
Classifying Denial of Service Attacks Using Fast Machine Learning
Algorithms

Zhida Li, Ana Laura Gonzalez Rios, and Ljiljana Trajković

Abstract— Denial of service attacks are harmful cyberattacks
that diminish Internet resources and services. Hence, detecting
these cyberattacks is a topic of great interest in cybersecurity.
Using traditional machine learning approaches in intrusion
detection systems requires long training time and has high
computational complexity. Thus, we evaluate performance of
fast machine learning algorithms for training and generating
models to detect denial of service attacks in communication
networks. We use synthetically generated datasets that captured
Transmission Control Protocol and User Datagram Protocol
network flows in a controlled testbed laboratory environment.
Evaluated algorithms include broad learning system and its
extensions as well as XGBoost, LightGBM, and CatBoost gra-
dient boosting decision tree algorithms. Experiments indicate
that boosting algorithms often require shorter training time
and have better performance.

Index Terms— Network anomalies, denial of service, machine
learning, broad learning system, gradient boosting.

I. INTRODUCTION

Cybercriminals exploit vulnerabilities of communication
networks and systems to execute denial of service (DoS)
and distributed DoS (DDoS) attacks that compromise the
availability of resources to legitimate users by flooding the
network and by overwhelming servers with a large number
of requests. DoS attacks are performed from a single system
while DDoS attacks are synchronized and executed from
multiple systems. They may be classified as floods, fragmen-
tation, Transport Control Protocol (TCP) state exhaustion,
and application-layer [4]:

Floods are attacks that overload a target by a voluminous
traffic. A botnet, collection of devices infected with malware
under control of a botmaster, floods a victim by consuming
its bandwidth with User Datagram Protocol (UDP) or Inter-
net Control Message Protocol (ICMP) packets.

Fragmentation attacks are executed by sending manipu-
lated network packets that cannot be reassembled due to large
packet headers.

TCP state exhaustion attacks (protocol attacks) usually
target firewalls, load balancers, and servers by sending large
Internet Protocol (IP) or TCP Synchronize (SYN) packets.

Application-layer attacks monopolize Simple Mail Trans-
fer Protocol (SMTP), Hypertext Transfer Protocol Secure
(HTTPS), and Domain Name System (DNS) services. These
types of attacks are the most challenging to detect because
the requests seem legitimate.

This work was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada under grant R31-611284.

The authors are with the School of Engineering Science, Simon Fraser
University, Vancouver, British Columbia, Canada V5A 1S6, {zhidal, anag,
ljilja}@sfu.ca

Detection techniques for DoS and DDoS attacks include
activity profiling, change-point detection, and wavelet anal-
ysis [6]. In activity profiling, headers of network packets
are monitored to estimate the average packet rate of in-
bound and outbound flows by deriving an activity profile
based on analysis of consecutive packets and similarity of
packet fields. Change-point detection creates a time series
by clustering traffic data based on the address, port, or
protocol. Network traffic is described using wavelet analysis
to calculate spectral components and separate anomalous
events from regular network activity. Recent intrusion de-
tection techniques [16], [17] also rely on machine learning
algorithms [5], [12], [18] including support vector machine
(SVM) and deep neural networks such as convolutional
neural networks (CNNs), recurrent neural networks (RNNs),
autoencoders, and multilayer perceptrons.

Detection of DoS and DDoS attacks that rely on machine
learning algorithms require updating or retraining generated
models in order to capture deviations from regular network
activities caused by ever-evolving and zero-day cyberattacks.
Therefore, the training time is important for the decision-
making process at the onset of anomalies when preventing
cyberattacks on servers and avoiding denial of service to
legitimate users. Hence, we evaluate fast machine learn-
ing algorithms including: broad learning system (BLS) [7]
and its extensions [8], [14], [15] as well as the gradient
boosting decision tree (GBDT) algorithms: eXtreme gradient
boosting (XGBoost) [9], light gradient boosting machine
(LightGBM) [13], and categorical boosting (CatBoost) [19].
BLS is a fast machine learning algorithm that relies on
pseudo-inverse during the training process and has a single
layer feed-forward neural network. Training time of GBDT
algorithms is optimized by iteratively constructing an ensem-
ble of decision trees and using functional gradient descent.

