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ABSTRACT  

In this paper, we present the prediction-based particle filter 

approach for processing motion and force data in 

teleoperation over the Internet. We first introduce the 

prediction-based particle filter algorithm, one of the 

Sequential Monte Carlo methods based on the recursive 

Bayesian prediction. The prediction algorithm is applied to 

dynamic models of the motion and force data flows in the 

state-space formulation. It is applied to the motion data 

transmitted to the slave controller and to the reflecting force 

data received at the master controller. Experiments are 

performed using the haptic device within a virtual 3D 

graphical environment. In each experiment, the motion and 

reflecting force data extracted from the haptic device are used 

to verify the prediction performance of the proposed method. 
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1.  Introduction 
 

Internet-based teleoperation is an interactive application 

where a human user transmits motion data from a master 

controller while simultaneously receiving the reflecting force 

data from a slave controller stationed in a remote environment. 

Unlike most other Internet applications that require reliable 

data transmission, for stable operation interactive 

applications need to maintain a constant frequency of data 

transmission. Hence, in a teleoperation, both the time delay 

and the reliable data transmission should be considered.  

The end-to-end Internet time delay consists of the 

propagation delay, transmission delay, processing delay, and 

queuing delay. Unlike the first three delay components, the 

queuing delay varies with time due to the Internet traffic 

conditions. The transport control protocol (TCP) and user 

datagram protocol (UDP) are two widely used Internet 

transport protocols. TCP, which provides reliable data 

transmission, often introduces large variable delay due to its 

retransmission scheme and congestion control. Thus, it has 

been suggested that UDP be employed for teleoperation even 

though it does not guarantee reliable data transmission and 

may lead to data losses [1].  

Many approaches have been proposed to solve the time 

delay and data loss issues in teleoperation over the Internet. 

Various control systems approaches have been suggested, 

including the wave-variable transformation and its extensions 

[2], [3]. Prediction-based signal processing approaches that 

perform motion and force predictions have been also 

proposed [4], [5]. The Kalman filter method, which provides 

a recursive solution to the linear prediction and estimation, 

was proposed as a prediction-based approach [6]. The motion 

and reflecting force data are impaired by the presence of the 

Internet delay. Hence, these signal processing approaches are 

expected to compensate for the delays that vary over time. 

Nevertheless, the motion and reflecting force data are often 

difficult to predict if they involve nonlinear and non-Gaussian 

system characteristics. For example, hand movement patterns 

from a master controller can be highly nonlinear and the 

traditional Kalman filter may fail to provide accurate 

prediction. The reflecting force data may be even more 

difficult to predict since the data need to be sent at relatively 

high frequencies in order to ensure realistic and continuous 

force.  

The particle filter algorithm, also known as the bootstrap 

filter or the Condensation filter, is a Sequential Monte Carlo 

(SMC) method that provides suboptimal solutions to the 

recursive Bayesian approach [7], [8]. Due to its robust 

prediction and estimation performances in nonlinear and 

non-Gaussian environments, the algorithm has been widely 

used in communications, image and speech signal processing, 

and robotics [9]-[12]. The particle filter method may be 

applied to any nonlinear dynamic model using a state-space 

framework, and, hence, it can be applied to the dynamic 



 

 

 

models of the motion and force data in the state-space 

formulation. 

In this paper, we present the prediction-based particle filter 

algorithm to predict the motion and reflecting force data that 

suffer from the Internet delays that vary over time. In Section 

2, we introduce the generic particle filter algorithm with the 

prediction-based formulation. In Section 3, we discuss the 

nonlinear state-space models of the motion and reflecting 

force data, and address the issues dealing with prediction of 

data using the particle filter algorithm. Experimental results 

with the implemented prediction-based particle filter 

algorithm are given in Section 4. We conclude with Section 5. 

 

 

2.  Prediction-Based Particle Filter Algorithm 
 

A discrete-time dynamic system may be represented using 

a state-space model, where unknown states of the system are 

predicted or estimated based on available noisy observations. 

The particle filter method performs suboptimal prediction and 

estimation within the recursive Bayesian approach in case 

when the dynamic system is nonlinear and non-Gaussian. 

