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Abstract—Analyzing and detecting Border Gateway Protocol
(BGP) anomalies are topics of great interest in cybersecurity.
Various anomaly detection approaches such as time series
and historical-based analysis, statistical validation, reachabil-
ity checks, and machine learning have been applied to BGP
datasets. In this paper, we use BGP update messages collected
from Réseaux IP Européens and Route Views to detect BGP
anomalies caused by Slammer worm, WannaCrypt ransomware,
and Moscow blackout by employing recurrent neural network
machine learning algorithms.

Index Terms—network anomalies, BGP, RIPE, Route Views,
machine learning, recurrent neural networks

I. INTRODUCTION

Border gateway protocol (BGP) is an incremental path
vector routing protocol that manages network reachability
information and optimally routes data between Internet au-
tonomous systems (ASes). An AS is a collection of BGP
routers (peers) within a single administrative domain. ASes are
identified with a unique number allocated by a corresponding
regional Internet registry (RIR): African network information
center (AFRINIC), American registry for Internet numbers
(ARIN), Asia-Pacific network information centre (APNIC),
Latin America and Caribbean network information centre
(LACNIC), and Réseaux IP Européens network coordination
centre (RIPE NCC). BGP relies on the Transmission Control
Protocol (TCP) (port 179) for reliable router–to–router com-
munication using four message types: open, keepalive, update,
and notification. BGP update and withdrawal messages are
notifications about changes in network topology and reach-
ability. BGP data are used to analyse the Internet topology
and hierarchy, infer AS relationships [1], and evaluate various
intrusion and anomaly detection mechanisms [2], [3]. Data
are collected using BGP trace collectors (RIPE [4] and Route
Views [5]), route servers, looking glasses, and the Internet
routing registries. Various BGP data collections may be com-
bined to provide a more complete Internet topology [6].

BGP is prone to anomalies that impede successful exchange
of reachability messages and may generate a large volume of
anomalous updates messages [2], [7]. Hence, several modi-
fications have been proposed to improve BGP security [8],
[9]. BGP anomalies include worms (Slammer), ransomware
attacks (WannaCrypt), routing misconfigurations [10], Inter-
net Protocol (IP) prefix hijacks [11], and link failures [12]
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(Moscow blackout). BGP anomalies [13], [14] may be classi-
fied using various machine learning algorithms such as support
vector machine [15], recurrent neural networks (RNNs), and
broad learning system [16].

In this paper, we classify network anomalies emanating
from Slammer worm, WannaCrypt ransomware, and Moscow
blackout by extracting BGP update messages from RIPE
and Route Views data collection sites. Performance of long
short-term memory (LSTM) [17] and gated recurrent unit
(GRU) [18] RNNs classification algorithms is compared.

The paper is organized as follows: BGP data collection
sites are introduced in Section II. Details of BGP anomalies
(Slammer, WannaCrypt, and Moscow blackout) are given in
Section III while extracted BGP datasets are described in
Section IV. The experimental procedure and comparison of
machine learning algorithms are given in Section V. We
conclude with Section VI.

II. BGP DATA COLLECTIONS

BGP routing information is shared by Internet service
providers (ISPs) located in various geographical locations [6].
BGP trace collectors receive BGP messages from their peers
and periodically store the routing updates and tables into
publicly available archives. Routing tables contain numerous
entries from each peering AS that indicate the preferred paths
to destination prefixes at a given time. Routing messages
indicate alternative paths and backup links. BGP routing
update messages are available from global BGP monitoring
systems such as RIPE [4] and Route Views [5]. They may be
collected using Quagga [19], a suite derived from the multi-
server routing software Zebra [20]. BGP update messages are
stored in multi-threaded routing toolkit (MRT) format.

A. RIPE

The RIPE routing information service (RIS) [21] is a RIPE
NCC project established in 2001 to collect and store routing
data from several ASes worldwide. The main collector is
located at NCC and consists of a route collector, database,
and user interface. Remote route collectors (rrcs) installed at
major topologically interesting Internet points use the Quagga
routing software to collect BGP data. Routes are collected
directly from the AS border routers at the rrc or via multi-hop
BGP peering from nearby routers. The raw data are collected
using state dumps while batches of updates for each rrc are



periodically made available. The Zebra tool is used to collect
BGP update messages every 15 min before July 23, 2003 and
every 5 min afterwards while the BGP routing tables are stored
every 8 h. RIS currently consists of 25 rrcs: Europe (16), North
America (4), Asia (2), South America (2), and Africa (1).