Datasets [1] capturing DoS and DDoS attacks have been
generated by the Canadian Institute for Cybersecurity (CIC)
using a testbed framework [20]. These datasets are syn-
thetically generated by profiling behavior of regular and
malicious users. Malicious behavior is modeled based on
common techniques used to execute DoS and DDoS at-
tacks. The CICIDS2017 and CSE-CIC-IDS2018 datasets in-
clude application-layer DoS attacks while the CICDDoS2019
datasets contain TCP, UDP, and TCP/UDP DDoS attacks. We
use these recent synthetic datasets to compare performance
of various BLS and GBDT models.

In this paper, we compare performance of BLS and its
extensions as well as the XGBoost, LightGBM, and CatBoost
GBDT algorithms based on the training time, accuracy, F-

Score, precision, sensitivity, and confusion matrix. We intro-
duce the evaluated machine learning algorithms in Section II.
The CICIDS2017, CSE-CIC-IDS2018, and CICDDoS2019
datasets are described in Section III while the experimental
procedure and performance evaluation are given in Sec-
tion IV. We conclude with Section V.

II. MACHINE LEARNING ALGORITHMS

Matrix X used for training and test of various supervised
machine learning algorithms contains N input data points
(rows) and F features (columns). In the training phase,
output matrix Y contains assigned labels: 0 (regular) and
1 (anomalous) data points.

A. Broad Learning System

Broad learning system [7], [8] is based on the random
vector functional-link neural network. It consists of a set of
n mapped features (Zn) and m enhancement nodes (Hm)
that are concatenated in a single layer feed-forward neural
network to form a broad instead of a deep network. Each
group of mapped features Zi consists of n1 nodes generated
by first multiplying matrixX by randomly generated weights
Wei and including randomly generated bias βei . A mapping
φ is then used to generate mapped features:

Zi = φ(XWei + βei), i = 1, 2, ..., n. (1)

Matrix Zi of dimension N×n1 corresponds to a single group
of mapped features. The dimension of matrix Wei is F×n1.
Matrix Zn of dimension N × (n1 × n) is the concatenation
of generated mapped features Zi. Each enhancement node
Hj is created by first multiplying the concatenated groups of
mapped features with random weights Whj and by adding
random bias βhj . The dimension of Whj is (n1×n)×m. A
mapping ξ is then applied to generate enhancement nodes:

Hj = ξ(ZnWhj + βhj), j = 1, 2, ...,m. (2)

Mapped features and enhancement nodes are then concate-
nated to form the state matrix Am

n .
In the training phase, the Moore-Penrose pseudo-inverse

or ridge regression is used to invert the state matrix and
calculate the output weights Wm

n for the given labels Y :

Wm
n = (λI + (Am

n)TAm
n)−1(Am

n)TY , (3)

where λ is the regularization coefficient and I is the identity
matrix whose dimension is (n1×n)+m. During testing, the
predicted labels are calculated using the output weights.

BLS extensions include incremental learning [7], radial
basis function network (RBF-BLS) [15], cascades of mapped
features (CFBLS), enhancement nodes (CEBLS), and both
mapped features and enhancement nodes (CFEBLS) [8].
Incremental BLS algorithms allow increments of input data,
mapped features, and/or enhancement nodes and, thus, en-
able dynamical updates of BLS models. In case of in-
cremental input data, additional data points are used to
recalculate mapped features and enhancement nodes. The
calculation is done only for the additional data points and
there is no need to include all previously considered data

points. One may also create additional mapped features
by increasing their number and recalculating/updating the
weights of enhancement nodes. A similar approach is applied
when creating new enhancement nodes based on the existing
mapped features. Output weights have to be recalculated
in all incremental cases. The RBF-BLS extension employs
the Gaussian radial basis function to generate enhancement
nodes. The cascades of mapped features and enhancement
nodes add depth to the original architecture of BLS and may
improve its performance.

