N . For example a sharp transition to stable estimates can be taken

as evidence of a polynomial trend of the appropriate degree, as clearly illustrated in table 1 with

Testsignal4, where the entries stabilize for N = P + 1 = 5. This procedure will fail in the presence

of discontinuous deterministic trends, for instance sharp level changes in the mean. The D-Whittle

estimator will also fail in such a case.

We see that the wavelet tool allows estimation of the Hurst parameter without a prior detrending

procedure. This is a very important advantage as detrending in the presence of LRD raises di�cult

statistical issues regarding the joint estimation of regression parameters and H.

3.3 Stationarity vs Stationary increments

So far we have considered wide sense stationary processes. Another fundamental feature of the wavelet-

based analysis of the LRD phenomenon is the fact that it can be used to meaningfully analyse the

important class of non-stationary processes X(t) with stationary increments, that is Y� (t) = X(t+� )�

X(t) is stationary. The fractional Brownian motion (fBm) is the canonical reference for such processes.

Its corresponding increment-process is the fGn, which has been used as the typical example throughout

this paper. The properties and implications of the wavelet tool in the study of processes with stationary

increments is fully detailed in [20, 21]. Here we simply note from the fact that the spectrum of fGn

reads �fGn(�) ' j�j
�(2H�1), that wavelet analysis can give a consistent meaning to the idea of de�ning

the `spectrum' �fBm(�) ' j�j�(2H+1) of fBM. Thus, whereas to estimate the H parameter of a fBm

signal using Whittle's technique one must �rst compute the increments, with the wavelet estimator one

can work with the process itself. In this case, the no-bias equation (2.9) becomes N > H. This feature

is particularly useful in the context of stationary point processes, where it may be more natural and/or

more convenient to analyze the corresponding counting processes, which have stationary increments.

[2, 3].

4 Wavelet-based Analysis of Ethernet data

4.1 Ethernet Data

Aims of the analysis. Ethernet data has now been extensively studied and the presence of scaling

behaviour established beyond question for the great majority of traces collected. Nonetheless there are

important issues which remain uncovered. We outline a more thorough approach to the analysis of LRD

which reveals features of importance for model building. These ideas are valuable for the modelling of

packet data in general, not only Ethernet data. More speci�cally, we study the LRD structure of the

work itself, since it is this which is essential for performance evaluation purposes. We show that some

aspects of the data analysis approach used to date are well justi�ed, whereas others are not. We also

tackle the question of the mono-fractality vs multi-fractality of the data. Finally we make a preliminary

contribution to the stationarity question. Throughout we make use of properties of the wavelet based

estimator which allow approaches which were previously very di�cult or even impossible.
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Figure 4: Marginal frame and interarrival distributions for pAug. The frame distribution is
highly non-Gaussian, taking only a few values. The interarrival distribution is roughly exponential.

Brief description for the data. The data sets analysed are three Ethernet traces from the well

known set collected at Bellcore in the late 1980's and early 1990's. They are available from anonymous

ftp from ftp.bellcore.com in the �les lan tra�cfpAug, pOct, OctExtg.TL.Z. These very high quality

traces (no loss, jitter< 100�sec.) have been described in great detail elsewhere [24]. Here we restrict

ourselves to a basic description of the contents of the above �les.

Each �le consists of 1 million rows in two columns. Each row relates to a single Ethernet frame. The

�rst column gives the timestamp (measured from the beginning of the trace) for the end of the frame

in seconds. The second column gives the integer size in bytes of the frame. The actual tra�c consists

therefore of a sequence of disjoint alternating frames and silent periods. The Ethernet protocol imposes

a minimum silence between frames of 52:6� seconds, or 65.75 bytes, and a minimum (maximum) frame

size of 64 (1518) bytes. We will measure time in either seconds or bytes as appropriate. One byte

corresponds to 8� 10�7 seconds.

First Order Statistics. Simple summary statistics for the �rst half of trace pAug are shown in

�gure 4. The results for the other two traces are similar. The frame-size histogram in �gure 4 reveals

that frames take typically one of just a few values. The interarrival times however can be roughly

described by an exponential distribution. The statistics are calculated assuming stationarity and that

the large size of the traces allows good estimates despite the LRD.

