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Abstract— Denial of Service (DoS) and Distributed Denial
of Service (DDoS) attacks are major threats to cybersecurity
in communication networks. These cyber attacks are evolving
and becoming more difficult to identify and, hence, a num-
ber of intrusion detection approaches have been proposed.
Various machine learning techniques have proved useful in
detecting such anomalies. We rely on supervised machine
learning and apply echo state networks to detect known DoS
and DDoS attacks. Echo state networks belong to a reservoir
computing approach used to train recurrent neural networks.
Their performance is compared to bidirectional long short-term
memory using datasets collected by the Canadian Institute for
Cybersecurity and the RIPE and Route Views data collection
sites. Performance is evaluated based on accuracy, F-Score, false
alarm rate, and training time. Experimental results indicate
that echo state networks have comparable performance and
shorter training time.

I. INTRODUCTION

Denial of Service (DoS) attacks are attempts of an attacker
to make services unavailable to legitimate users. Distributed
DoS (DDoS) attacks combine multiple compromised end
systems in a coordinated way to exhaust resources of a
targeted system [14]. Two general approaches for detecting
such attacks are classified as signature-based and anomaly-
based. Recent events indicate that the DoS and DDoS attacks
are becoming more sophisticated and, hence, more difficult
to detect especially when using signature-based counter-
measures. The continuous growth of vulnerable and inter-
connected end systems increases occurrences of successful
DDoS attacks [14]. Hence, defence mechanisms against DoS
and DDoS attacks have received considerable attention in the
area of cybersecurity.

Various machine learning algorithms have been employed
for detecting network anomalies [12], [18], [19], [24]. Broad
learning system (BLS) [13] models were evaluated for de-
tection of DoS attacks [16]. Successful detection of network
traffic anomalies using CIC-IDS and Border Gateway Proto-
col (BGP) datasets [20], [21] was also achieved with boosting
algorithms such as light gradient boosting machine (Light-
GBM) and recurrent neural networks (RNNs) including long
short-term memory (LSTM) and gated recurrent unit (GRU).

Reservoir computing (RC) is an approach for supervised
training of RNNs. It does not experience vanishing and
exploding gradients because training is performed to obtain
only optimal output weights. We apply Echo State Networks
(ESNs) as a feasible RC approach to identify network
intrusions by employing binary classification of regular and
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anomalous data points. ESNs have been employed in a
variety of domains and tasks [17], [22] including time
series forecasting, wireless communication networks, speech
and handwriting recognition, music imitation, robot control,
and network anomaly detection. Online anomaly detection
systems deal with streams of input data in real time. Due
to their computational efficiency, ESNs have been used in
an online anomaly detection framework implemented using
sensor networks [12].

Machine learning-based models utilize datasets that reflect
the characteristics of diverse network behaviour. Syntheti-
cally generated CIC-IDS network connection records from
the Canadian Institute for Cybersecurity (CICIDS2017, CSE-
CIC-IDS2018, and CICDDoS2019) [2] are employed to
evaluate ESN models. We also consider the BGP datasets
collected by the RIPE [5] and Route Views [7] data collection
sites. They capture BGP worm attacks that occurred in 2001
and 2003 as well as large DDoS attacks in 2019 [3], [8] and
2020 [1].

Computationally efficient anomaly detection techniques
have been employed to deal with large input datasets [11].
ESNs are a computationally efficient approach to detect
network anomalies and achieve comparable performance. We
evaluate the influence of hyperparameters on performance
of ESN models. A variation of k-fold cross-validation for
time series [9] is used to evaluate the selection of hyper-
parameters. The best performing ESN model is used for
comparison with bidirectional LSTM (Bi-LSTM), a widely
used recurrent neural networks.

The paper is organized as follows: After introducing the
topic in Section I, we describe ESNs in Section II and
introduce datasets in Section III. The experimental procedure
is given in Section IV while performance evaluation is
discussed in Section V. We conclude with Section VI.