Based on the its broad hidden layer and the use of pseudo-
inverse or ridge regression, BLS offers shorter training time
with comparable performance to deep learning networks
such as multilayer perceptron, deep belief networks, deep
Boltzmann machines, and convolutional neural networks [7].
Recent studies also reported comparable performance when
applying BLS to data collected from communication net-
works [11], [14].

B. Gradient Boosting Decision Tree Algorithms

Boosting algorithms, a class of ensemble learning, are
greedy algorithms that sequentially include estimators (base
learners) to enhance the model performance [18]. The goal
is to minimize the loss function by including estimators
that are trained based on residuals. Residuals (the difference
between the target and predicted values) are calculated in
each iteration and are used as the target values in the
next iteration. The forward stage-wise additive modeling is
used to generate boosting models. The number of training
iterations is equivalent to the number of estimators because
a new estimator is added to the boosting model in each
iteration. Boosting models employ loss functions such as
squared error, absolute error, exponential loss, or log-loss.

The gradient boosting machines (GBMs) [10] are boosting
algorithms that employ functional gradient descent to mini-
mize the loss function. GBDT is a GBM variant that employs
decision trees as estimators. Optimized GBDT algorithms
include XGBoost [9], LightGBM [13], and CatBoost [19].

When training a GBDT model [9], [18] with K estimators
using N data points, the predicted output is:

ŷi =

K∑
k=1

fk(xi), (4)

where fk is the kth decision tree and xi is the ith data point.
Note that in the experiments, xi is a row vector of matrix X
containing input data and represents one collection sample.
In the kth iteration, predicted output is evaluated using the
kth decision tree (estimator):

ŷ
(k)
i = ŷ

(k−1)
i + fk(xi), (5)

where ŷ(k)i is the predicted output of the ith data point and
ŷ
(k−1)
i is the previously predicted output. The goal of the

GBDT models is to minimize the objective function:

L(k) =

N∑
i=1

l(yi, ŷ
(k)
i) + Ω(fk), (6)

where l(·) is the loss function, yi is the label of the ith input
data point, and Ω(fk) (optional) is the regularization term.

1) XGBoost Algorithm: GBDT may be improved by
adding an L2 norm regularization term to avoid over-fitting.
XGBoost [9] employs the second-order Taylor series to
approximate its objective function and a sparsity-aware al-
gorithm to deal with the sparse data. A cache-aware block
structure is used to generate the XGBoost model on parallel
and distributed computing and to increase training speed.

The regularization function is:

Ω(fk) = γT +
1

2
λ||ω||2, (7)

where γ and λ are the regularization coefficients, T is the
number of leaves in the tree, and ω are the leaf weights.

The second-order Taylor series is used to approximate (6):

L(k) '
N∑
i=1

[
l(yi, ŷ

(k−1)
i)+gifk(xi)+

1

2
hif

2
k (xi)

]
+Ω(fk),

(8)
where gi =

∂l(yi,ŷ
(k−1)
i)

∂ŷ
(k−1)
i

and hi =
∂2l(yi,ŷ

(k−1)
i)

∂(ŷ
(k−1)
i)2

are known

and l(yi, ŷ
(k−1)
i) is a constant.

For a known tree structure q(X), It is a set containing
the indices of data points in leaf t. Setting the derivative of
(8) to zero gives the optimal weight ω∗t for leaf t:

ω∗t = −
∑

i∈It gi∑
i∈It hi + λ

. (9)

The optimal solution of the objective function is:

L∗(k) = −1

2

T∑
t=1

(
∑

i∈It gi)
2∑

i∈It hi + λ
+ γT. (10)

This optimal value is used to evaluate the quality of a tree
structure q(X). The tree structure with the lowest optimal
value is selected for each iteration.