Using the particle filter method, the true posterior density in 

such nonlinear and non-Gaussian dynamic systems can be 

approximated by a simulation-based approach. The discrete 

time nonlinear state-space model can be expressed as: 
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where xk  and xk  are respectively the state and the 

observation system at time k , gk
 

and hk are nonlinear state 

and observation transition functions, and  uk  and vk  
are 

state and observation noise sequences, which may be 

non-Gaussian. In a state-space model, the prediction of the 

true state at time 1k   can be obtained based on the current 

state xk  and available observations 1:x k . Based on the 

recursive Bayesian approach, the optimal predictor of the true 

state at time 1k   can be expressed by the conditional means: 
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where ˆ 1|xk k  denotes the one-step-ahead prediction of the 

state 1xk  
given available observations 1:x k . According to 

the Bayesian approach, the posterior density should be 

evaluated recursively solving two density functions [8]: 
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Equations (3) and (4) are respectively the prediction and 

update procedures for finding the optimal solution. They are 

not computationally tractable due to the integral forms. Hence, 

as a suboptimal solution, the particle filter method is used to 

approximate the posterior densities. Based on the 

prediction-based particle filter algorithm, (3) can be 

approximated as [13], [14]: 
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where Ns  is the number of particles, (.)  is the Dirac delta 

function, and  
1

iw
k

 is the importance weight that  can be 

computed as: 
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The importance density (.)q  may be chosen to be equal to the 

prior density in order to minimize the variance of the 

importance weights: 
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 Hence, the importance weight can be simplified as: 
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Prior to performing the resampling step, the importance 

weights (8) should be normalized so that 1
1

iwi k
 

.  

The simplified illustration of the particle filter algorithm 

including the resampling step is shown in Figure 1. After Ns  

number of particles is randomly distributed in the first 

iteration k , the importance weights are computed for each 

particle in order to obtain the approximation of ( | )1: 1p x xk k . 

The resampling step is then performed to regenerate the 

predicted samples based on the weighted samples. In the 

resampling process, the particles with small weights are 

eliminated while the particles with high weights are 

concentrated. The large number of particles gives more 

accurate stochastic approximation, which in general provides 

the reasonable prediction performance. However, an efficient 

number of particles may be selected to avoid computational 

burden. The prediction-based particle filter algorithm is 

described in Table 1. 
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Figure 1. Graphical representation of the particle filter algorithm [8]. 

Starting from the initial state k (a), illustrated are the weighted 

measure (b), resampling (c), and prediction of next state 1k  (d). 

 

Table 1 

Prediction-based particle filter algorithm.  

Step 1. Initialization 

    Draw the initial state randomly and define initial parameters. 

Step 2. Prediction 

    Draw 
1

i

k
x


~ 

1
( | ), 1

i

k k sp x x i N


    

Step3. Update 

    Evaluate importance weights according to (8) and normalize   
 the weights. 

Step 4. Resampling 

    Multiply/suppress samples with high/low importance weights. 

Step 5. Iteration 

    Increase time step and go back to Step 2. 

 

 

 

3.  Prediction of Motion and Force Using the 

Particle Filter Algorithm 
 

The motion data transmitted from the master controller 

may be impaired by the Internet delay. Hence, the receiving 

motion data at the slave controller need to be predicted in 

order to compensate for the delay. The predicted motion data, 

consisting of positions over time samples, may cause a 

contact with an object or a surrounding environment, which 

in turn generates reflecting force data. The force data that 

feeds into the master controller may also suffer from a similar 

Internet delay. Therefore, the reflecting force data also need 

to be predicted in order to compensate for the delay. The 

motion and reflecting force data sequences may be 

formulated as state-space models. The state-space 

formulations of the motion and reflecting force data in a 

teleoperation scenario are shown in Figure 2.  

3.1 Motion Prediction 

 

The motion data transmitted from the master controller 

consist of positions over time samples. As shown in Figure 2, 

the motion data, which may be nonlinear or non-Gaussian, are 

formulated as a state-space model. The true motion data are 

then predicted using the prediction-based particle filter 

algorithm based on available observations, which are 

impaired by the Internet delays.  