II. ECHO STATE NETWORKS

The reservoir in ESNs is a randomly connected network
with input x(n) ∈ RNx and output y(n) ∈ RNy that
should match the given labels ytarget(n) ∈ RNy in order
to minimize the loss. Reservoir parameters are randomly
generated input weight matrix Win ∈ RNx×Nz and
randomly generated reservoir weight matrix W ∈ RNz×Nz

[23], where Nx and Ny are numbers of input and output
nodes, respectively. Reservoir state equations are:

z̃(n) = tanh(Win × x(n) +W × z(n− 1)) (1)

z(n) = (1− α)z(n− 1) + αz̃(n), (2)

where z̃(n) ∈ RNz is reservoir’s update at discrete time
n = {1, ..., N}, N is the number of data points in the training



dataset, Nz is the number of reservoir nodes, tanh(·) is
hyperbolic tangent, z(n) ∈ RNz is the reservoir state, and
α ∈ (0, 1] is the leaking rate. When α = 1, z(n) ≡ z̃(n)
and the reservoir has no memory of its previous state.

ESNs are said to have the echo state property if they are
able to “wash out” the initial state of the reservoir at a rate
independent of the input sequence. Hence, the effect of the
past input on the reservoir gradually fades away [17].

ESNs are computationally non-expensive because they
do not employ gradient-based iterative optimization algo-
rithms such as backpropagation to compute the optimal
weights [17]. The difference between gradient-based and RC-
based RNN approaches is shown in Fig. 1 In the case of
gradient-based training, the computed optimal weights are
Win, W, and Wout are updated iteratively while in the
case of RC, the output weights Wout are calculated in a
single iteration.

Fig. 1. Gradient-based (top) and RC-based (bottom) RNN training:
dE/dW is gradient of loss function E with respect to weights. The operator∑

(·)2 indicates the sum of squared errors between the output and target
vectors. The computation of optimal weights is indicated in bold.

A. Hyperparameters of the ESN Reservoir

Reservoir in ESNs serves as a memory of the input
that becomes linearly separable using the nonlinear high-
dimensional expansion z(n) ∈ RNz .

The ESNs hyperparameters are: reservoir size Nz , reser-
voir sparsity, spectral radius ρ(W), scaling parameter for
Win, and leaking rate α [23]. Reservoir size or number of
nodes Nz determines the ESNs memory capacity. Reservoir
sparsity reflects the number of zero elements. The reservoir
weights W are usually sparse because such connections yield
better performance [23]. Spectral radius ρ(W) is the maxi-
mal eigenvalue |λ| of a random sparse matrix W. A larger
value of spectral radius is employed for the tasks where a
longer history of the input is required. If the output y(n)

relies on a more recent history of the input x(n), a smaller
value of the radius is recommended. Selecting spectral radius
ρ(W) ≤ 1 assures the echo state property [23] of an ESN
model. Input weights scaling is used to scale down large
input weights and enable the reservoir to be driven more
by its dynamics rather than the input (1). Leaking rate α
is related to the reservoir’s update dynamics. The reservoir
state values (2) change more gradually for a lower α that
induces slow dynamics of z(n) thus increasing the duration
of the short-term memory of the network.

B. Training Echo State Networks

Root mean-squared error E(y,ytarget) is the loss function
that is minimized with respect to parameters:

E(y,ytarget) =
1

Ny

Ny∑
n=1

√√√√ 1

N

N∑
i=1

(yi(n)− ytargeti (n))2.

(3)
Ridge regression (4) is the most preferred option [23] to
calculate optimal output weights:

Wout = (ZTZ+ βI)−1ZTYtarget, (4)

where matrix Z ∈ RN×(Nz+Nx) is generated by horizontally
concatenating the column vectors [z(n);x(n)] for all training
data points n, β is regularization coefficient used to reduce
overfitting usually indicated by large output weights, and I
is the identity matrix. Labels ytarget(n) ∈ RNy are used
to form the matrix Ytarget ∈ RN×Ny .

Adding scaled white noise to the input x(n) is also used
for regularization [10]. The training time may be reduced
by selecting a smaller reservoir and/or smaller dataset [23].
However, this may adversely affect model’s generalization
ability [10].

The ESN structure shown in Fig. 2 includes input X,
reservoir state Z, output Y, random input Win, random
reservoir W, optional feedback Wfb, and trainable output
Wout weight matrices. The symbol

∫
represent non-linear

transformation; Wfb and adjacent (n − 1) unit delay are
optional feedback.