Modelling Approach. To analyse the data we need to choose a stochastic model framework. Since

silences are not restricted to be multiples of bytes, a process general enough to fully capture the Ethernet

arrival process must be de�ned in continuous time. Denote this process by fXt; t 2 IR+g where the

state space is the set f0; 1g, corresponding to the presence or absence of a frame. Alternatively we may

ignore features at very small time scales and discretize time. The discrete version of X we denote by
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pAug X P W� C� F S A

H: D1 0.798 0.822 0.793 0.804 0.805 0.804 0.797

H: D3 0.809 0.822 0.794 0.822 0.818 0.809 0.784

CI: D3 0.025 0.016 0.016 0.017 0.021 0.020 0.017

Table 2: H values for the di�erent aspects of the data There is no evidence of linear or quadratic
trends, the estimate being stable at D2. The results are consistent with the premise that the value of
H is the same for both work and arrivals, in full detail or after aggregation, and for the component
sequences.

fW�;n; n = 1; 2; � � �g where W�;n is the integral of Xt over [n�; (n+1)�) corresponding to the total Work

which arrived during this time interval, and � is a positive constant. To simplify the representation,

we could consider the arrival instants of frames only. Let fPt; t 2 IR+g be the continuous time Point

process where each frame arrival is represented by a Dirac impulse, and otherwise Pt is zero. The discrete

version of this we we denote by fC�;n; n = 1; 2; � � �g, a discrete time, discrete state space Counts process

corresponding to the number of frame arrivals in the interval [n�; (n + 1)�). Clearly neither P nor C�

capture the structure of arriving work, and as discussed in the introduction, it is this which is essential

for performance evaluation purposes. Nonetheless, it is the process C� which has been the preferred

framework to date [24, 18]. The assumption is that it captures all of the LRD behaviour, so that the

work can simply be `added' as essentially instantaneous arrivals according to the marginal distribution

of the frames. We test the validity of this assumption by examining the dependence properties of the

work separately. To this end, let fFn; n = 1; 2; � � �g be the sequence of Frame sizes, fSn; n = 1; 2; � � �g

the sequence of Silence durations, and fAn; n = 1; 2; � � �g the sequence of inter-Arrival times. We will

examine the LRD properties of each of X, P ,W� , C�, F , S and A. We exploit the fact that the wavelet

estimator allows us to study each of these in a uniform framework, independent of whether the index

or the state space is continuous or discrete, the nature of the marginals, or of other �ner details of the

respective processes.

4.2 Results: Evidence for LRD and H estimations

The complete Work process X. We will describe results for pAug. Results for the other two

traces are similar unless stated otherwise. The plot in �gure 5 evidences the existence of the LRD

phenomenon over a very large range of scales: (j1; j2) = (14; 25). Performing an estimation over

(j1; j2) = (14; 24) to avoid the uctuation at scale 25 due to border e�ects (lack of data), we obtain

Ĥ = 0:798� 0:025. This estimate is insensitive to an increase in N as shown in �gure 5 and table 2,

indicating the absence of trends in the data. See table 3 for results for the two other signals. Recall

that traditional estimators, including the D-Whittle estimator, cannot be used to analyse continuous

time signals such as X or P due to computational limitations.

The continuous-time point process P . When applied to P we observe ( plot(b) in �gure 5) LRD

behaviour over an even wider range of scales: (j1; j2) = (10; 23), allowing a very accurate estimation ofH

and a clear determination of the minimum time scale Tm over which the data needs to being observed

before scale-invariant behaviour begins. We �nd, for pAug, Tm ' 10 ms and Ĥ = 0:822 � 0:012,

consistent with that obtained for X.
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Signal D1 pAug pOct OctExt

X Ĥ 0.798 0.825 0.947

CI 0.024 0.026 0.017

(j1; j2) (14,24) (15,22) (14,22)

P Ĥ 0.822 0.824 0.943

CI 0.012 0.016 0.017

(j1; j2) (10,23) (13,22) (14,22)

Table 3: H values for the di�erent traces. Estimations performed on the complete work process
X or the simpli�ed continuous-time point process P are completely consistent.

It is interesting to note that plot(b) in �gure 5 is strikingly reminiscent of what is observed for certain

variations of the Poisson point process for which the arrival rate � is itself a stationary LRD continuous-

time process. A canonical example of such a doubly stochastic point process which may constitute a

good candidate model for data is given by taking �(t) = fGnH (t) [4, 1, 30]. This possibility and variants

of it are currently under investigation.

