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Abstract—In this paper, we present a procedure for ap-
proximating DC operating points of nonlinear circuits. The
procedure is based on the Carleman linearization that trans-
forms polynomial algebraic equations into an equivalent infinite
dimensional linear system. Hence, we first perform a polynomial
approximation of the nonlinear equations describing circuits. The
infinite system of linear equations is then transformed into a finite
system using a self-consistent technique. The presented procedure
enables derivation of an approximation for all roots within a
predefined interval. The initial interval is gradually divided into
sub-intervals until all roots are identified. Contrary to usually
applied methods, this approach does not depend on the domain
of attraction of a root and may be also applied in cases of multiple
solutions.

Index Terms—Nonlinear circuits, DC operating points, nonlin-
ear analysis, Carleman linearization

I. INTRODUCTION

Analysis of DC operating points of a nonlinear circuit
requires solving a nonlinear algebraic equation. In most cases,
its analytic solution cannot be derived and, hence, various
approaches exist including the well known Newton-Raphson
method and homotopy methods [1]. However, these methods
have drawbacks. In the case of the Newton-Raphson method, a
suitable starting point needs to be identified in advance. In the
case of multiple DC operating points, an inappropriate guess
may yield an undesired solution. Alternatively, a homotopy
method may be used where the original problem is transformed
by embedding a new parameter resulting in a traceable system.
By varying the homotopy parameter and thus tracing the
solution, the original problem may be solved. However, in
case of multiple solutions, the method needs to be extended
since the trace may vanish for some values of the parameter
[2]. Furthermore, knowledge of the system to be solved is
necessary for devising a successful embedding [3].

Another approach is the so called bisection method [4].
Hereby, the considered nonlinear algebraic equation are ex-
amined for a sign change in a given interval. By gradually
dividing the interval, the roots may be enclosed and a more
accurate approximation of the root in the initial interval can
be obtained. However, the initial interval should be selected
so that a sign change of the nonlinear function occurs at the
borders of the interval. Furthermore, the method cannot be
applied in case of a double root.

In this contribution, we present an alternative procedure
that provides an approximation of all possible DC operating
points in an initially selected interval. These solutions may
then be used as starting points for the Newton-Raphson
method in order to increase the accuracy of the solutions.
The procedure is based on the Carleman linearization that
allows transformation of polynomial algebraic equations into
an equivalent infinite-dimensional linear system [5]. Since the
procedure is restricted to polynomial equations, we assume
that the behavior of the nonlinear circuit is approximated by
a polynomial model. For example, the approximation may be
performed by applying a Taylor series or a least square fit.

Due to the infinite dimension of the system of linear
equations, a solution may be derived only in special cases.
Therefore, we apply a self-consistent technique that approx-
imates the infinite system of equations by a finite system
over a predefined interval [6]. In contrast to local methods,
this technique enables performing a global analysis of the
circuit behavior. If no roots or multiply roots exist in the
predefined interval, it may be observed that the solution of
the finite dimensional system do not converge when increasing
its dimension. This property is applied in order to isolate
each root yielding separate intervals that contain a single root.
Hence, a gradual division of the initial interval is performed
until the solution converges within each sub-interval for an
increasing order of the finite dimensional system. In contrast
to the bisection method, it is not necessary that a sign change
occurs in the initial interval and, furthermore, double roots
may be identified. Furthermore, if the no-gain property holds,
all possible solutions are limited by the supply voltage [7].
Hence, the initial interval for the self-consistent technique
is predefined. The procedure is first described for the one-
dimensional case. Only circuits that may be decomposed into
sub-circuits to reduce the multidimensional problem [8] are
considered.

The paper is organized as follows: In Section II, the
Carleman linearization for algebraic equations and the self-
consistent technique are presented. The procedure for the ap-
proximation of DC operating points is described in Section III.
In Section IV, a tunnel-diode circuit and a CMOS astable
multivibrator are analyzed using the presented procedure.
Finally, a conclusion is given in Section V.



II. CARLEMAN LINEARIZATION AND ALGEBRAIC
EQUATIONS

We consider one-dimensional polynomial algebraic equation
F : R→ R:

F (x) :=

l∑
i=0

αix
i = α0 + α1x+ · · ·+ αlx

l = 0, (1)

where l <∞ and x ∈ R. We use transformation:

xn := xn. (2)

Multiplying (1) by xn yields the linear difference equation:

fn(x1, · · · , xn+l) :=

l∑
i=0

αixn+i

= α0xn + α1xn+1 · · ·+ αlxn+l = 0,

(3)

with x0 := x0 := 1 and n = 0, 1, 2, · · · [5]. The de-
sired solution x in (1) corresponds to x1 := x1 := x.
For each n, (3) corresponds to a linear function of several
variables fn(x1, x2, · · · , xn+l) yielding an equivalent infinite-
dimensional linear system:

Ax = b, (4)

with
x = [x1, x2, x3, · · · ]ᵀ ∈ R∞ (5)

b = [−α0, 0, 0, · · · ]ᵀ ∈ R∞ (6)

and the coefficient matrix:

A =


α1 α2 · · · αl 0 · · ·
α0 α1 α2 · · · αl · · ·
0 α0 α1 · · · αl−1 · · ·
...