2) LightGBM Algorithm: Gradient-based one-side sam-
pling (GOSS) and exclusive feature bundling (EFB) tech-
niques are employed to significantly accelerate the training
speed. LightGBM [13] achieves performance comparable to
XGBoost albeit with lower memory usage.

LightGBM employs the histogram-based algorithm that
accelerates the process to locate the best splitting point for
each feature. Using the training data points, mutually exclu-
sive features are bundled to create feature histograms. GOSS
involves sorting the training data points in a descending
order based on the absolute value of their gradients. Top Nt

data points (subset A) with the largest gradients are selected
and random sampling of the remaining input data points is
performed to create a subset B. The dimensions of A and B
depend on predefined sampling ratios a and b, respectively.
When training a GBDT model with a given dataset, gradients
are calculated in each iteration.

In a decision tree, nodes are split based on features with
the largest information gain that depends on the variance gain

Ṽj(d) for feature j computed after splitting as [13]:

Ṽj(d) =
1

N ×N j
l (d)

(
∑

xi∈Al

gi +
1− a
b

∑
xi∈Bl

gi)
2

+
1

N ×N j
r (d)

(
∑

xi∈Ar

gi +
1− a
b

∑
xi∈Br

gi)
2,

(11)

where d is the splitting point, N is the number of data points,
N j

l and N j
r are number of input data points related to left

and right child nodes, respectively, and gi is the gradient for
input data point xi. The sampling ratios a and b are used
to calculate the normalization coefficient (1−a)/b. Al (Bl)
and Ar (Br) are the subsets of A (B) for the left and right
child nodes, respectively.

LightGBM is based on the GOSS technique and utilizes
leaf-wise growth approach to grow the decision trees instead
of level-wise growth used in XGBoost. Level-wise growth
splits the leaves of the same layer, which enables easy control
of the model complexity. However, it introduces unnecessary
overhead because the leaves with low variance gains are
also split. Compared to level-wise tree growth, leaf-wise is a
more efficient approach because it splits the leaf that has the
maximum variance gain thus reducing additional loss after a
number of splits. Furthermore, it may lead to deeper decision
trees resulting in over-fitting. Hence, the hyper-parameter
“max depth” is introduced to limit their depth.

The EFB technique combines dataset features in order to
reduce the dimension of the input data and the complexity
of building the histogram from O(ndnf) to O(ndnb), where
nd, nf , and nb are the number of data points, features, and
bundles, respectively.

3) CatBoost Algorithm: The XGBoost algorithm only
accepts numerical values and employs one-hot encoding to
convert categorical features to numerical values while Light-
GBM converts these features to gradient statistics. Hence,
CatBoost [19] is introduced to deal with categorical features.
It employs the ordered boosting algorithm and offers an
effective approach (ordered target statistic) when compared
to XGBoost and LightGBM. Target statistic was used to
convert categorical to numerical features by using the values
that estimate the expected labels based on the categories
while keeping the dimension of the dataset unchanged.

In the existing GBDT models, residuals are calculated in
each iteration and are used as the target values in the next
training iteration. This leads to bias increase and predic-
tion shift in subsequent iterations and, thus, model over-
fitting. Hence, ordered boosting was proposed to address
the prediction shift when building the decision trees during
the training process. It performs permutation and trains
multiple decision trees in each iteration. Each residual is
calculated based on the target and predicted values generated
by the previous decision tree. Symmetric (oblivious) decision
trees are used to avoid over-fitting and reduce the time
required to grow the tree. CatBoost offers plain and ordered
boosting modes with target statistics and ordered boosting,
respectively. In each iteration, the two boosting modes have
the same asymptotic complexity for calculating gradients

O(sN), updating decision trees O(sN), and computing
ordered target statistic O(NTSN), where s, N , and NTS

are the number of permutations, data points, and features
using target statistics, respectively.

