
Detecting Network Anomalies and Intrusions in
Communication Networks

Ana Laura Gonzalez Rios, Zhida Li, Guangyu Xu, Alfonso Diaz Alonso, and Ljiljana Trajković
Simon Fraser University

Vancouver, British Columbia, Canada
Email: {anag, zhidal, gxa5, adiazalo, ljilja}@sfu.ca

Abstract—Detecting anomalies and intrusions in communica-
tion networks is of great interest in cyber security. In this paper,
we use Support Vector Machine (SVM) and Broad Learning
System (BLS) supervised machine learning approaches to detect
anomalies and intrusions in datasets collected from packet data
networks. The developed models are trained and tested using
data from the Internet routing tables, a simulated air force base
network, and an experimental testbed. These datasets contain
records of both intrusions and regular traffic data. We compare
the two machine learning algorithms based on accuracy, F-Score,
and training time.

Keywords—Machine learning, support vector machine, broad
learning system, anomaly and intrusion detection

I. INTRODUCTION

The Internet is highly susceptible to failures and attacks.
Malicious activities in communication networks are monitored
using various intrusion detection systems (IDSes) [13]. They
are important for identifying and classifying anomalies and
intrusions. Most IDSes are behavior-based where regular pat-
terns in network traffic are defined and then traffic is scanned
for non-conforming patterns [26]. They may be network-based
or host-based. Network-based systems monitor incoming net-
work traffic (Internet Protocol addresses, service ports, and
protocols) while host-based systems monitor operating system
files and processes. Various machine learning models have
been implemented to enhance cyber security [22].

Support Vector Machine (SVM) [17], Recurrent Neu-
ral Networks (RNNs) such as Long Short-Term Memory
(LSTM) [23] and Gated Recurrent Unit (GRU) [16], and
Broad Learning System (BLS) [14], [15], [28] supervised
machine learning models have been used to classify known
network anomalies and intrusions [25]. These models have
demonstrated robustness, high accuracy, and short training
time when classifying Border Gateway Protocol (BGP) anoma-
lies [11], [18], [19], [24]. LSTM, GRU, and BLS models also
successfully identified anomalies when using the NSL-KDD
dataset [24].

Reliable identification, testing, and validation of anomalies
and intrusions depend on the quality of datasets. Anomaly
and intrusion detection systems may be evaluated using traffic
collected from deployed networks or experimental testbeds.
The developed models are evaluated using data collected from

This work was supported by the Natural Sciences and Engineering Research
Council (NSERC) of Canada under grant R31-611284.

Réseaux IP Européens (RIPE) [1], the NSL-KDD benchmark
dataset [2], and the CICIDS2017 data collected by the Cana-
dian Institute for Cybersecurity (CIC) [3].

RIPE data contain messages collected from BGP routing
tables. BGP is an incremental path vector Internet routing
protocol that distributes notifications about the changes in
topologies and reachability through update and withdrawal
messages. BGP manages network reachability information and
selects the most preferable routes using four types of mes-
sages: open, update, notification, and keepalive. BGP relies
on the Transmission Control Protocol (TCP) for exchanging
messages between routers. BGP is vulnerable and prone to
anomalies that impede the successful reachability message
exchange and may generate thousands of anomalous BGP
updates [10], [32]. Several proposals and modifications have
been introduced to improve BGP security [20], [29].

Deployed testbeds consist of firewalls, routers, switches, and
operating systems that are simulated, emulated, or built with
physical network elements such as: National Cyber Range
(NCR), Emulab, Testbed@TWISC, DETERlab, PlanetLab,
Self-organising Adaptive Technology Underlying Resilient
Networks (SATURN), StarBED, and Global Environment for
Network Innovations (GENI) [21].

NSL-KDD dataset consists of selected features from the
KDD’99 dataset that contained TCP, User Datagram Protocol
(UDP), and Internet Control Message Protocol (ICMP) traffic
collected using the tcpdump utility. Data were captured from
an evaluation testbed simulating a small air force base and
included large number of virtual hosts and user automata [27].