B. Route Views

Route Views [5] is the University of Oregon project to
collect real-time BGP routing data from various backbone
routers and locations worldwide. The publicly available data
have been used for routing analysis, AS path visualization,
analysis of IPv4 address space utilization, topological studies,
and generation of geographic host locations. Backbone routers
(Cisco, Juniper), configured as IPv4 or IPv6 Route-Views-like
route servers, connect as peers via multi-hop BGP sessions.

Route Views project employs three types of collectors:
FRRouting, Quagga, and Cisco. FRRouting and Quagga col-
lectors are based on Zebra. BGP update messages and routing
tables are stored in MRT format and collected every 15 min
and 2 h, respectively. Data from Cisco collectors are generated
every 2 h starting at 00:00 by using the Cisco command
line interface to extract routes and their attributes. There are
31 Route Views collectors (16 FRRouting, 14 Quagga, and
1 Cisco) distributed across RIRs: ARIN (14), LACNIC (6),
APNIC (5), AFRINIC (3), and RIPE NCC (3).

III. BGP ANOMALIES

BGP anomalies are harmful changes in the protocol’s
behaviour and may consist of single updates (invalid AS
numbers, invalid or reserved IP prefixes, a prefix announced by
an illegitimate AS, AS-PATH without a physical equivalent)
or a set of updates (longest and shortest paths, changes in
the behaviour of BGP traffic over time) [2]. These anomalies
are classified as: direct intended anomalies, direct unintended
anomalies, indirect anomalies, and link failures. BGP hijack-
ings are direct intended anomalies where the attacker redirects
routes from a valid AS by claiming the ownership of a prefix or
sub-prefix. Denial of service (DoS), distributed DoS (DDoS),
man-in-the-middle, and phishing attacks employ BGP hijack-
ings. BGP misconfigurations are direct unintended anomalies
that may cause announcements of used (hijacking) or un-
used (leaked routers) prefixes. The origin misconfigurations
occur when non-owned prefixes are accidentally announced
or private ASes are not filtered while export misconfigura-
tions appear when BGP policies are accidentally configured.
BGP indirect anomalies occur when Internet web servers are
attacked, which generates BGP instabilities such as routing
overload. For example, during the Slammer worm attack a
critical BGP instability was caused by a significant increase
in the number of announcements of BGP updates. A BGP
link failure causes reachability or connectivity loss between
private (dedicated connection) or public (service provider)
BGP peers. The Moscow power system blackout (2005) and
Mediterranean cable break (2008) resulted in BGP link failures
that affected cities in more than 20 countries.

Worms are self-replicating codes that exploit systems vul-
nerabilities and propagate via networks [22], [23]. They em-
ploy email applications or scan engines to spread to vari-
ous hosts and may carry other malware as their payload.
While antivirus systems may require several hours to identify
worms, an Intrusion Detection System (IDS) is capable of
detecting worms faster because they take large portion of a
network bandwidth. Slammer [24], Nimda [25], and Code Red
I [26] are well-known worms that exploited vulnerabilities
of Microsoft Structured Query Language (SQL) and Internet
Information Services (IIS).

Ransomware attacks rely on advanced cryptography to
lock the victim’s data until a ransom is paid. They may be
classified as: cryptoworm, ransomware-as-a-service (RaaS),
and automated active adversary [27]. Cryptoworms replicate
themselves to other hosts for maximum reach and impact.
RaaS attacks, sold on the dark web as distribution kits, are
typically deployed via malicious spam e-mails or exploit
kits. In case of automated active adversary ransomware, the
attackers scan the Internet for systems with weak protection,
enter the system, and plan the attack for maximum damage.
Ransomware attacks rely on tools and processes such as
runtime packers and exploits. Runtime packers are compressed
executable-files used to avoid detection of attacks until they
have completed their core task while exploits (EternalBlue,
Windows Event Viewer process, CVE-2018-8453) are tools
that ensure that the attacks gain administrative privileges by
taking advantage of the vulnerabilities in an operating system.
A ransomware may store the encrypted data on the same (over-
write) or available (copy) disk sectors. During the encryption,
data are partially or fully renamed. Well-known ransomware
attacks include WannaCrypt [27], Petya, and Locky [28].

Power system blackouts are the loss of electrical power to
end users and are caused by failures or overload of transmis-
sion lines, failures of automatic emergency control systems,
malfunctions of protection devices, or human errors. Blackouts
are critical to environment and public safety and, hence,
investigating their cascading process is important to determine
triggering events, evaluate the consequences, and develop
preventive solutions and automatic protection systems [29].