III. DESCRIPTION OF DATASETS

The CIC datasets [1] were collected using testbeds that
consist of victim and attacker networks. Regular (benign)
traffic was generated by implementing B-profiles that repli-
cated the behavior of regular users. M-profiles were used to
generate malicious traffic based on common techniques that
execute various attacks: botnet, brute force File Transfer Pro-
tocol (FTP) and Secure Shell Protocol (SSH), DoS, DDoS,
heartbleed, infiltration, and web attack. Dataset features were
extracted from collected TCP and UDP network flows with
a network traffic flow analyzer. Each dataset has over 80
features including destination IP and port, protocol type,
flow duration, and maximum/minimum packet size. Attacks
considered in our experiments are listed in Table I.

TABLE I
APPLICATION-LAYER DOS AND TCP/UDP DDOS ATTACKS

Dataset Attack No. of data points
GoldenEye 10,293

CICIDS2017 Hulk 230,124
July 05, 2017 SlowHTTPTest 5,499

Slowloris 5,796
CSE-CIC-IDS2018 GoldenEye 41,508
February 15, 2018 Slowloris 10,990

Domain Name System 5,071,011
CICDDoS2019 Lightweight Directory 2,179,930
December 01, 2018 Access Protocol

Network Time Protocol 1,202,642

The CICIDS2017 dataset was generated using a testbed
where the victim network consisted of three servers, one
firewall, two switches, and ten terminals while the attacker
network had one router, one switch, and four terminals.
Network traffic flows were collected over five business days
and 84 features were extracted. The testbed used to generate
the CSE-CIC-IDS2018 dataset consisted of an attacker-
network with 50 terminals and a victim-network with five
subnets that included 420 terminals and 30 servers. Network
traffic flows were collected over ten business days and 83
features were extracted. The CICDDoS2019 dataset was
collected on November 03, 2018 and December 01, 2018.
The testbed designed to generate this dataset consisted of a
victim network with one server, one firewall, two switches,
and four terminals while the attacker network was an external
(third-party) enterprise. Captured network traffic flows were
analyzed to extract 87 features.

Spatial separations of features selected from the CI-
CIDS2017, CSE-CIC-IDS2018, and CICDDoS2019 datasets
are visualized in scattered plots shown in Fig. 1. The datasets
show visible separation between regular and anomalous
classes for various combinations of features. In the case of
the CICDDoS2019 dataset, better spatial separation of the
two classes captures distinct data patterns leading to better
classification performance.

IV. EXPERIMENTS AND PERFORMANCE EVALUATION

Five BLS algorithms with and without incremental learn-
ing and three GBDT algorithms are implemented for two-
way classification of regular and anomalous data points. The
CIC datasets are used to compare performance of algorithms
based on training time, accuracy, F-Score, precision, sensi-
tivity, and confusion matrix: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN).

We use subsets of the CIC datasets to create training and
test datasets with 78, 78, and 79 most relevant features for
the CICIDS2017, CSE-CIC-IDS2018, and CICDDoS2019
datasets, respectively. (The CICDDoS2019 dataset includes
an additional feature that indicates the traffic direction.)
Training and test datasets are partitioned based on the 60 %
and 40 % content of the anomalous data points, respectively.

The experiments (cross-validation and testing) are con-
ducted using a supercomputer managed by Compute Canada.
The Cedar [3] cluster consists of 94,528 CPU cores. We
requested 64 GB memory and an Intel E5-2683 v4 Broadwell
(2.1 GHz) processor with 8 cores and used Python 3.6.10
and its libraries [2]: NumPy, pandas, scikit-learn, XGBoost,
LightGBM, and CatBoost.

The partitioning process for training and validation
datasets for the 10-fold cross-validation based on the time
series split is illustrated in Fig. 2. In each fold, 25,000 data
points are used as the validation dataset. In the first step (Fold
1), 25,000 data points are used for training. The training
dataset in each subsequent fold is the concatenation of the
previous training and validation datasets.