CIC developed a testbed framework that generated regular
(benign) and intrusion (attack) traffic data [30]. Based on
this framework, a victim-network and an attacker-network
were implemented to generate CICIDS2017 dataset [31]. The
victim-network testbed included three servers, one firewall,
two switches, and ten PCs interconnected by a domain con-
troller and active directory. One switch was configured as a
mirror port to capture the network traffic. The attacker-network
consisted of one router, one switch, and four PCs.

This paper is organized as follows: We describe BGP, NSL-
KDD, and CICIDS2017 datasets in Section II. The Support
Vector Machine and BLS models are presented in Section III
and Section IV, respectively. The experimental procedure and
training parameters employed as well as their performance
measures are given in Section V. We conclude with Section VI.

II. DESCRIPTION OF DATASETS

We consider regular (0) and anomalous (1) classes in BGP,
NSL-KDD, and CICIDS2017 datasets.

A. BGP Datasets
BGP datasets were extracted from BGP update messages

collected from RIPE [1]. In this paper, we analyze three
well-known anomalies: Slammer, Nimda, and Code Red I as
shown in Table I. We consider 37 numerical features. Each
dataset contains 7,200 data points, obtained from five days of
anomalous and regular data. Hence, each data point represents
one minute of routing records.

TABLE I
BGP INTERNET ANOMALIES

Dataset Beginning of event End of event Duration
GMT GMT (min)

Slammer 25.01.2003, 05:31 25.01.2003, 19:59 869
Nimda 18.09.2001, 13:19 20.09.2001, 23:59 3,521
Code Red I 19.07.2001, 13:20 19.07.2001, 23:19 600

During the Slammer attack [5], Microsoft Structured Query
Language (SQL) servers and PCs with Microsoft SQL Server
Data Engine (MSDE) were infected through a code that
randomly generated IP addresses. The code replicated itself by
infecting new machines through randomly generated targets.
The number of infected machines doubled approximately
every 9 s.

Nimda attack [6] exploited vulnerabilities in the Microsoft
Internet Information Services (IIS) web servers for the Internet
Explorer 5. The worm propagated by sending an infected
attachment that was automatically downloaded after viewing
email. A user could also download it from the website or
access an infected file through the network. Nimda infected
over 2.2 million servers and PCs in a 24-hour period.

The Code Red I worm [7] attacked Microsoft IIS web
servers, replicated itself by exploiting weakness of the IIS
servers, and searched for vulnerable servers to infect. Rate
of infection doubled every 37 min during the attack.

Concatenations of two datasets are used for training while
the third dataset is used for testing as shown in Table II.

TABLE II
BGP TRAINING AND TEST DATASETS

Dataset Training dataset Test dataset
S+N→C Slammer and Nimda Code Red I
S+C→N Slammer and Code Red I Nimda
N+C→S Nimda and Code Red I Slammer
N+S→C Nimda and Slammer Code Red I
C+S→N Code Red I and Slammer Nimda
C+N→S Code Red I and Nimda Slammer

We also partition the datasets by selecting 80 %, 70 %,
or 60 % of anomalous data for training and the remaining
20 %, 30 %, or 40 % for testing. (We keep the number of
data points in the training and test datasets to be divisible
by 20 by moving the remaining data points from the training
to the test dataset.) The number of data points in the BGP
training and test datasets are listed in Table III.

B. NSL-KDD Dataset

NSL-KDD [2] is an improved version of the KDD’99
intrusion dataset, which is based on DARPA 1998 dataset.
It is a benchmark widely used for evaluation of anomaly
detection techniques. The NSL-KDD dataset is a randomly
selected subset of KDD’99 after redundant data were removed.
It contains four types of attacks: denial of service (DoS), user
to root (U2R), remote to local (R2L), and probe.

NSL-KDD dataset contains nine weeks of collected traf-
fic when various intrusions were introduced in a simulated
air force base network [27]. Each network connection is
represented by 41 features. The dataset contains one train-
ing (KDDTrain+) and two test datasets (KDDTest+ and
KDDTest−21). KDDTest−21 is a subset of the KDDTest+

dataset that does not include records correctly classified by 21
models [33]. The number of data points is shown in Table IV.