A. Slammer

Slammer [24], [30] is the fastest worm that self-propagated
by using the User Datagram Protocol (UDP). It commenced
on January 23, 2003 at 05:31 (GMT) and lasted 14.5 h. This
worm does not store itself in the memory of affected hosts. It
only exists as a network packet and acts by running processes
in the victim’s host. During the Slammer attack, SQL servers
and PCs with Microsoft SQL server data engine (MSDE)
were infected by exploiting the buffer overflow vulnerability
in Microsoft SQL server 2000 resolution service. The code
replicated itself by infecting new vulnerable machines through
scanning randomly generated IP addresses and sending packets
to UDP port 1434. The number of infected machines doubled
approximately every 9 s. This infection speed caused a DoS
attack in affected networks.



The SQL server resolution service that operates on UDP
port 1434 allows clients to host multiple instances of SQL
Server on a single machine. Three restricted bytes that exploit
the SQL Server vulnerabilities are: 0x04 (buffer overflow),
0x08 (buffer overflow), and 0x0A (DoS). The first byte in the
single UDP packet sent by Slammer is 0x04, indicating to
SQL Server that the remaining data of the packet corresponds
to the name of the online database. Because Slammer appends
a name with more than 16 bytes to the end of this UDP
packet omitting the telltale “00”, the stack is overflowed, the
return address is overwritten, and a full control of the SQL
Server process is gained without the need to authenticate. Once
the SQL Server is reprogrammed, Slammer replicates to the
randomly generated IP addresses.

B. WannaCrypt

WannaCrypt (WannaCry) is a cryptoworm ransomware that
works by gaining administrative privileges and employs the
EternalBlue exploit and DoublePulsar backdoor in systems
running Microsoft Windows 7 [27], [31]. It lasted from May
12, 2017 to May 15, 2017 and infected over 230,000 comput-
ers in 150 countries. A victim’s data files are encrypted using
128-bit advanced encryption standard (AES) in cipher block
chaining (CBC) mode. After the encryption is completed, data
files are renamed by adding the extension “.wncry” while the
string “WannaCrypt!” is added to the combination of encrypted
AES key and data. Wannacrypt may copy or overwrite the
data after encryption. It uses the Volume Shadow Service
(vssadmin.exe) Windows utility to delete previous versions of
the locked data. By manipulating the Windows Boot Config-
uration Data (bcdedi.exe), the attack: (1) prevents Windows
diagnostics-and-repair feature to automatically run after a third
unsuccessful boot or (2) attempts a normal boot even in case
of a failed boot, shutdown, or checkpoint. WannaCrypt flushes
buffers to ensure that all encrypted data are only located in the
storage drive. It replaces the Windows desktop wallpaper with
a message to inform the victim that data have been locked
and to demand a ransom. After the ransom is paid, the risk
remains that decryption of data fails.

WannaCrypt spreads throughout a network by attempting
to connect to port 445. After the connection is established,
the ransomware scans for the Windows server message block
(SMB) EternalBlue vulnerability and checks if it is infected
with the DoublePulsar backdoor. EternalBlue exploits the
wrong casting, wrong parsing, and non-paged pool allocation
defects of the SMB protocol as well as an address space layout
randomization (ASLR) bypass. Exploiting the wrong casting
and parsing defects causes buffer overflow and overwrite while
the non-paged pool allocation and ASLR allow placing the
shellcode at a predefined executable address [32]. EternalBlue
then implants the DoublePulsar backdoor in the victim’s host
to send the cryptoworm payload using dynamic link library
(DLL) injection [31], [32]. WannaCrypt replicates by querying
for the non-existing domains:

• www[.]iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea[.]com
• www[.]ifferfsodp9ifjaposdfjhgosurijfaewrwergwea[.]com.

Its replication may be prevented if the victims receive a
response indicating that these domains are registered [33].

C. Moscow Blackout

The Chagino substation of the Moscow energy ring ex-
perienced a transformer failure on May 24, 2005 at 20:57
(MSK) [34], [35]. The event caused a complete shutdown of
the substation and a blackout that affected all customer until
16:00 (MSK) of May 26, 2005. At 11:00 (MSK) on May 25,
2005, Unified Energy System of Russia set up an Emergency
Response Center to eliminate the blackout. The dispatching
control staff and automatic protective devices stopped the
cascading failure in 2 h and 20 min and power was restored
to all socially important facilities and vital infrastructure in
Moscow by 18:00 (MSK). The Moscow city transportation
system regained power at 21:00 (MSK). Power was fully
restored to all customers on May 26, 2005.