Fig. 2. High level of the ESN structure with optional feedback.



III. NETWORK INTRUSION AND BGP DATASETS

Performance evaluation of network intrusion detection
models relies on datasets containing diverse traffic and
features. We use CIC-IDS network connection records and
BGP datasets that were acquired from BGP trace collectors.

A. Network Intrusion Datasets: Attacks and Features

The CIC synthetic testbed framework is used to gen-
erate the CIC-IDS datasets [2]: CICIDS2017, CSE-CIC-
IDS2018, and CICDDoS2019 datasets. Two profile classes
were used: B-profiles incorporate the abstract behavior of
users based on the most frequently used protocols while M-
profiles generate well-known attacks scenarios. We select
GoldenEye, Hulk, SlowHTTPTest, and Slowloris attacks
from CICIDS2017 collected on Wednesday, July 5, 2017;
GoldenEye and Slowloris attacks from CSE-CIC-IDS2018
collected on Thursday, February 15, 2018; and LDAP, NTP,
SYN, UDP-lag, and WebDDoS attacks from CICDDoS2019
dataset collected on Saturday, December 1, 2018.

Packet length features are valuable in detecting volumet-
ric amplification DDoS attacks (floods) and monopolizing
application layer DoS attacks. Standard deviation of packet
length helps differentiate regular from anomalous traffic.
Regular traffic exhibits high variation in packet length while
the length of malicious packets is often small in the case
of TCP state exhaustion attacks such as SYN and ICMP
attacks. Moreover, the attackers often generate fixed-sized
packets and, hence, the minimum average segment size in a
malicious flow may be smaller than in regular flows.

TCP flags ACK, SYN, and URG are often used by
attackers to disrupt the target’s regular operation. Thus,
features such as “ACK Flag Count”, “SYN Flag Count”,
and “URG Flag Count” may help detect malicious traffic.
SYN attacks may bring down a network connection through
a large number of seemingly legitimate TCP requests with
SYN and ACK flags set to 1, as shown in Fig. 3. Hence, the
server becomes unable to respond to legitimate requests in
the absence of available connections.

B. BGP Datasets: Attacks and Features

BGP [6] plays an essential role in routing Internet traffic
between Autonomous Systems. Archives with BGP routing
information are publicly available from the RIPE [5] and
Route Views [7] data collection sites. Slammer, Nimda,
and Code Red I worms that caused DoS attacks are down-
loaded from RIPE (collector rrc04 at CIXP, Geneva, Switzer-
land) [15]. Data capturing the Amazon Web Services (AWS)
DDoS attacks (DDoS2019, DDoS2020) are downloaded
from RIPE (collector rrc14, Palo Alto, CA, USA) and Route
Views (collector route-views4, Eugene, OR, USA). Datasets
are generated by extracting 37 AS-path and volume fea-
tures. Features extracted from BGP update messages include:
number of announcements, withdrawals, announced network
layer reachability information (NLRI) prefixes, implicit and
duplicate withdrawals as well as average and maximum AS-
path length and edit distance and packet size.

Fig. 3. CICDDoS2019, December 1, 2018: ACK (top) and SYN (bottom)
flag counts. SYN attack degrades a network connection with a large number
of seemingly legitimate TCP requests. The number of flags in the case of
WebDDoS was minimal.

The DDoS2019 BGP dataset contains DDoS attacks tar-
geting AWS (October 22, 2019) and banks in South Africa
(October 23, 2019). The number of announced NLRI prefixes
is shown in Fig. 4 (top). The DDoS attack that targeted
AWS caused an eight-hour outage that affected the Amazon
Route 53 cloud web service and left thousands of customers
unable to access websites and applications [3]. The attack on
October 22, 2019 occurred between 10:30 AM and 6:30 PM
PDT and was persistent in San Francisco and intermittent in
Boston, Chicago, and Dallas. On October 23, 2019, a wave of
ransom driven DDoS attacks targeted the banking industry in
South Africa that left Johannesburg’s emergency call centers
and e-services (including online banking and billing system)
inaccessible to customers [8].