C. CICIDS2017 Dataset

The CIC testbed is used to create the publicly available
CICIDS2017 dataset that includes multiple types of recent
cyber attacks. Network traffic was collected between Monday,
03.07.2017 at 09:00 and Friday, 07.07.2017 at 17:00. The
dataset files contain raw pcap and extracted data that include
features and labels for each flow. The extracted data are based
on TCP, UDP, and IPv6 hop-by-hop protocol flows. They
are generated using a testbed having both the victim and the
attacker networks. Regular traffic captures behavior of 25 users
and includes data based on HTTP, HTTPS, FTP, SSH, and
email protocols (SMTP, POP3, and IMAP). The testbed for
CICIDS2017 contains interconnected Windows workstations
including service packs with various known vulnerabilities and
Linux based machines with the Metasploit-defined distribution
designed for attacks by penetration testers.

Traffic flows collected on Monday, 03.07.2017 are regular
while eight types of intrusion attacks have been initiated
between Tuesday, 04.07.2017 and Friday, 07.07.2017: brute
force using file transfer protocol (FTP) and secure shell (SSH),
heartbleed, web attack, infiltration, botnet, denial of service
(DoS), and distributed denial of service (DDoS) [3], [4].
List of intrusion attacks and number of flows are shown in
Table V and Table VI, respectively. These intrusions rely
on various network vulnerabilities [31]. Brute force is used
for password guessing through repetitive attempts. Heartbleed
attacks a network by accessing the memory of the system
using Open Secure Sockets Layer (OpenSSL) cryptography
library. Web attack involves SQL injection, cross-site scripting,
and brute force using HTTP. Infiltration exploits vulnerable
software and are conducted from inside network. The botnet
attackers control devices and perform various attacks through
the Internet. DoS and DDoS make resources of target machines
unavailable due to flooding.

Intrusions were executed using malicious attack tools such
as Patator, Slowloris, Heartleech, Damn Vulnerable Web App,
Metasploit, Ares, and Low Orbit Ion Cannon. The publicly
available CICFlowMeter [4] tool was employed to extract

TABLE III
NUMBER OF DATA POINTS FOR BGP TRAINING AND TEST DATASETS

Partition (%) Regular Anomalies Regular Anomalies Beginning of collection End of collection
(training/testing) (training) (training) (test) (test)

Slammer
60/40 3,740 531 3,460 339
70/30 3,820 611 3,380 259 23.01.2001 00:00:00 27.01.2001 23:59:59
80/20 3,900 691 3,300 179

Nimda
60/40 5,800 2,123 1,400 1,399
70/30 6,140 2,463 1,060 1,059 16.09.2001 00:00:00 20.09.2001 23:59:59
80/20 6,500 2,823 700 699

Code Red I
60/40 4,040 362 3,160 239
70/30 4,100 422 3,100 179 17.07.2001 00:00:00 21.07.2001 23:59:59
80/20 4,160 482 3,040 119

TABLE IV
NSL-KDD DATASET: NUMBER OF DATA POINTS

Regular DoS U2R R2L Probe Total
KDDTrain+ 67,343 45,927 52 995 11,656 125,973
KDDTest+ 9,711 7,458 200 2,754 2,421 22,544
KDDTest−21 2,152 4,342 200 2,754 2,402 11,850

84 features. We use the dataset where features flow ID,
source IP address, source port number, destination IP address,
protocol, and timestamp have been removed from datasets
before training and testing. A total of 2,830,743 data points
were collected during the five days. We extract data points
corresponding to the morning (08:45) and early afternoon
(13:00) on Tuesday, 04.07.2017 to construct the training and
test datasets. We used this smaller dataset because of the SVM
long training time.