The aggregated processes W� and C�. From plots(a) and (b) in �gure 6, the presence of LRD in

the discrete or aggregated processes W� and C� is clear, and estimates for H are obtained consistent

with those found for X and P (see table 2). Although intuitively this is not a surprising result, as

aggregation over a given �xed scale does not a�ect the properties over ranges beyond this scale, we can

o�er a more complete explanation from the wavelet framework. As previously indicated, the wavelet

decomposition basically consists in splitting data into an approximation and details. For X this reads

X(t) =
X
k

aX (j0; k)�j0;k(t) +

j0X
j=1

X
k

dX(j; k) j;k(t) :

Suppose that j0 is chosen so as to be smaller than the smallest scale j1 at which the LRD phenomenon

occurs, then the details for j = 1 to j = j0 can be discarded without changing the estimation of H, and

we could therefore replace the analysis of X by that of the approximation
P

k
aX(j0; k)�j0;k(t). In the

case of the Haar multiresolution (cf. section 2) for which the scale function �0 is the indicator function

over [0; T0], where T0 is the arbitrary (very small) sampling period, one obtains exactly W�=2j0T0 =P
k
aX (j0; k)�j0;k(t). For wavelets of higher N , the approximation is not strictly equal to W� but has

the same low-pass approximation interpretation. This connection allows a general reformulation of the

aggregation technique used to process LRD data within the multiresolution framework [5] and justi�es

the usual [24] practice of using C� to replace P in the analysis of LRD. Moreover, it o�ers a framework

to select �. The same arguments and conclusion hold for W� and X.

Frame F , silence S, and inter-arrival A sequences. Because the same H was found for X and

P , or equivalentlyW� and C�, we may be tempted to conclude that the process P somehow `carries' the

LRD of the signal. Indeed, this is the assumption that has been made in previous work [24, 18] when C�

has been used to represent the data. To investigate further the `sources' of LRD in X, we now examine

F , S and A. From table 2 and �gure 6 we see that, remarkably, in each case the same H is recovered.

These estimates are robust with respect to an increase of N . The most signi�cant result is that for

the sequence of frame sizes F . A priori these could have been mutually independent, and indeed this
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Figure 5: Analysis of pAug: continuous time representations X and P . Plots (a) and (c) show

log(2j) vs log2(�̂x(2
�j
�0)) = log2(1=nj

P
k
jdx(j; k)j2), with wavelets D1 and D3, for the complete work

process X. It evidences a power-law behaviour and therefore LRD over a wide range of scales and
enables an accurate estimation of H. (b) consists in the same plot for the P process, exhibits LRD over
an even wider range of scales and yields the same estimate for H.
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Figure 6: Analysis of pAug: aggregated processes W�, C�, and sequences F , S, A. Plots of
log(�x(2

�j
�0)), with wavelet D1. Plots (a) and (b) show the clear presence of LRD in the aggregated

processes W� and C�. The H values are very close to those of X and P respectively, illustrating the
validity of the aggregation approximation. In plots (c), (d) and (e) the discrete-time processes F , S
and A are analysed. Each displays LRD with almost identical H estimates, each consistent with that
of X.
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Figure 8: Time variation of H. Each trace is split into 32 segments and separate H estimates made
for each, with a common asymptotic con�dence interval shown as the interrupted lines. The solid
horizontal line shows not the mean of the estimates (inferred by the con�dence interval), but the H
estimate taken over the entire trace. The traces pAug and pOct appear stationary, whilst OctExt does
not.

quasi-decorrelation of the wavelet coe�cients discussed in section 2.3 and expressed in equation (2.10).

To each segment corresponds an estimation of H and a common (asymptotic) con�dence interval. We

refer to the mean of these 32 estimates as the `mean', and we center the con�dence interval about it.

For pAug and pOct, almost all the estimates (see �gure 8) lie within the con�dence interval. Moreover,

the mean corresponds very closely to the point estimate of H obtained from the entire trace. This

is good heuristic evidence that H indeed remains constant across these traces. Hence H can remain

constant over quite long intervals as pAug, the longer of the two traces, is almost an hour in duration.

On the other hand the estimates for OctExt show high variability, many falling outside the con�dence

interval, indicating a clear non-stationarity. The mean also di�ers signi�cantly from the H estimate

obtained from the whole trace. This may not seem surprising as the trace is �35 hours long and the

diurnal cycle is clearly visible in a time series plot, however this could have been due to mean rates

varying with H remaining constant. In fact we have checked that the estimate obtained from the whole

trace is not sensitive to an increase in N , excluding the possibility that the variation observed results

from a smooth cyclic trend. On the contrary, the estimates being strongly varying across the segments

seems to indicate that the dynamics of the process generating the traces varies with time. The results

here are not conclusive because the exact nature of the correlation between estimates made in adjacent

data segments is unknown.