The DDoS2020 BGP dataset contains the largest volumet-
ric DDoS attack of 2.3 Tbps that commenced on February 17,
2020 and caused three days of elevated security threat [1]. It
was categorized as a Connectionless Lightweight Directory
Access Protocol reflection attack that targeted Amazon cloud
web services. This attack was 44 % larger than any AWS
network volumetric event previously detected. The number
of announced NLRI prefixes is shown in Fig. 4 (bottom).

IV. EXPERIMENTAL PROCEDURE

The experiments are performed on Windows 10 64-bit
Operating System and Intel Core i7-8650U CPU (1.9-2.11
GHz) using Python 3.8. PyTorch [4] is used to create the
Bi-LSTM model.

A. Data Processing: CIC-IDS Datasets

The numbers of extracted features in CICIDS2017, CSE-
CIC-IDS2018, and CICDDoS2019 are 84, 83, and 87, re-
spectively [2]. We select 20 most important features from
each dataset using the extra-trees ensemble method [9]. After
converting categorical to numerical features, we apply min-
max scaling to normalize features (between zero and one)



Fig. 4. BGP DDoS2019 (top) and DDoS2020 (bottom) datasets: Number of NLRI prefixes collected from RIPE (left) and Route Views (right) data
collection sites. Shown are windows of anomalous (class 1) and regular (class 0) traffic.

to achieve proportional representation. The number of data
points in training and test datasets used in the experiments is
given in Table I. CICDDoS2019 dataset consists of multiple
collections. Files are merged, randomly shuffled, and reduced
to only include the first 106 points. We use naı̈ve resam-
pling technique to deal with the unbalanced CICDDoS2019
dataset. Random oversampling of minority (regular) class
is applied and randomly selected samples are added to the
dataset thus achieving balance between classes. The final
dataset contains 50 % of regular data points.

TABLE I
CIC-IDS DATASETS: NUMBER OF DATA POINTS

Dataset Class Total Training set Test set
CICIDS2017 Total 346,352 277,081 69,271
Wednesday Regular 219,984 175,855 44,129
July 5, 2017 Anomaly 126,368 101,226 25,142

CSE-CIC-IDS2018 Total 525,288 419,430 104,858
Thursday Regular 497,973 398,349 99,624
February 15, 2018 Anomaly 26,315 21,081 5,234

CICDDoS2019 Total 500,000 400,000 100,000
Saturday Regular 249,977 200,016 49,961
December 1, 2018 Anomaly 250,023 199,984 50,039

B. Data Processing: BGP Datasets

We create datasets used in experiments by considering
known periods of the attacks (anomalous data points) as well
as two days prior and two days after each attack (regular
data points). Note that all data points within the window of
an attack are considered anomalous. The Slammer, Nimda,
Code Red I, and DDoS2020 datasets are partitioned using

80 % and 20 % of the total number of data points to create
the training and test datasets, respectively. The DDoS2019
training and test datasets consist of 60 % and 40 % of the
total number of data points, respectively. The number of data
points in training and test datasets used in the experiments is
given in Table II. The 20 most important features from each
dataset are used to train the models.

TABLE II
BGP DATASETS: NUMBER OF DATA POINTS

Dataset Class Total Training set Test set
Slammer Total 7,200 5,760 1,440

Regular 6,331 5,058 1,273
Anomaly 869 702 167

Nimda Total 8,609 6,887 1,722
Regular 7,308 5,841 1,467
Anomaly 1,301 1,046 255

Code Red I Total 7,200 5,760 1,440
Regular 6,600 5,272 1,328
Anomaly 600 488 112

DDoS2019 Total 10,080 6,048 4,032
Regular 6,390 3,823 2,567
Anomaly 3,690 2,225 1,465

DDoS2020 Total 10,080 8,064 2,016
Regular 5,709 4,572 1,136
Anomaly 4,371 3,492 880

C. Echo State Network Models

ESN models shown in Table III are developed by varying
hyperparameters and using 10-fold cross validation [9] based
on the time series split. Performance of ESNs is proportional
to the number of reservoir nodes because they enable linear
combination of the inputs to approximate the target labels.
However, larger reservoirs are computationally expensive.