III. SUPPORT VECTOR MACHINE

The SVM algorithm is a supervised learning approach used
to identify optimal hyperplanes (decision boundaries) [17].
Hyperplanes are optimized by maximizing the margin (mini-
mum distance) between the data points of different classes.
The data points that determine the margin are known as
support vectors. SVM is a powerful approach for signal
and image processing as well as classification of network
anomalies. Linearly and nonlinearly separable data may be
classified employing SVM. Kernels are linear and nonlinear
maps that project the input data points from lower to higher di-
mensional spaces in order to reduce computational complexity
of the algorithm. Examples of popular kernels are: polynomial,
Gaussian radial basis function (RBF), and sigmoid. SVM with
kernels may be applied to datasets having large number of
features without additional computational complexity [34].

Polynomial kernels are defined as:

k(xi, xj) = (xi, xj + c)p, (1)

where c is the soft margin constant [12] and p determines the
degree of the polynomial. These parameters define the error
tolerance and shape of the decision boundary of the resulting
classifier. The linear kernel (p = 1) is useful in case of a large
number of features due to its short running time. The quadratic
kernel (p = 2) maps the data points using a quadratic function
that produces an elliptical boundary when cut by a plane.

The SVM kernel using Gaussian RBF is defined as:

k(xi, xj) = exp
(
− || xi − xj || 2

σ2

)
, (2)

where σ determines the width of the Gaussian distribution as
well as the flexibility and smoothness of the decision boundary.
The decision boundaries of Gaussian RBF kernels have the
shape of hyperellipses.

The sigmoid kernel is defined by the hyperbolic tangent
function:

k(xi, xj) = tanh(βxT
i xj + r), (3)

where β scales the input data and r is a shifting parameter
that controls the mapping threshold.

IV. BROAD LEARNING SYSTEM

Deep learning neural networks usually rely on a large
number of hidden layers that may employ RNNs such as
LSTM and GRU. In contrast, BLS framework [9], [15], an
alternative to deep learning networks, improves the structure
of a random vector functional-link neural network by mapping
the input data X to a set of mapped features Zn as shown
in Fig. 1. Enhancement nodes Hm are generated from these
mapped features using random weights.

The groups of mapped features and enhancement nodes are
defined as:

Zn = φ(XWei + βei) i = 1, 2, ..., n, (4)

Hm = ξ(Zn
xWhj + βhj) j = 1, 2, ...,m, (5)

where φ and ξ are the feature and enhancement mappings,
respectively. Wei and Whj are weights while βei and βhj

are bias parameters.
BLS offers comparable performance to deep learning mod-

els and has shorter training time [24] when used with large
datasets such as NSL-KDD. BLS variations include: BLS with
Radial Basis Function (BLS-RBF) [28], BLS with cascades,
and incremental BLS. The RBF network has one input, one
hidden, and one output layer. It uses Gaussian function as
the RBF kernel (2). The cascades of BLS implement various
algorithms to create groups of mapped features (CFBLS)
and enhancement nodes (CEBLS) [14]. When cascading only
mapped features or only enhancement nodes, each new group
of mapped features or enhancement nodes is generated using

Fig. 1. Module of the BLS algorithm with increments of mapped features, enhancement nodes, and new input data [15].

TABLE V
CICIDS2017 DATASET: TYPES OF INTRUSION ATTACKS

Attack Label Day Number of intrusions
Brute force FTP, SSH Tuesday 7,935; 5,897
Heartbleed Heartbleed Wednesday 11
Web attack Brute force, XSS, SQL Injection Thursday morning 1,507; 652; 21
Infiltration Infiltration, PortScan Thursday and Friday afternoons 36; 158,930
Botnet Bot Friday morning 1,956
DoS Slowloris, Hulk, GoldenEye, SlowHTTPTest Wednesday 5,796; 230,124; 10,293; 5,499
DDoS DDoS Friday afternoon 128,027

TABLE VI
CICIDS2017 DATASET: NUMBER OF FLOWS

Day Valid flows Total
Monday 529,481 529,918
Tuesday 445,645 445,909
Wednesday 691,406 692,703
Thursday (morning) 170,231 170,366
Thursday (afternoon) 288,395 288,602
Friday (morning) 190,911 191,033
Friday (afternoon, PortScan) 286,096 286,467
Friday (afternoon, DDoS) 225,711 225,745

the previous group. The first group of CFBLS mapped features
is created using the input data with n = 1 (4). The first
CEBLS enhancement node is created using mapped features
with m = 1 (5). The subsequent groups of mapped features
or enhancement nodes are defined as:

Zk = φ(Zk−1Wek + βek)

, φk(X ;
{
Wei,βei

}
k
i=1), for k = 1, ..., n,

(6)

Hu , ξu(Zn ;
{
Whi,βhi

}u

i=1
), for u = 1, ...,m. (7)

The combination of these cascades results in the cascade of
mapped features and enhancement nodes (CFEBLS). Incre-
mental BLS consists of dynamically added mapped features,
enhancement nodes, and input data. In this study, we consider
only incremental BLS and RBF-BLS without cascades.

V. EXPERIMENTAL PROCEDURE AND PERFORMANCE
EVALUATION

We evaluate the performance of SVM and BLS using BGP,
NSL-KDD, and CICIDS2017 datasets based on accuracy, F-
Score, and training time. Since SVM performance is influ-
enced by the kernel function, we compare the algorithm
using polynomial (linear, quadratic, and cubic), Gaussian, and
sigmoid kernels. BLS architecture as well as the number of
mapped features, enhancement nodes, and mapped groups
affects the BLS classification performance.

The experimental procedure consists of six steps:

• Step 1: Create the BGP, NSL-KDD, and CICIDS2017
training and test datasets.

• Step 2: Verify the number of regular and anomalous data
points in training and test datasets.

• Step 3: Normalize training and test datasets to have mean
0 and variance 1.

• Step 4: Train and tune parameters for SVM and BLS
models using 10-fold validation.

• Step 5: Test SVM and BLS models using BGP, NSL-
KDD, and CICIDS2017 datasets.

• Step 6: Evaluate derived models based on accuracy and
F-Score, and training time.

Experiments are performed using Dell Alienware Aurora
with 32 GB memory, NVIDIA GeForce GTX 1080 GPU, and
Intel Core i7 7700K processor.

SVM and BLS results are generated using MATLAB
R2018b. SVM models and labels for the test dataset are
generated using MATLAB functions fitcsvm and predict [8],
respectively. The training data and their labels are stored as
matrices. Function fitcsvm returns a predictor dataset (the
SVM model) based on parameters such as kernel, kernel
scale, and penalty factor (box constraint), training matrices,
and binary classification. Test data points are labeled using
function predict, the created SVM model, and test data points.
The sigmoid function in the RBF-BLS model is replaced
with the RBF function for enhancement nodes. We implement
the CFBLS, CEBLS, and CFEBLS models by modifying
the original BLS functions [9]. The SVM and BLS training
parameters that generate the best performance results are listed
in Tables VII, VIII, IX, and X while performance results are
given in Tables XI, XII, and XIII.

TABLE VII
SVM TRAINING PARAMETERS USING BGP, NSL-KDD, AND

CICIDS2017 DATASETS

Dataset Kernel Kernel scale Penalty factor
S+N→C Cubic Default Default
S+C→N Sigmoid Default Default
N+S→C Quadratic Default Default
N+C→S Linear 5 90
C+S→N Cubic 5 90
C+N→S Quadratic Default Default
Slammer (60 %) Quadratic Default Default
Nimda (80 %) RBF Default Default
Code Red I (60 %) RBF 15 100
NSL-KDD Cubic Default Default
CICIDS2017 Quadratic 5 90

TABLE VIII
BLS TRAINING PARAMETERS USING BGP DATASETS

Parameters S+N→C N+C→S C+S→N
Model RBF-BLS RBF-BLS CFBLS
Mapped features 100 100 300
Groups of mapped features 100 100 100
Enhancement nodes 1,000 1,000 1,000

Slammer Nimda Code Red I
(80 %) (60 %) (60 %)

Model BLS RBF-BLS CFBLS
Mapped features 100 100 300
Groups of mapped features 100 300 100
Enhancement nodes 1,000 1,000 1,000