...
...

...
...

. . .

 ∈ R∞ ×R∞. (7)

Although each row contains only a finite number of nonzero
coefficients, a general solution of (4) may only be derived in
special cases [9]. Therefore, an approximation of (4) is nec-
essary. One possible approximation is to truncate the infinite-
dimensional linear system (4) to a predefined dimension Nmax

thus setting:
xn = xn = 0 ∀n > Nmax. (8)

This approach yields the finite dimensional linear system:

Âx̂ = b̂, (9)

with finite vectors x̂ ∈ RNmax and b̂ ∈ RNmax , and the finite
matrix Â ∈ RNmax×RNmax that may be solved using the well-
known methods from linear algebra. However, this approach
provides only an approximation in the vicinity of the origin
since only then the assumption for higher order terms (8) is ap-
proximately satisfied. Alternatively, a self-consistent technique
may be applied for finding an approximation in a predefined
interval Ω for nonlinear differential equations [6]. The main
idea is to adapt the coefficient matrix (7) so that the finite linear
system approximates the infinite-dimensional linear system
within Ω.

The procedure for the self-consistent technique follows: We
first define a maximal order Nmax and the interval Ω. In the
next step, fn(x1, x2, · · · , xn+l) is transformed using (2):

fn(x, x2, · · · , xn+l) = 0. (10)

Each polynomial function (10) is now approximated by a
polynomial; gn(x, · · · , xNmax) with maximal order Nmax:

fn(x, x2, · · · , xn+l) ≈ gn(x, x2, · · · , xNmax)

≈
Nmax∑
i=0

βn,ix
i,

(11)

where βn,i is calculated using a least square fit [10]:

min

∫
x∈Ω

[
fn(x, x2, · · · )−

Nmax∑
i=0

βn,ix
i

]2

dx (12)

for the predefined interval Ω. The coefficients βn,i are only
calculated if the maximal degree of fn(x, x2, · · · , xn+l)
is larger than Nmax. Otherwise, the original coefficients
in fn(x, x2, · · · , xn+l) are kept. The new polynomial
gn(x, x2, · · · , xNmax) approximates fn(x, x2, · · · , xn+l) over
the given interval Ω. Finally, (2) is used to transform gn(·)
into:

gn(x1, · · · , xNmax
) = 0, (13)

yielding a finite dimensional linear system that approximates
the algebraic equation (1) over Ω. As Nmax increases, the de-
viation between infinite and finite dimensional linear systems
reduces over Ω because the higher order terms in (12) are
available. However, it may be observed that if multiple roots
exist within Ω, the solution diverges as Nmax increases and no
unique solution may be determined. Similar behavior may be
observed if no root exists within the interval Ω. This criteria
will be used to identify if a single root is located within the
interval.

III. APPROXIMATION OF DC OPERATING POINTS

The DC operating points of a nonlinear circuit are defined
as real roots of nonlinear algebraic equations: F : Rk → Rk:

F(x) = 0, (14)

where x ∈ Rk consists of circuit voltages and currents. By de-
composing the nonlinear circuit into sub-circuits, (14) may be
reduced to the one-dimensional case x ∈ R, F : R→ R [8]:

F (x) = 0. (15)

If F (x) includes transcendental functions, a Taylor series
or a least square fit may be applied in order to obtain a
polynomial approximation. Hence, in the remaining of the
paper, we assume that F (x) is polynomial function and apply
the self-consistent Carleman linearization. If the considered
circuit satisfies the no-gain property, all possible DC operating
points are limited by the supply voltage VDD [7]. Hence, the
initial interval Ω for the self-consistent technique is defined
as Ω = [−VDD − δV, VDD + δV ] for a differential voltage
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Fig. 1. Procedure for approximation of multiple DC operating points based
on the self-consistent Carleman linearization.

or Ω = [0, VDD + δV ] for the single-ended supply case.
An additional small offset δV is introduced to ensure that
the solution x = VDD falls inside the interval. The self-
consistent Carleman linearization is then applied with two
maximal orders: Nmax,1 and Nmax,2, with Nmax,2 > Nmax,1.
If one real root exists within Ω, both solutions will converge
in the vicinity of the root and the procedure is completed.
However, if multiple roots exist in the interval, the solutions
diverge. In this case, the initial interval Ω is divided into two
equal sub-intervals: Ω1 ⊂ Ω and Ω2 ⊂ Ω. The self-consistent
Carleman linearization is applied again in each sub-interval
with Nmax,1 and Nmax,2 and the criteria is again verified
for each case. If the criteria is still not satisfied in one of
the sub-intervals, the procedure is repeated. It is possible that
in a divided sub-interval no root exist. In order to check the
existence of a root in a given sub-interval, the corresponding
sub-interval is expanded until an already identified root falls
within the new borders. If the solution converges, then the
expanded sub-interval contains only the already identified root.
The flowchart of the procedure is shown in Fig. 1.