TABLE III
ESN MODELS AND HYPERPARAMETERS: DETERMINISTIC RESERVOIR

WEIGHTS W, SPECTRAL RADIUS ρ(W), LEAKING RATE α, AND

NUMBER OF RESERVOIR NODES Nz

W ρ(W) α Nz

ESN1 Random 0.9 0.2 10
ESN2 Deterministic 0.9 0.2 10
ESN3 Random 0.1 0.2 10
ESN4 Random 0.9 1 10
ESN5 Random 0.9 0.2 30

The input weight matrix Win is randomly generated using
binomial distribution with k = 1 trials and probability of
success p = 0.5 . The input weights scaling is set to 0.3.
The randomly generated reservoir weights W are uniformly
distributed between [−0.5, 0.5] with matrix sparsity set to
75 %. A simple deterministically generated reservoir was
shown to be appropriate for a variety of tasks and achieved
performance comparable to the ESNs with randomly gen-
erated reservoirs [25]. Hence, we select a deterministic
reservoir with identical connection weights equal to the value
of spectral radius for one of the ESN models.

D. Bidirectional LSTM Model

Bi-LSTM neural network is a variant of LSTM with two
hidden layers in opposite directions connected to the same
output [26]. It improves sequence classification tasks due to
its ability to utilize information based on past (backward)
and future (forward) direction states. Forward and backward
cell states are independent and, therefore, no delays are
introduced when using future information.

The evaluated Bi-LSTM contains 20 input nodes, 16 out-
put nodes, dropout rate = 0.5, batch size = 10, and ReLU
activation function. The fully-connected layer has 32 input
and 2 output nodes that are passed to the softmax module.
The best performance was achieved with learning rate of
0.001 among the 0.1, 0.01, 0.001 values. The optimization
algorithm “Adam” is used to train the Bi-LSTM models using
10 epochs.

V. PERFORMANCE OF ECHO STATE NETWORK MODELS

We use accuracy, F-Score, and false alarm rate (FAR) as
performance metrics based on confusion matrix elements true
positive (TP), false positive (FP), true negative (TN), and
false negative (FN):

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

F-Score = 2× Precision× Recall
Precision + Recall

(6)

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(7)

FAR =
FP

TN + FP
. (8)

Performance of the ESN models using CIC-IDS and
BGP datasets is given in Table IV. The ESN5 model us-
ing CICIDS2017, CSE-CIC-IDS2018, and CICDDoS2019

TABLE IV
PERFORMANCE OF ESN AND BI-LSTM MODELS USING CIC-IDS AND

BGP DATASETS

CICIDS2017 Slammer
Acc. F-Score FAR Acc. F-Score FAR

ESN1 0.927 0.907 0.106 0.907 0.699 0.080
ESN2 0.958 0.945 0.058 0.908 0.710 0.083
ESN3 0.915 0.893 0.120 0.930 0.726 0.036
ESN4 0.919 0.899 0.120 0.927 0.712 0.036
ESN5 0.962 0.950 0.053 0.900 0.699 0.095
Bi-LSTM 0.995 0.994 0.002 0.958 0.827 0.024

Training time (s)
ESN5 988 8
Bi-LSTM 2,200 34

CIC-CSE-IDS2018 Nimda
Acc. F-Score FAR Acc. F-Score FAR

ESN1 0.983 0.854 0.017 0.805 0.502 0.166
ESN2 0.980 0.828 0.020 0.821 0.470 0.130
ESN3 0.961 0.679 0.032 0.843 0.167 0.024
ESN4 0.979 0.824 0.021 0.841 0.122 0.021
ESN5 0.997 0.973 0.003 0.818 0.516 0.150
Bi-LSTM 0.996 0.962 0.004 0.863 0.375 0.029

Training time (s)
ESN5 2,335 7
Bi-LSTM 3,417 41

CICDDoS2019 Code Red I
Acc. F-Score FAR Acc. F-Score FAR

ESN1 0.994 0.994 0.012 0.910 0.432 0.040
ESN2 0.991 0.992 0.016 0.919 0.424 0.027
ESN3 0.927 0.932 0.146 0.913 0.046 0.002
ESN4 0.981 0.999 0.000 0.901 0.536 0.075
ESN5 0.999 0.999 0.001 0.910 0.547 0.062
Bi-LSTM 1.000 1.000 0.000 0.929 0.491 0.021