VI. CONCLUSION

In this paper, we evaluated accuracy, F-Score, and training
time of SVM and BLS algorithms using BGP, NSL-KDD, and
CICIDS2017 datasets. Performance evaluation was conducted
using concatenation and partitioning of BGP datasets. While
the order of concatenations when creating training datasets
affects the SVM and incremental BLS accuracy and F-Score, it
does not influence performance of BLS models without incre-
mental learning. Only a subset of the CICIDS2017 dataset was
used to accommodate longer SVM training time. Experimental
results indicate that for NSL-KDD dataset, SVM exhibits
significantly higher accuracy and F-Score than BLS. Training

TABLE IX
INCREMENTAL BLS TRAINING PARAMETERS USING BGP DATASETS

Parameters N+S→C S+C→N N+C→S
Model RBF-BLS BLS RBF-BLS
Mapped features 200 100 100
Groups of mapped features 100 200 200
Enhancement nodes 1,000 100 1,000
Incremental learning steps 5 5 5
Data points/step 1,000 1,000 1,000
Enhancement nodes/step 100 100 100

Slammer Nimda Code Red I
(80 %) (60 %) (60 %)

Model RBF-BLS RBF-BLS BLS
Mapped features 200 100 100
Groups of mapped features 100 200 100
Enhancement nodes 1,000 1,000 1,000
Incremental learning steps 6 9 7
Data points/step 200 200 200
Enhancement nodes/step 100 100 100

TABLE X
BLS AND INCREMENTAL BLS TRAINING PARAMETERS USING NSL-KDD

AND CICIDS2017 DATASETS

Parameters NSL-KDD CICIDS2017
BLS
Model BLS CEBLS
Mapped features 100 10
Groups of mapped features 100 20
Enhancement nodes 200 200
Incremental BLS
Mapped features 100 10
Groups of mapped features 5 20
Enhancement nodes 100 200
Incremental learning steps 3 5
Data points/step 3,000 3,000
Enhancement nodes/step 60 10
Model BLS BLS

TABLE XI
PERFORMANCE OF SVM MODELS USING BGP, NSL-KDD, AND

CICIDS2017 DATASETS

Dataset Accuracy F-Score Kernel Training time
(%) (%) (s)

S+N→C 91.68 2.28 Cubic 118.42
S+C→N 60.47 37.53 Sigmoid 3.26
N+S→C 81.71 42.81 Quadratic 188.58
N+C→S 93.79 77.37 Linear 106.70
C+S→N 54.26 13.68 Cubic 56.89
C+N→S 93.93 77.78 Quadratic 210.20
Slammer (60 %) 88.90 60.41 Quadratic 0.41
Nimda (80 %) 73.14 84.49 RBF 1.10
Code Red I (60 %) 96.65 79.38 RBF 47.45
KDDTest+ 96.60 98.27 Cubic 2,128.98
KDDTest−21 99.25 99.62 Cubic 2,131.03
CICIDS2017 99.78 99.89 Quadratic 1.73

time for BLS is much shorter than for SVM when using larger
datasets. BLS with cascades of enhancement nodes requires
significantly longer training time than other BLS variants. The
training time for larger datasets is significantly shorter for
incremental BLS because its weights are dynamically updated
and, hence, the model does not need to be retrained. Larger
number of mapped features and enhancement nodes requires
additional memory and longer training time.

TABLE XII
PERFORMANCE OF BLS AND INCREMENTAL BLS MODELS USING BGP

DATASETS

Dataset Accuracy F-Score Model Training time
(%) (%) (s)

BLS
S+N→C 80.47 41.22 RBF-BLS 2.88
N+C→S 93.46 77.37 RBF-BLS 2.97
C+S→N 60.47 43.58 CFBLS 6.53
Slammer (80 %) 70.27 82.54 BLS 6.56
Nimda (60 %) 97.86 98.92 RBF-BLS 76.68
Code Red I (60 %) 66.65 79.98 CFEBLS 70.81
Incremental BLS
N+S→C 91.07 45.09 RBF-BLS 178.53
N+C→S 92.29 72.01 RBF-BLS 178.59
S+C→N 58.65 41.22 BLS 177.86
Slammer (80 %) 89.91 34.58 BLS 125.79
Nimda (60 %) 85.71 92.30 RBF-BLS 193.74
Code Red I (60 %) 89.87 61.88 BLS 33.78