With respect to pOct it has been noted before [16] that, as shown in the upper plot in �gure 9, there is

24



0 200 400 600 800 1000 1200 1400 1600
0

2

4

6
x 10

5

time (s)
W

_\
de

lta
 w

ith
 \d

el
ta

 =
 1

0s

pOct

Part I

Part II

Full trace : H = 0.80
 Part I : H= 0.81    
 part II : H=0.79    

0 5 10 15
20

25

30

log2(scale)

lo
g2

(h
at

G
am

m
a)

Figure 9: Elimination of level shift in pOct. The upper plot shows W� for pOct with � = 10s. A
level shift seems to occur at around the 16 to 19 minute mark. The lower plot shows wavelet based
estimates. Essentially identicalH estimates close to 0:80 are found for the whole trace and the portions
to the left and right of the shift, showing that the LRD is not an artifact of the shift.

a level shift (that is an apparent shift in the mean), at around the 16{19 minute mark of this half hour

trace. As was shown in �gure 4 from [16], variogram based H estimates [10] of the sub-series to either

side of this transition are lower and markedly di�erent to that for the whole trace. This fact lends

itself to the interpretation that the value obtained from the whole trace has been corrupted by a non

stationarity in the mean, perhaps to the point of giving the appearance of LRD when there is none. In

the lower plot in 9 we perform a wavelet analysis of the trace and the sub-series and �nd H values which

are in close agreement, in fact within the original con�dence interval. It seems then that H does not

vary across the level shift or the trace, that its value is indeed greater than 1=2, and that the wavelet

estimator can measure it accurately despite the shift. This latter fact can be explained by noting that

the the shift is actually quite smooth, occuring over approximately 3 minutes. We expect that we can

eliminate it for su�ciently high N (assuming that a level shift can be viewed as a kind of linear trend).

In the present situation, we used N = 2. This is a good example 2 in an experimental setting of where

the wavelet estimator has a strong advantage over other estimators such as the variogram with respect

to trend elimination.

5 Conclusion

We have introduced wavelet analysis and the log2(1=nj
P

k
jdx(j; k)j2) vs j plot as a tool for the exami-

nation of scale behaviour in data. This tool allows the detection of LRD and the semi-parametric mea-

surement of H for stationary or stationary-increment data. It has been shown how the wavelet-based

2We thank the reviewer who pointed out this issue in the pOct time series and suggested these comparisons.
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estimator derived from this plot is superior to alternatives, being unbiased, not only asymptotically

unbiased, and also e�cient under Gaussian assumptions. The unbiased property holds in general for

processes with �nite second moments. The estimator can be implemented by a direct computational

rather than optimization based algorithmwith low computational complexity, both with respect to time

and memory, allowing the analysis of very large data sets. It can therefore be applied to continuous time

as well as discrete time signals in a uniform framework. It also o�ers powerful advantages with respect

to the problem of stationarity. By varying the number N of vanishing moments of the mother wavelet,

polynomial trends can be rigorously eliminated, and in practice essentially any smooth deterministic

trend. The advantages are twofold: accurate determination of H, and the detection and identi�cation

of trend types. In this way di�cult problems in the joint statistical estimation of regression param-

eters and H can be entirely bypassed. Numerical comparisons against the D-Whittle estimator, the

only alternative which is even asymptotically unbiased, show that even when the generated test signals

belong to the underlying parametric family of the D-Whittle estimator (we used fractional Gaussian

noise), the wavelet estimator is always at least as accurate. This is due to its being unbiased even for

�nite data samples. When the underlying parametric family is not appropriate, or in the presence of

trends, the wavelet estimator is clearly superior.

We have used the advantages of the wavelet-based estimator to study in greater depth the LRD nature

of some the Bellcore Ethernet traces. We found that the sequences of frames, silences and interarrival

times each possess LRD with the same H as the full signal X, indicating that the approach of using

only the discrete frame counting process C� to represent the data will not be adequate for performance

evaluation purposes. This highlights an important general principle, that simply capturing an aspect

of the data which possess LRD is not su�cient. We were able to justify however, and explain within

the wavelet framework, the aggregation method whereby the continuous time work process X or frame

arrival process P are replaced by the discretized versions W� and C� respectively. We performed a

test of mono vs multi-fractality for the traces pAug and pOct, and found that a mono-fractal model

is clearly preferable. Finally we performed a preliminary analysis of stationarity with respect the time

variation of H. We found that pAug and pOct seem consistent with the hypothesis that H does not

vary, but not OctExt.
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