Training hyper-parameters of the BLS and GBDT models
that generate the best performance results are listed in
Table II and Table III, respectively. In our experiments,
φ(·) (1) and ξ(·) (2) are linear and tanh mappings, respec-
tively. Additional hyper-parameters for incremental BLS are:
incremental learning steps = 2, enhancement nodes/step = 20
(CICIDS2017, CSE-CIC-IDS2018) and 10 (CICDDoS2019),
and data points/step = 55,680 (CICIDS2017), 49,320 (CSE-
CIC-IDS2018), and 382,929 (CICDDoS2019). Additional
hyper-parameters for GBDT algorithms are: maximum depth
in a tree = 6 (XGBoost, CatBoost), maximum number of
leaves = 31 (LightGBM, CatBoost), and loss function = log-
loss. We implement gbtree (XGBoost), gbdt (LightGBM),
and Plain (CatBoost) boosting modes.

TABLE II
BLS AND INCREMENTAL BLS HYPER-PARAMETERS LEADING TO THE

BEST PERFORMANCE: CIC DATASETS

Model Dataset Mapped Groups of Enhance-
features mapped ment

features nodes
BLS
RBF-BLS CICIDS2017 20 30 40
CFBLS CSE-CIC-IDS2018 20 10 80
BLS CICDDoS2019 15 5 20
Incremental BLS
CFBLS CICIDS2017 10 20 40
BLS CSE-CIC-IDS2018 15 30 20
CFEBLS CICDDoS2019 20 5 10

Fig. 1. Scattered plots of the CICIDS2017 (left), CSE-CIC-IDS2018 (middle), and CICDDoS2019 (right). Illustrated are spatial separations of regular
(class 0) and anomalous (class 1) data points.

Fig. 2. Time series split for the 10-fold cross-validation of the CICIDS2017
training dataset. Illustrated are the generations of training (orange) and
validation (purple) datasets.

TABLE III
XGBOOST, LIGHTGBM, AND CATBOOST HYPER-PARAMETERS

LEADING TO THE BEST PERFORMANCE: CIC DATASETS

Model Dataset Number of Learning
estimators rate

CICIDS2017 100 0.01
XGBoost CSE-CIC-IDS2018 100 0.01

CICDDoS2019 20 0.01
CICIDS2017 200 0.10

LightGBM CSE-CIC-IDS2018 150 0.02
CICDDoS2019 20 0.05
CICIDS2017 150 0.10

CatBoost CSE-CIC-IDS2018 150 0.01
CICDDoS2019 20 0.01

Classification results for the BLS and GBDT models are
shown in Table IV and Table V, respectively.

A. Effect of Hyper-Parameters on Algorithm Performance

Performance of BLS models depends on the number
of mapped features, groups of mapped features, and en-
hancement nodes. As the value of these hyper-parameters
increases, the models require additional memory and longer
training time. Selecting more than 30 mapped features, 30
groups of mapped features, and 100 enhancement nodes
requires over 64 GB of the supercomputer memory. Cal-
culation of ridge regression further exacerbates the memory

requirements. Hence, the range of hyper-parameters has been
selected based on memory consumption. Performance (ac-
curacy and F-Score) of BLS models does not monotonically
depend on the choice of hyper-parameters. Thus, we rely
on the 10-fold cross-validation to select hyper-parameters
leading to the highest average accuracy of the validated
models. The BLS models trained with the CICDDoS2019
dataset consist of fewer number of mapped features (5)
and enhancement nodes (up to 20) compared to models for
the CICIDS2017 and CSE-CIC-IDS2018 datasets, without
affecting their performance.

The number of estimators and the learning rate are the
main hyper-parameters for the GBDT algorithms. The log-
loss function was monitored for various hyper-parameters in
order to observe its behavior. A range of hyper-parameters
was selected around small values of log-loss function to
proceed with cross-validation. For each combination of pa-
rameters, the 10-fold cross-validation is used to select hyper-
parameters leading to the highest average accuracy of the
models. Generated GBDT models using the CICDDoS2019
dataset have fewer number of estimators compared to models
used with the CICIDS2017 and CSE-CIC-IDS2018 datasets.
The largest number of estimators is employed to generate
the LightGBM model using the CICIDS2017 dataset.