Training time (s)
ESN5 1,690 6
Bi-LSTM 2,619 37

DDoS2019, RIPE DDoS2019, Route Views
Acc. F-Score FAR Acc. F-Score FAR

ESN1 0.571 0.502 0.465 0.613 0.433 0.259
ESN2 0.579 0.558 0.527 0.611 0.551 0.406
ESN3 0.481 0.522 0.702 0.615 0.261 0.130
ESN4 0.525 0.505 1.000 0.624 0.193 0.084
ESN5 0.677 0.617 0.371 0.618 0.540 0.373
Bi-LSTM 0.388 0.478 0.837 0.654 0.791 1.000

Training time (s)
ESN5 12 6
Bi-LSTM 111 99

DDoS2020, RIPE DDoS2020, Route Views
Acc. F-Score FAR Acc. F-Score FAR

ESN1 0.439 0.610 0.988 0.477 0.609 0.877
ESN2 0.437 0.606 0.994 0.577 0.610 0.565
ESN3 0.437 0.607 0.998 0.437 0.603 0.982
ESN4 0.436 0.607 1.000 0.441 0.604 0.971
ESN5 0.453 0.610 0.955 0.595 0.621 0.536
Bi-LSTM 0.346 0.514 1.000 0.760 0.864 1.000

Training time (s)
ESN5 9 11
Bi-LSTM 107 101

datasets leads to the best accuracy, F-Score, and FAR.
Increasing the number of reservoir nodes Nz enhances the
performance of ESN models: The ESN5 model with 30
reservoir nodes shows better performance than ESN1 model
with 10 reservoir nodes. Reducing the radius of the reservoir
degrades the performance as illustrated by performance of
ESN3 model with low spectral radius.



The ESN3 and ESN4 models, however, exhibit better
performance using Slammer dataset. The ESN2 and ESN5

models achieve better performance using Nimda and Code
Red I datasets. When using DDoS2019 and DDoS2020
datasets, the ESN models are unable to adequately classify
anomalies because patterns of anomalous and regular traffic
are similar. The models classify almost all data points as
regular leading to low recall and F-Score. Data points in BGP
datasets are labeled based on reported periods of anomalous
events. However, the selected anomaly windows may also
contain regular BGP traffic while regular windows may
contain diverse BGP anomalies as in the case of spikes in
the number of BGP announcements and announced NLRI
prefixes observed on February, 22, 2020.

The employed datasets influence performance of ESN
models. The ESN models evaluated using CIC-IDS datasets
exhibit better performance than with BGP datasets. Note that
CIC-IDS datasets are synthetically generated and contain
records of various application layer protocols. In contrast,
BGP datasets DDoS2019 and DDoS2020 capture records
of BGP protocol from deployed networks. The CIC-IDS
datasets that we consider consist of approximately 0.5×106

data points while the BGP datasets contain 104 data points.
Hence, training the ESN models using larger datasets may
have also contributed to improved performance.

Compared to the Bi-LSTM model, the ESN5 model shows
better performance when evaluated using CSE-CIC-IDS2018
as well as BGP DDoS2019 and DDoS2020 datasets collected
by RIPE and Route Views. As shown in Table IV, Bi-LSTM
models offer comparable or better results using Slammer,
Nimda, and Code Red I datasets. Training the ESN models
requires shorter training time because they do not employ
backpropagation used by the Bi-LSTM models.

VI. CONCLUSIONS

We evaluated performance of ESN and Bi-LSTM models
to detect various DoS and DDoS attacks by using CIC-IDS
synthetic datasets as well as RIPE and Route Views BGP
datasets collected from deployed networks. A number of
ESN models was designed by varying hyperparameters of
the reservoir network such as the type of generated reservoir
weights, spectral radius, leaking rate, and number of nodes.
Increasing the number of reservoir nodes and the radius of
the reservoir enhanced the model performance. The ESN
and Bi-LSTM models evaluated in this paper demonstrated
comparable accuracy, F-Score, and FAR while ESN models
required shorter training time. Even though performance
of the classifiers was influenced by the employed datasets,
experimental results illustrated that ESNs may be used to
successfully detect network anomalies.
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