For a single degree of freedom (DoF) teleoperation system, 

the true position xk  
at time k  is transmitted via the Internet 

and it is delayed by n  time steps. The impaired observation 

received at the slave controller is denoted as xk n . In a 

state-space model, the prediction of the true position at time  

1k n   can be obtained based on the current state xk n  and 

available observations 1:x k n . Hence, as in (2), ˆ 1|xk n k n    

represents the one-step-ahead prediction of the state 1xk n   
given available observations 1:x k n . Using the 

prediction-based particle filter method,   ˆ 1|xk n k n    can be 

computed by approximating the posterior density function 

( | )1 1:p x xk n k n    
based on (5)-(8) evaluated at time k n . 

In order to implement the particle filter algorithm to the 

motion data prediction problem, each step introduced in 

Section 2 should be executed. After the initialization step that 

randomly defines the initial state of the motion model, the 

prediction step is performed to obtain samples 
1

i

k n
x

   
from the 

prior density ( | )1
ip x xk n k n  

, where 1 i N
s

  . In the update 

step, the new state 1xk n   
is assigned by using importance 

weights (8).  Since the importance density (.)q  was chosen to 

be the prior density and the state and observation noise was 

assumed Gaussian, the evaluation of the importance weights 

can be simplified as: 
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Equation (9) gives the importance weights of the i th
 

particle at time 1k n   and needs to be normalized for the 

resampling. For the resampling step, the new set of states 

1xk n   is determined based on the importance weights. After 

cumulative distribution functions (CDFs) of the normalized 

weights are constructed, each element of the CDFs is 

compared with the uniformly distributed function to 

determine the low or high weights. The new set of states is 

then regenerated based on the high weighted samples. 
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Figure 2. State-space formulations of motion and reflecting force data in the teleoperation scenario and the proposed prediction scheme using 

the particle filter method. 

 

 

3.2 Force Prediction 

 

Prediction of the reflecting force data can be achieved by a 

similar approach. The force data generated by a contact with 

an object or a surrounding environment are fed into the 

master controller. The transmission of the force data over the 

Internet can also be formulated as a nonlinear or 

non-Gaussian state-space model, as shown in Figure 2.  The 

true force data are then predicted by the prediction-based 

particle filter algorithm given the available observations. 

Since the force data must be sampled at a relatively high 

frequency rate (above 1,000 Hz) in order to achieve realistic 

and continuous force, they are relatively difficult to predict. 

Let the true force data generated from the slave controller 

at time k  be fk  in a single DoF teleoperation system. This is 

the feedback force data delayed n  time steps and transmitted 

over the Internet. The force data at master controller received 

through the Internet is viewed as the impaired observation 

and it can be expressed as fk n . Similar to the position 

prediction problem, the one-step-ahead prediction of the state 

1fk n   
given available observations 1:f k n  can be 

represented as ˆ
1|fk n k n   . Based on the prediction-based 

particle filter approach, the posterior density function 

( | )1 1:p f fk n k n    
can be approximated by computing the 

importance weights based on (5)-(8). The implementation of 

the particle filter algorithm to the force data can be achieved 

by applying steps shown in Table 1. The dynamic model of 

the reflecting force data in the state-space framework and its 

prediction approach using the particle filter method are 

illustrated in Figure 2. 

 

 

4.  Experiments 

 

In order to verify the proposed prediction-based particle 

filter method for a teleoperation scenario, we performed 

experiments using the PHANTOM Desktop haptic device. In 

conjunction with virtual 3D graphical environment, the haptic 

device provides positioning input while receiving feedback 

force by a 6-DoF manipulation. In this experimental scenario, 

the PHANTOM Desktop was used as a master controller 

where a human operator provides motion data. A 3D virtual 

teleoperator model was programmed as a slave controller 

using the C++ and OpenGL libraries. The virtual teleoperator 

based on the 4-DoF Selective Compliance Assembly Robot 

Arm (SCARA) model was designed. According to the 

movement from the master controller, the contact force that 

feeds into the master controller is generated when the tip of 

the SCARA model collides with objects. Note that the 

positions of the 4-DoF SCARA model are mapped to the 

master controller so that the PHANTOM Desktop is only 

capable of manipulating 4-DoF. The experimental scenario 

consisting of the PHANTOM Desktop haptic device 

interfaced with the 3D virtual teleoperator is shown in Figure 

3.  
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Figure 3. Prediction-based teleoperation experimental scenario: The 

PHANTOM Desktop haptic device and the virtual 3D graphical 

representation are used for master and slave controllers, 

respectively. 