LightGBM models offer the shortest training time for all
considered datasets as shown in Tables IV and V. Their
training time is approximately 20 times shorter than the
BLS, XGBoost, and CatBoost models that have compara-
ble training times. The GBDT models outperform original
and incremental BLS models using the CICIDS2017 and
CSE-CIC-IDS2018 datasets. The best accuracy and F-Score
for XGBoost and CatBoost models are obtained for the
CICIDS2017 and CSE-CIC-IDS2018 datasets, respectively.
The XGBoost and CatBoost models generate the lowest
number of FNs for the CICIDS2017 and CSE-CIC-IDS2018
datasets, respectively. The BLS and GBDT models using
the CICDDoS2019 dataset have similar (two decimal points)
and very high accuracy, F-Score, precision, and sensitivity
because the regular class has few data points. Hence, the
confusion matrix is used for comparison. The XGBoost and
LightGBM models generate the lowest number of misclassi-
fied anomalous (FN) and regular (FP) data points when using
the CICDDoS2019 dataset.

TABLE IV
THE BEST PERFORMANCE OF BLS AND INCREMENTAL BLS MODELS: CIC DATASETS

Model Dataset Training time Accuracy F-Score Precision Sensitivity TP FP TN FN
BLS (s) (%) (%) (%) (%)
RBF-BLS CICIDS2017 37.72 96.63 96.87 97.57 96.18 96,832 2,416 82,511 3,841
CFBLS CSE-CIC-IDS2018 17.04 97.46 81.46 98.26 69.56 14,597 258 240,057 6,388
BLS CICDDoS2019 46.64 99.98 99.99 99.99 99.99 2,541,553 204 954 220
Incremental BLS
CFBLS CICIDS2017 17.60 95.12 95.44 96.73 94.19 94,827 3,206 81,721 5,846
BLS CSE-CIC-IDS2018 38.09 97.47 81.35 99.51 68.80 14,437 71 240,244 6,548
CFEBLS CICDDoS2019 79.01 99.97 99.99 99.97 99.99 2,541,764 646 512 9

TABLE V
THE BEST PERFORMANCE OF XGBOOST, LIGHTGBM, AND CATBOOST MODELS: CIC DATASETS

Model Dataset Training time Accuracy F-Score Precision Sensitivity TP FP TN FN
(s) (%) (%) (%) (%)

CICIDS2017 24.49 98.62 98.72 99.43 98.02 98,684 568 84,359 1,989
XGBoost CSE-CIC-IDS2018 14.43 99.90 99.39 99.99 98.79 20,731 1 240,314 254

CICDDoS2019 62.99 99.99 99.99 99.99 99.99 2,541,767 7 1,151 6
CICIDS2017 3.35 97.93 98.06 99.94 96.25 96,896 60 84,867 3,777

LightGBM CSE-CIC-IDS2018 1.73 98.73 91.44 99.99 84.23 17,675 1 240,314 3,310
CICDDoS2019 8.12 99.99 99.99 99.99 99.99 2,541,767 8 1,150 6
CICIDS2017 20.27 98.01 98.13 99.91 96.41 97,056 83 84,844 3,617

CatBoost CSE-CIC-IDS2018 19.03 99.95 99.72 99.97 99.46 20,872 6 240,309 113
CICDDoS2019 17.38 99.99 99.99 99.99 99.99 2,541,762 19 1,139 11

V. CONCLUSION

We compared performance of BLS and GBDT super-
vised machine learning algorithms using three CIC datasets.
Performance metrics such as training time, accuracy, F-
Score, precision, sensitivity, and confusion matrix were used.
Training time for the BLS models depended on the number
of mapped features, groups of mapped features, and en-
hancement nodes while time for GBDT models was affected
by the number of estimators, learning rate as well as the
maximum depth and number of leaves in the decision trees.
XGBoost, LightGBM, and CatBoost offered better accuracy
and F-Score than BLS models. The shortest training time
was required for LightGBM models. In case of similar results
(accuracy, F-Score, precision, and sensitivity), we used the
confusion matrix to further compare the classification per-
formance. The experiments illustrated advantages of GBDT
algorithms when detecting DoS and DDoS attacks.

