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Abstract—Tracking a maneuvering target is an important 

technology in real life. However, due to complex environment and 

diversity of sensors, sensors’ errors need to be optimized with 

respect to various motion states during the tracing process. In this 

paper, we first propose how to unify the coordinate system and 

data preprocessing in case of tracking using multiple–sensors. We 

then combine fuzzy sets with a novel trace optimization method 

based on extended Kalman filter with nested probabilistic–

numerical linguistic information. We present a case study of trace 

optimization of an unknown maneuvering target in Sichuan 

province in China. We solve the case by using both the proposed 

method and the traditional extended Kalman filter and offer 

comparative analysis to validate the proposed approach. 

 
Index Terms—Tracking maneuvering target, extended Kalman 

filter, nested probabilistic-numerical linguistic information, trace 

optimization 

 

I. INTRODUCTION 

Tracking a maneuvering target is an indispensable 

technology in modern information systems and greatly 

contributes to the civilian applications [1]–[3]. The objective of 

the tracking is to estimate the states based on the noisy 

observations by sensors. The key to its successful deployment 

depends on the effective and accurate extraction of useful 

information. Difficulties in tracking the maneuvering target are 

due to the complex tracking process and include: (1) accurately 

establishing the maneuvering target’s state equation (The 

tracking target is usually non–cooperative [4] and it may be 

difficult to accurately describe the speed and direction of the 

target.) and (2) dealing with sensor’s systemic error [5]. In 

addition to outside interference, the measurement information 

received from the sensor such as distance, azimuth angle, and 

pitch angle involve a certain amount of random error, which 

makes it difficult to accurately estimate the characteristics of 

the maneuvering target. These challenges make tracking a 
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maneuvering target an interesting and difficult research topic 

[6]–[7].  

Several popular estimation techniques have been proposed to 

address tracking a maneuvering target. They include nonlinear 

least squares [8], Kalman filter (KF) [5], and extended Kalman 

filter (EKF) [9]–[10]. Since KF is unbiased and linear, it is a 

conventional option for estimating the system behavior. 

Moreover, since it has a minimum error variance of the 

unknown state vector, it is used as an optimal recursive data 

processing algorithm in many fields and applications [11]–[12]. 

Nevertheless, due to the limitations of tracking tools and the 

complex environment in practice, KF is easily affected by noise, 

which leads to its divergence in case of Gaussian noise. Since 

the observation equation of the maneuvering target is usually 

nonlinear, the KF algorithm developed for the optimal 

minimum-variance state estimation in linear discrete-time 

Gaussian models may not be applicable. Several research 

studies have combined linearization and discretization of a 

given stochastic systems by applying the standard KF technique 

[13]–[15]. Popular filters dealing with nonlinear systems 

include EKF, unscented Kalman filter (UKF), and cubature 

Kalman filter (CKF). The EKF algorithm is considered to be 

the simplest and suboptimal but a successful state estimator to 

handle nonlinear systems. It has been used in applied science 

and engineering for decades [16]–[18]. In case of systems with 

high nonlinearities, the UKF algorithm is constraints on 

Gaussian noise and the timeliness is relatively poor compared 

with EFK algorithm [10].  The heart of the CKF is a spherical-

radial cubature rule, which makes it possible to numerically 

compute multivariate moment integrals of the nonlinear 

Bayesian filter. While the CKF may provide a systematic 

solution for high-dimensional nonlinear filtering problems, it is 

unsuitable for the tracking applications [19]. 

When the motion state of the maneuvering target and the 

detection environment are complex and lack information 

regarding the model or noise statistics, the target tracking 

problems are based on fuzzy set theory [20]. For example, after 
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training fuzzy systems with KF and EKF, fuzzy Kalman 

filtering with Takagi-Sugeno rules coincides with discrete 

Kalman filtering equations [21]–[22]. The validity domains of 

sensors are defined using fuzzy sets [23] while the KF and 

Takagi-Sugeno fuzzy modeling technique are combined to 

extend the classical Kalman linear state estimation to the 

nonlinear system [24]. These methods have been widely used 

in applications such as dynamic mobile localization [25], truck 

backing-up problems [26], and trajectory tracking control [27]. 

Even though extended methods combined with fuzzy set 

theory, such as fuzzy KF or fuzzy EKF, are popular when 

dealing with target tracking problems, they have two main 

limitations: (1) the estimation of the motion states is important 

for tracking the maneuvering target during the entire tracking 

process because it directly impacts the parameters of the 

observation equation [28]–[29]. However, the existing methods 

estimate the motion states based on the speed and direction of 

the maneuvering target during a short period of time by using 

acceleration as a measure. This approach is imprecise due to a 

number of complex factors that impact the motion state, and (2) 

the error parameters in the tracking process are the systemic 

sensor’s errors as the largest error contributors. These error 

parameters vary with motion states of the maneuvering target 

because there are multiple motion states during the tracking 

process. Since it would be inaccurate to adopt the systemic error 

parameters of the sensor to optimize the trace during the entire 

process, it is necessary to optimize them over a number of 

motion states during the tracking process. 