IV. EXAMPLES

The described procedure is applied to two nonlinear circuits:
a tunnel-diode circuit and a CMOS astable multivibrator.

A. Tunnel-Diode Circuit

We analyze DC operating points of the tunnel-diode circuit
shown in Fig. 2. The behavior of the tunnel-diode may be
described by the polynomial equation [11]:

I = g(V ) := (17.76V − 103.79V 2 + 229.62V 3

− 226.31V 4 + 83.72V 5) mA,
(16)

yielding the algebraic equation:

f(V ) :=
VDD − V

R
− g(V ) = 0. (17)

VDD

R

V

I

Fig. 2. Tunnel-diode circuit with VDD = 1.2 V and R = 1.5 kΩ.

Ω2 Ω1

Ω

V

103 · f(V )

Fig. 3. Algebraic function f(V ) (line) of the tunneling-diode circuit shown
in Fig. 2. Real roots are calculated by self-consistent Carleman linearization
for two values of maximal order Nmax (� = 2, ? = 4). The initial interval
Ω is divided into Ω1 and Ω2.

The DC operating points are obtained by solving (17). We
apply the procedure described in Section III. We used the
initial interval Ω = [0, VDD + δV ] with δV = 10 mV and
apply the procedure for Nmax = 2 and Nmax = 4.

As shown in Fig. 3, multiple roots exist within the interval
Ω. Hence, the initial interval is divided into two sub-intervals:
Ω1 and Ω2. Only one root exists within Ω1 and, hence, the
solution converges as Nmax increases. In contrast, two roots
lie within the interval Ω2 and the solutions do not converge.
Hence, the criteria is not satisfied and the interval Ω2 needs
to be further divided.

Note that the initial interval Ω2 has to be divided twice until
all roots are approximated.

The resulting sub-intervals are shown in Fig. 4. In each sub-
interval, the self-consistent Carleman linearization converges
in the vicinity of roots. Furthermore, Ω′2 is extended to Ω̂2

in order to examine if an additional root lies within Ω′2. As
shown, the solution within Ω̂2 converges as Nmax increases
so that no additional root exists within the interval Ω′2. Since
the criteria is satisfied in each sub-interval, all roots in the
initial interval Ω have been identified and their approximate
solutions calculated.

B. CMOS Astable Multivibrator

The CMOS astable mutlivibrator realized with four MOS
transistors M1 to M4 is shown in Fig. 5.

The multivibrator is described by a polynomial equa-
tion [12]:

I(V ) = −c1V + c3V
3, (18)
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Fig. 4. Algebraic function f(V ) (line) of the tunneling-diode circuit in Fig. 2
and calculated real roots by self-consistent Carleman linearization for two
values of maximal order Nmax (� = 2, ? = 4) for each interval Ωi (i = 1,
2, 3, and 4).
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Fig. 5. CMOS astable multivibrator with R = 10 kΩ and VDD = 2.5 V.

where

c1 =
8

3

IM
VDD

c3 =
c1
V 2
DD

,
(19)

yielding the algebraic equation:

f(V ) :=
V

R
− I(V )

= V

(
1

R
+ c1

)
− c3V 3 = 0.

(20)

In this example, IM = 4.72 mA, VDD = 2.5 V, and
R = 10 kΩ. Due to its differential structure, a solution of (20)
lies in the range −VDD ≤ V ≤ VDD. Hence, we as-
sume the initial interval Ω = [−VDD − δV, VDD + δV ] with
δV = 100 mV. The trivial root V = 0 V (20) may be found
directly. Three sub-intervals are used as shown in Fig. 6. The
self-consistent Carleman linearization is applied in each sub-
interval with Nmax = 7 and Nmax = 9. As shown in Fig. 6,
the solution converges within each interval as Nmax increases,
yielding an approximation of the three roots. Since a single
root is identified in each sub-interval, all possible roots in
the initial interval Ω have been located and their approximate
solutions calculated.
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Fig. 6. Algebraic function f(V ) (line) of the CMOS astable multivibrator
shown in Fig. 5. Real roots are calculated by self-consistent Carleman
linearization for two values of maximal order Nmax (� = 7, ? = 9) for
each interval Ωi (i=1, 2, and 3).

V. CONCLUSION

In this paper, we presented a procedure for approximating
DC operating points of nonlinear circuits by using a self-
consistent Carleman linearization over a predefined interval. If
the interval contains a single DC operating point, solution con-
verges as the maximal order of the approximating polynomial
increases. In the case of multiple solutions, the initial interval
is gradually divided into sub-intervals in order to isolate all
DC operating points. The method may be applied to finding
multiple solutions independently of the domain of attraction
and may be extended to the higher dimensional cases.
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