REFERENCES

[1] Canadian Institute for Cybersecurity Datasets [Online]. Avail-
able: https://www.unb.ca/cic/datasets/index.html. Accessed: August
31, 2021.

[2] Python Package Index [Online]. Available: https://pypi.org. Accessed:
August 31, 2021.

[3] Cedar [Online]. Available: https://docs.computecanada.ca/wiki/Cedar.
Accessed: August 31, 2021.

[4] A. Bhardwaj, V. Mangat, R. Vig, S. Halder, and M. Conti, “Distributed
denial of service attacks in cloud: state-of-the-art of scientific and
commercial solutions,” Computer Science Review, vol. 39, no. 100332,
Feb. 2021.

[5] C. M. Bishop, Pattern Recognition and Machine Learning. Secaucus,
NJ, USA: Springer-Verlag, 2006.

[6] G. Carl, G. Kesidis, R. R. Brooks, and S. Rai, “Denial-of-service
attack-detection techniques,” IEEE Internet. Comput., vol. 10, no. 1,
pp. 82–89, Jan.–Feb. 2006.

[7] C. L. P. Chen and Z. Liu, “Broad learning system: an effective
and efficient incremental learning system without the need for deep
architecture,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1,
pp. 10–24, Jan. 2018.

[8] C. L. P. Chen, Z. Liu, and S. Feng, “Universal approximation capabil-
ity of broad learning system and its structural variations,” IEEE Trans.
Neural Netw. Learn. Syst., pp. 1–14, Sept. 2018.

[9] T. Chen and C. Guestrin, “XGBoost: a scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, San Francisco, CA, USA, Aug. 2016, pp. 785–794.

[10] J. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–01232, Apr.
2001.

[11] A. L. Gonzalez Rios, Z. Li, K. Bekshentayeva, and Lj. Trajković,
“Detection of denial of service attacks in communication networks,”
in Proc. IEEE Int. Symp. Circuits Syst., Seville, Spain, Oct. 2020.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: The MIT Press, 2016.

[13] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “LightGBM: a highly efficient gradient boosting decision
tree,” in Proc. Int. Conf. Neural Inform. Process. Syst., Long Beach,
CA, USA, Dec. 2017, 3146–3154.

[14] Z. Li, A. L. Gonzalez Rios, and Lj. Trajković, “Machine learning for
detecting anomalies and intrusions in communication networks,” IEEE
J. Sel. Areas Commun., vol. 39, no. 7, pp. 2254-2264, July 2021.

[15] Z. Liu and C. L. P. Chen, “Broad learning system: structural extensions
on single-layer and multi-layer neural networks,” in Proc. Int. Conf.
Secur., Pattern Anal., Cybern., Shenzhen, China, Dec. 2017, pp. 136–
141.

[16] J. P. A. Maranhão, J. P. C. L. da Costa, E. P. de Freitas, E. Javidi, and
R. T. de Sousa, Jr., “Noise-robust multilayer perceptron architecture
for distributed denial of service attack detection,” IEEE Commun. Lett.,
vol. 25, no. 2, pp. 402–406, Feb. 2021.

[17] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A detailed
investigation and analysis of using machine learning techniques for
intrusion detection,” IEEE Commun. Surveys Tut., vol. 21, no. 1,
pp. 686–728, First quarter 2019.

[18] K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cam-
bridge, MA, USA: The MIT Press, 2012.

[19] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and
A. Gulin, “CatBoost: unbiased boosting with categorical features,”
in Proc. Int. Conf. Neural Inform. Process. Syst., Montreal, Québec,
Canada, Dec. 2018, 6639–6649.

[20] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani,
“Towards a reliable intrusion detection benchmark dataset,” J. Softw.
Netw., vol. 2017, no. 1, pp. 177–200, July 2017.