 

In the experimental scenario, we simulated the Internet 

time delay model between the master and slave controllers. 

TCP provides reliable data transmission between the 

controllers. However, due to the TCP retransmission and 

congestion control mechanism, large fluctuations of time 

delay may be introduced. Hence, it has been suggested that 

UDP may be used for the teleoperation because it introduces 



 

 

 

relatively low time delay variations. The experimental 

scenario provided the simulated Internet time delay model 

typically observed in the UDP transmission [1], [6]. The 

model that introduces fluctuation and jitter is shown in Figure 

4. The maximum and average time delay was 132 ms and 63 

ms, respectively, over a five-second interval. In this 

experiment, we assumed that the motion data transmitted to 

the slave controller and the force data received at the master 

controller experienced identical delay, shown in Figure 4. 
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Figure 4. The Internet time delay model with variations. 

 

To verify the prediction performance of the particle filter 

method, one-dimensional motion and reflecting force data at 

each stage were extracted over a five-second interval. The 

experimental scenario is based on the 3D virtual 

representation. The sampling rate of the motion data was 50 

Hz to enable the human eye to perceive continuous motion. 

The sampling rate of the reflecting force data rendered by the 

PHANTOM Desktop haptic device was 1,000 Hz in order to 

maintain realistic and continuous force. It is advised that the 

motion data and force data should be sampled at no less than 

30 Hz and 1,000 Hz, respectively. 

The one-dimensional true motion and reflecting force data 

obtained from the master and slave controllers are shown in 

Figure 5. The observed motion and force data that are delayed 

based on the time delay model shown in Figure 4 are also 

shown in Figure 5. The delayed motion and force data were 

impaired by the time delay model due to the fluctuation of 

time delay. 

The prediction-based particle filter method was 

implemented in order to predict the motion and reflecting 

force data. In both motion and force prediction cases, 100 to 

500 particles were used. For simplicity, the state and 

observation noises were assumed to be Gaussian with zero 

means and unit variances. The predicted motion data and 

reflecting force data are shown in Figure 6.  

In general, the large number of particles gives improved 

performances in the motion and force predictions. However, 

the large number of particles introduces computational 

complexity, which may introduce time delay. Since the 

teleoperation is an interactive application that requires the 

real-time operation, such computational requirements may 

adversely affect performing real-time operations. Hence, it 

may be necessary to efficiently select the number of particles. 

The mean square error (MSE) of the motion and reflecting 

force predictions based on the selected number of particles is 

shown in Table 2. The number of particles can be efficiently 

selected while maintaining the MSE performances. 

 
Table 2 

MSE vs. number of particles. 

Number of 

particles 

Motion error  

(mm) 

Force error  

(Newton) 

100 4.423 0.1416 

200 4.366 0.1406 

300 4.037 0.1373 

400 4.027 0.1358 

500 4.009 0.1357 

 

 

5.  Conclusion 
 

In this paper, we considered the prediction of motion and 

force for teleoperation over the Internet by using the particle 

filter algorithm. The prediction-based particle filter was 

introduced and was applied to the motion and reflecting force 

predictions in a time-varying network such as the Internet. 

The experiments were performed using the PHANTOM 

Desktop haptic device in a virtual 3D graphical environment. 

The experiments showed that the prediction-based particle 

filter algorithm successfully performed the one-step-ahead 

predictions of the motion and force data. 

This paper addressed one of the signal processing 

approaches to overcome the Internet delay in teleoperation 

scenarios. Signal processing solutions may also need to be 

combined with reliable control systems in order to improve 

bilateral teleoperation systems. More efficient particle filter 

algorithms also need to be designed to address the complexity 

and operation time issues by adaptively selecting the number 

of particles [15].  
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Figure 5. True and delayed motion data (left) and true and delayed feedback force data (right) at the master and slave controllers over a 

five-second interval. 
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Figure 6. Predicted motion data (left) and feedback force data (right) at the slave and master controllers over a five-second interval. 
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