During the blackout, the Internet traffic exchange point
MSK-IX was disconnected from 11:00 to 17:00 (MSK) [36].
Routing instabilities were observed because several MSK-IX
ISP peers lost connectivity for an extended period [37] and
primarily affected ASes in Russia and the APNIC RIR [38].
Based on reports [34], the peak power outage occurred during
the morning peak load and its duration was 4 h [39]. Hence,
in this study, we consider as anomalies data collected from
7:00 to 10:59 (MSK) on May 25, 2005.

IV. BGP DATASETS

BGP datasets are extracted from update messages down-
loaded from RIPE [4] and Route Views [5] collection sites.
The data collected during periods of Internet anomalies include
five days of Slammer, eight days of WannaCrypt, and five days
of Moscow blackout events: the days of the attack as well as
two days prior and two days after the attack. Granularity of
collected routing records is 1 min of routing records. The up-
date messages are processed using BGP Anomaly Detection
tool. 37 features, classified as AS-path and volume features,
are extracted. Each day contains data points extracted from the
BGP update messages [13]. The created matrices for Slammer,
WannaCrypt, and Moscow blackout consist of collected data
points and extracted features. Training and test datastes for
Slammer, WannaCrypt, and Moscow blackout from RIPE and
Route Views are shown in Table I.

Examples of features that exhibit visible differences in
patterns during regular and anomalous events for the Slam-
mer, WannaCrypt, and Moscow blackout BGP datasets are
shown in Fig. 1. For both collection sites, the number of
BGP announcements and the number of announced network
layer reachability information (NLRI) prefixes for Slammer,
WannaCrypt, and Moscow blackout increase. However, some
features better illustrate the anomalies in RIPE dataset due
to missing data in Route Views for Moscow blackout. The
selected collectors rrc04 (RIPE) contains 8 peer ASes and 8
routers while route-views2 (Route Views) contains 37 peer
ASes and 45 peer routers [6]. This larger number of the



TABLE I
DURATION OF ANALYZED BGP EVENTS AND NUMBER OF DATA POINTS IN BGP DATASETS

Collection Dataset Regular Anomaly Regular Anomaly Regular Anomaly Collection date
site (min) (min) (training) (training) (test) (test) Start End

RIPE Slammer 6,331 869 3,210 530 3,121 339 23.01.2003 00:00:00 27.01.2003 23:59:59
WannaCrypt 5,760 5,760 2,880 3,420 2,880 2,340 10.05.2017 00:00:00 17.05.2017 23:59:59
Msocow b/o 6,960 240 3,120 180 3,840 60 23.05.2005 00:00:00 27.05.2005 23:59:59

Route Views Slammer 6,319 869 3,198 530 3,121 339 23.01.2003 00:00:00 27.01.2003 23:59:59
WannaCrypt 5,760 5,760 2,880 3,420 2,880 2,340 10.05.2017 00:00:00 17.05.2017 23:59:59
Msocow b/o 6,865 130 3,075 85 3,790 45 23.05.2005 00:00:00 27.05.2005 23:59:59

update messages collected by route-views2 better illustrates
the presence of anomalies.

Several features extracted from RIPE and Route Views
datasets are visualized in scattered plots shown in Fig. 2,
Fig. 3, and Fig. 4. These graphs indicate spatial separation
for regular and anomalous classes. Separation into two distinct
classes is more visible for Slammer and WannaCrypt in Route
Views data while separation of the Moscow blackout data is
more prominent in RIPE. Better separation of spatial patterns
leads to higher classification accuracy.

V. EXPERIMENTAL PROCEDURE AND PERFORMANCE
COMPARISON

We process BGP raw data from RIPE and Route Views
and perform two-way classification to identify regular (0)
and anomalous (1) data based on Slammer worm, Wan-
naCrypt ransomware, and Moscow blackout events using the
BGP Anomaly Detection tool. Deep learning RNN (LSTM
and GRU) models are utilized due to their unique structure
and capability to classify time series data.

We label data points corresponding to Slammer, Wan-
naCrypt, or Moscow blackout as anomalous data and em-
ploy supervised machine learning to classify anomalies. BGP
anomalies caused by Slammer and WannaCrypt resulted in
visible changes in volume (number of BGP announcements
and BGP withdrawals) and AS-path (average AS-path length
and average edit distance) features. In case of the BGP
link failures experienced during the Moscow blackout, some
affected ASes found alternative routes, which resulted in an
inconclusive period of the Internet anomaly and a narrower
window compared to the power system downtime [34]. BGP
changes are primarily observed in volume features (number
of BGP announcements, number of announced NLRI prefixes,
and number of interior gateway protocol packets).