TABLE XIII
PERFORMANCE OF BLS AND INCREMENTAL BLS MODELS USING

NSL-KDD AND CICIDS2017 DATASETS

Dataset Accuracy F-Score Model Training time
(%) (%) (s)

BLS
KDDTest+ 82.82 82.85 BLS 105.33
KDDTest−21 66.08 74.95 BLS 94.10
CICIDS2017 99.52 93.68 CEBLS 4.08
Incremental BLS
KDDTest+ 81.34 81.99 BLS 32.99
KDDTest−21 78.70 88.06 BLS 29.71
CICIDS2017 99.12 89.19 BLS 1.29

REFERENCES

[1] RIPE NCC [Online]. Available: https://www.ripe.net/analyse/. Accessed:
Mar. 20, 2019.

[2] NSL-KDD Data Set [Online]. Available: https://www.unb.ca/cic/
datasets/nsl.html. Accessed: Mar. 20, 2019.

[3] Intrusion Detection Evaluation Dataset (CICIDS2017) [Online]. Avail-
able: https://www.unb.ca/cic/datasets/ids-2017.html. Accessed: Mar. 20,
2019.

[4] CICFlowMeter [Online]. Available: http://netflowmeter.ca/
netflowmeter.html/. Accessed: Mar. 20, 2019.

[5] MS SQL Slammer/Sapphire worm, SANS Institute GIAC Certifications
[Online]. Available: https://www.giac.org/paper/gsec/3091/
ms-sql-slammer-sapphire-worm/105136. Accessed: Mar. 20, 2019.

[6] Responding to the Nimda worm: recommendations for addressing
blended threats, Symantec, Cupertino, CA, USA [Online]. Available:
http://securityresponse.symantec.com/avcenter/reference/nimda.final.pdf.
Accessed: Mar. 20, 2019.

[7] The Code Red worm, SANS Institute Information Security
Reading Room [Online]. Available: https://www.sans.org/reading-
room/whitepapers/malicious/code-red-worm-85. Accessed: Mar. 20,
2019.

[8] MathWorks documentation: statistics and machine learning toolbox
[Online]. Available: https://www.mathworks.com/help/stats/ Accessed:
Mar. 20, 2019.

[9] Broadlearning [Online]. Available: http://www.broadlearning.ai/.
Accessed: Mar. 20, 2019.

[10] B. Al-Musawi, P. Branch, and G. Armitage, “BGP anomaly detection
techniques: a survey,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 377–
396, 2017.

[11] P. Batta, Z. Li, and Lj. Trajković, “Evaluation of support vector machine
kernels for detecting network anomalies,” in Proc. IEEE Int. Symp.
Circuits Syst., Florence, Italy, May 2018, pp. 1–4.

[12] A. Ben-Hur and J. Weston, “A user’s guide to support vector machines,”
in Data Mining Techniques for the Life Sciences, Methods in Molecular
Biology, O. Carugo and F. Eisenhaber, Eds., New York: Springer, 2016,
vol. 1415, pp. 223–239.

[13] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: a survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, July 2009.

[14] C. L. P. Chen, Z. Liu, and S. Feng, “Universal approximation capability
of broad learning system and its structural variations,” IEEE Trans.
Neural Netw. Learn. Syst., pp. 1–14, Sept. 2018.

[15] C. L. P. Chen and Z. Liu, “Broad learning system: an effective and
efficient incremental learning system without the need for deep architec-
ture,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 10–24,
Jan. 2018.

[16] K. Cho, B. van Merriënboer, C. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder–decoder for statistical machine translations,” in Proc.
Conf. Empirical Methods Natural Lang. Process., Doha, Qatar, Oct.
2014, pp. 1724–1734.

[17] C. Cortes and V. Vapnik, “Support-vector networks,” J. of Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sept. 1995.