A. Deep Learning: Multi-Layer Networks

Deep learning neural networks are trained to identify im-
portant features in the input data by adjusting weights in
each iteration. Their notable advantage is the back-propagation
method that calculates gradients and updates the weights [40],
[41]. Furthermore, they may achieve desired results by adjust-
ing the number of hidden nodes, hidden layers, optimization
algorithms, and activation functions. The numbers of hidden
nodes and layers are chosen depending on the size of the
dataset. Note that adding hidden layers may not achieve higher
accuracy because of over-fitting.

RNN is a class of neural networks that is often applied
to time series datasets. An important advantage of RNNs
is their ability to use contextual information from the input
sequential data. LSTM [17] is a type of RNNs that consists
of forget, input, and output gates that learn relevant long-term
dependencies in sequential input data by transferring the cell
state through the network. GRU [18] is a variation of LSTM
with a simpler structure that contains only two gates: reset
and update gates. Performance of deep learning models often
improves by including additional hidden layers and nodes,
which depends on the length of the dataset and the number of
features. To prevent over-fitting, we consider models with only
up to four hidden layers and a small number of hidden nodes
near the output layer. We evaluate performance of LSTM and
GRU models with 2 (LSTM2 and GRU2), 3 (LSTM3 and
GRU3), and 4 (LSTM4 and GRU4) hidden layers. A model
with 4 hidden layers is shown in Fig. 5.

We implement deep learning RNN models using one GPU
(NVIDIA GeForce GTX 1080 GPU) on a Dell Alienware Au-
rora with 32 GB memory and Intel Core i7 7700K processor.
Python 3.6 running on Ubuntu 16.04 was used to generate
simulation results. PyTorch [42], an open source machine
learning library, is employed to create deep learning models
while function torch.optim.Adam() is used to optimize the
deep learning RNN models during training. Cross-validation
is performed for various parameters. The best parameters for
training models are shown in Table II.

TABLE II
PARAMETERS OF RNN MODELS USED IN CROSS-VALIDATION

Parameter Value Best selection
Length 5, 10, 20, Slammer: 10
of 50, 100 WannaCrypt: 100
input sequence Moscow b/o: 100 (RIPE),

20 (Route Views)
Number of epochs 30, 50, 100 30
Number

80, 64, 32, 16

Slammer:
of FC1 = 80, FC2 = 32, FC3 = 16
hidden nodes WannaCrypt/Moscow b/o:

FC1 = 64, FC2 = 32, FC3 = 16
Dropout rate 0.2, 0.4, 0.6 0.4
Learning rate 0.01, 0.1 0.01

B. BGP Anomaly Detection Tool

The tool shown in Fig. 6 consists of eight modules:
Data Download: The input to the data download module

are the names of files with update messages, collection site



Fig. 1. Slammer (top), WannaCrypt (middle), and Moscow blackout (bottom): Number of BGP announcements and announced NLRI prefixes.



Fig. 2. Slammer: Average AS-path length vs. number of BGP announcements
vs. number of BGP withdrawals.

(RIPE or Route Views), and collector name (RIPE rrc04 or
Route Views route-views2). The output are update messages
in ASCII format. Raw data from RIPE and Route Views are
organized in folders labeled by the year and month of the
collection date. The format of the selected and downloaded
BGP update messages is updates.yyymmdd.hhmm.gz or up-
dates.yyymmdd.hhmm.bz2 for RIPE and Route Views datasets,
respectively. BGP update messages are initially collected in
MRT format. They are transformed from MRT to ASCII
format by using the zebra-dump-parser [43] tool written in
Perl. GMT time is used for all update messages in order to
synchronize RIPE and Route Views collection times.

Feature Extraction: A tool written in C# was used to
generate datasets by extracting 37 numerical features from
BGP update messages [13].

Data Partition: This module is used to create the training
and test datasets based on the percentages of anomalous data.
Data are labeled based on the time intervals of collection. In
our experiments, the Slammer and WannaCrypt training and
test datasets consist of 60 % and 40 % of anomalous data,
respectively while Moscow blackout training and test datasets
consist of 75 % and 25 % (RIPE) and 65% and 35% (Route
Views) of anomalous data, respectively.

Data Processing: The module consists of feature selection
and normalization steps. The most relevant features may be

Fig. 3. WannaCrypt: Number of announced NLRI prefixes vs. number of
BGP announcements vs. average edit distance.

selected for both training and test datasets by using the
extremely randomized trees (extra trees) [44] feature selection
algorithm. (In this experiments, we do not preform feature
selection.) The input to the module are: number of the most
relevant features, file name, and labels of the dataset. By
employing the zscore function, we generate datasets with
mean = 0 and standard deviation = 1.

ML Algorithms: The module contains various deep learning
RNN models with a number of hidden layers. Input parameters
are: RNN algorithm, number of hidden layers and nodes,
number of epochs, learning rate, activation function, and
dropout rate.

Parameters: Parameters for cross-validation are stored in
this module. The best set of parameters selected by cross-
validation is used in the training process.

ML Models: This module generates machine learning mod-
els using training datasets.

Classification: Accuracy, F-Score, precision, sensitivity (re-
call), receiver operating characteristic (ROC) curves, and train-
ing time may be used to evaluate performance of classification
algorithms.

C. Performance Comparison

We evaluate performance of deep learning RNN classifi-
cation models based on accuracy and F-Score. Performance



Fig. 4. Moscow blackout: Number of announced NLRI prefixes vs. number
of BGP announcements vs. number of withdrawn NLRI prefixes.

Fig. 5. Deep learning neural network model. It consists of 37 RNNs, 80
(Slammer)/64 (WannaCrypt)/64 (Moscow blackout) FC1, 32 FC2, and 16 FC3

fully connected (FC) hidden nodes.

of LSTM and GRU models with various hidden layers us-
ing Slammer, WannaCrypt, and Moscow blackout datasets is
shown in Table III. The best classification results for RIPE
datasets are achieved using LSTM2 (Slammer and Moscow
blackout) and LSTM3 (WannaCrypt) models. For the Route
Views datasets, the best classification results are obtained
using LSTM3 (Slammer), GRU3 and GRU2 (WannaCrypt),
and GRU2 and GRU4 (Moscow blackout) models. It has been
observed that increasing the number of hidden layers may
result in over-fitting. As expected, the best accuracy and F-
Score generated by RNN models using Route Views datasets

are higher than RIPE. Moscow blackout data collected by
RIPE during the time of anomaly are more reliable than
Route Views data, hence better classification results. Note that
a much smaller number of anomalous data points (130) is
collected during the four-hour interval.

TABLE III
PERFORMANCE OF LSTM AND GRU RNN MODELS:

SLAMMER, WANNACRYPT, AND MOSCOW BLACKOUT DATASETS

Accuracy (%) F-Score (%)
Model Dataset RIPE Route Views RIPE Route Views

LSTM2
Slammer 92.98 91.24 72.42 69.11
WannaCrypt 58.08 67.23 61.48 70.14
Moscow b/o 99.21 96.23 75.20 5.26

LSTM3
Slammer 90.90 95.72 67.29 81.77
WannaCrypt 65.48 64.35 63.22 67.16
Moscow b/o 98.38 97.77 55.94 32.00

LSTM4
Slammer 92.49 91.39 70.72 69.34
WannaCrypt 57.94 72.29 62.42 73.86
Moscow b/o 97.46 95.81 36.94 18.37

GRU2
Slammer 91.88 92.60 69.42 72.59
WannaCrypt 57.27 72.58 60.56 74.21
Moscow b/o 97.64 98.30 41.77 32.99

GRU3
Slammer 91.76 93.24 68.72 74.34
WannaCrypt 52.85 72.63 53.96 74.14
Moscow b/o 98.38 97.51 57.14 28.57

GRU4
Slammer 92.14 93.15 70.11 74.04
WannaCrypt 52.15 68.71 52.70 71.61
Moscow b/o 97.92 97.20 49.06 35.15

VI. CONCLUSION

We considered BGP update messages from RIPE and Route
Views data collection sites to classify Slammer, WannaCrypt,
and Moscow blackout anomalous events. We implemented
deep learning RNN (LSTM and GRU) models with a variable
number of hidden layers. Models with two and three hidden
layers often exhibited the best performance. The best accuracy
and F-Score for Slammer and WannaCrypt were generated
using BGP update messages collected by Route Views. In
contrast, the best performance for classifying Moscow black-
out was obtained using RIPE datasets due to missing data
points in Route Views. Classification models for Slammer
datasets offered better results because the data had better
spatial separation between regular and anomalous classes.
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