[18] Q. Ding, Z. Li, P. Batta, and Lj. Trajković, “Detecting BGP anomalies
using machine learning techniques,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern., Budapest, Hungary, Oct. 2016, pp. 3352–3355.

[19] Q. Ding, Z. Li, S. Haeri, and Lj. Trajković, “Application of machine
learning techniques to detecting anomalies in communication networks,”
pp. 47–70 and pp. 71–92, in Cyber Threat Intelligence, M. Conti, A.
Dehghantanha, and T. Dargahi, Eds., Berlin: Springer, 2018.

[20] D. Dolev, S. Jamin, O. Mokryn, and Y. Shavitt, “Internet resiliency to
attacks and failures under BGP policy routing,” Comput. Netw., vol. 50,
no. 16, pp. 3183–3196, Nov. 2006.

[21] H. Gao, Y. Peng, Z. Dai, and H. Li, “Techniques and research trends of
network testbed,” in Proc. 10th Int. Conf. Intell. Inf. Hiding Multimedia
Signal Process., Kitakyushu, Japan, Dec. 2014, pp. 537–541.

[22] P. Garcı́a-Teodoro, J. Dı́az-Verdejo, G. Maciá-Fernández, and
E. Vázquez, “Anomaly-based network intrusion detection: techniques,
systems and challenges,” Comput. Secur., vol. 28, pp. 18–28, Feb.-Mar.
2009.

[23] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmid-
huber, “LSTM: a search space odyssey,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[24] Z. Li, P. Batta, and Lj. Trajković, “Comparison of machine learning
algorithms for detection of network intrusions,” in Proc. IEEE Int. Conf.
Syst., Man, Cybern., Miyazaki, Japan, Oct. 2018, pp. 4248-4253.

[25] Z. Li, A. L. Gonzalez Rios, G. Xu, and Lj. Trajković, “Machine learning
techniques for classifying network anomalies and intrusions,” in Proc.
IEEE Int. Symp. Circuits Syst., Sapporo, Japan, May 2019, to appear.

[26] M. C. Libicki, L. Ablon, and T. Webb, The Defenders Dilemma:
Charting a Course Toward Cybersecurity, Santa Monica, CA, USA:
RAND Corporation, 2015.

[27] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. Mc-
Clung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham,
and M. A. Zissman, “Evaluating intrusion detection systems: the 1998
DARPA off-line intrusion detection evaluation,” in Proc. DARPA Inform.
Survivability Conf. Expo. (DISCEX’ 00), Hilton Head, SC, USA, Jan.
2000, pp. 12–26.

[28] Z. Liu and C. L. P. Chen, “Broad Learning System: structural extensions
on single-layer and multi-layer neural networks,” in Proc. Int. Conf.
Secur., Pattern Anal., Cybern., Shenzhen, China, Dec. 2017, pp. 136–
141.

[29] A. Lutu, M. Bagnulo, C. Pelsser, O. Maennel, and J. Cid-Sueiro, “The
BGP visibility toolkit: detecting anomalous Internet routing behavior,”
IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 1237–1250, Apr. 2016.

[30] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “Towards
a reliable intrusion detection benchmark dataset,” Softw. Netw., vol.
2017, no. 1, pp. 177–200, Jul. 2017.

[31] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in Proc. 4th Int. Conf. Inform. Syst. Secur. Privacy (ICISSP), Funchal,
Portugal, Jan. 2018, pp. 108–116.

[32] Y. Song, A. Venkataramani, and L Gao, “Identifying and addressing
reachability and policy attacks in ‘secure’ BGP,” IEEE/ACM Trans.
Netw., vol. 24, no. 5, pp. 2969–2982, Oct. 2016.

[33] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in Proc. IEEE Symp. Comput.
Intell. Secur. Defense Appl., Ottawa, ON, Canada, July 2009, pp. 1–6.

[34] V. Vural and J. G. Dy, “A hierarchical method for multi-class support
vector machines,” in Proc. Int. Conf. Mach. Learn., ICML 2004, Banff,
AB, Canada, July 2004, pp. 831–838.