 In this paper, we improve the current approaches for tracking 

a maneuvering target. Difficulties in estimating the motion state 

when the sensor detects the maneuvering target call for 

evaluation of the quantitative (acceleration) and qualitative 

(location and current trace) information. Combined with fuzzy 

set theory, the linguistic terms are closer to human cognitive 

processes and the fuzzy linguistic approaches such as virtual 

linguistic term model [30], hesitant fuzzy linguistic term set 

(HFLTS) [31], and probabilistic linguistic term set (PLTS) [32]. 

They are considered to be the best choices [33] and have 

achieved superior results in many fields and applications [34]–

[36]. These fuzzy linguistic methods deal well with qualitative 

problems. However, the process of optimizing tracking of the 

maneuvering target involves both quantitative and qualitative 

information. For example, the trajectory shape of a 

maneuvering target needs to be evaluated and the systemic error 

of the sensor under various motion states needs to be reduced. 

The nested probabilistic–numerical linguistic term set 

(NPNLTS) [37] simultaneously deals with the quantitative and 

qualitative information. It helps obtain more accurate results 

and deal with the optimization problems that represent nested 

information and contain both probabilistic and numerical 

information [38-39]. In this paper, we propose a novel trace 

optimization method based on EKF with nested probabilistic-

numerical linguistic information to deal with tracking a 

maneuvering target. 

Compared to the existing approaches, the contributions of 

this paper are:  

- Using NPNLTS to optimize sensor’s errors in various 

motion states of the maneuvering target. NPNLST considers 

both quantitative and qualitative information to obtain precise 

error parameters. 

- Using the trace optimization of the maneuvering target 

based on EKF with nested probabilistic–numerical linguistic 

information to reduce the errors caused by uncertain motion 

states in a nonlinear system. 

The remaining of this paper is organized as follows: Section 

II introduces basic NPNLTS and EKF concepts. In Section III, 

we propose a trace optimization method based on EKF with 

nested probabilistic–numerical linguistic information and the 

corresponding algorithm. A case study for trace optimization of 

unknown maneuvering target in Sichuan province in China is 

described in Section IV. Finally, comparative analysis and 

discussion regarding the proposed and the EKF methods are 

given in Section V. We conclude with Section VI.  

II. PRELIMINARIES 

We first review NPNLTS concepts and operations as well as 

the rationale for using the EKF. 

A.  Nested probabilistic–numerical linguistic term set  

Based on PLTS [32] and other existing techniques, the 

NPNLTS is defined as NPN = ( ) ( ) { }OL p IL v  [37]. It 

consists of outer-layer and inner-layer probabilistic linguistic 

term sets (OPLTS) ( )OL p  and (INLTS) ( )IL v , respectively:  

( )

( ) ( )( ) ( ) ( )

( ) ( )
( )#

1

| , 0,

1,2, ,# , 1

k k k k

OL p
k

k

OL p OL OS p

OL p

k OL p p
=

  
  

=  
 = 
  


           (1) 

and 

( ) ( ) ( )( ) ( ) ( ) ( ) | , 0, 1,2, ,#
l l l l

IL v IL v IL IS v l IL v=   = ,     (2) 

where in the nested linguistic term set (NLTS), 

{ | 0,1,2, , }OS s  = =  and { | 0,1,2, , }IS n  = =  are an 

outer-layer (OLTS) and an inner-layer (ILTS) linguistic term 

sets, respectively. The term 
( ) ( )( )k k

OL p  is the k-th outer-layer 

linguistic term element (OLTE) in the OLTS associated with 

the probability 
( )k

p  while ( )#OL p  is the number of the 

linguistic term elements in ( )OL p . The term 
( ) ( )( )l l

IL v  is the 

l-th inner-layer linguistic term element (ILTE) in the ILTS 

associated with the value 
( )l

v  while ( )#IL v  is the number of 

the linguistic term elements in ( )IL v . 

The corresponding normalized NPNLTS (N–NPNLTS) [37] 

is denoted as ( ) ( )  = N NNPN OL p IL v , where: 

( )

( ) ( )( ) ( ) ( )

( )
1

1

| , 0,

1,2, , 1, 1

k k k kN N N N

N

kN

k

OL p OL OS p

OL p
k p




+

=

  
 

=  
= + = 

 


 .      (3) 

( ) ( ) ( )( ) ( ) ( ) | , 0 ' ', 1,2, , 1
l l l lN N N N NIL v IL v IL IS v or l =   − = + ,  (4)   
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1( ) ( ) ( )

1

N k k k

k
p p p

 +

=
=  , and 

( ) ( ) ( )l l lNv v v=  . The entire 

score function of NPNLTS is defined as: ( )F NPN =

( )( )( )
( )

#

1
#

IL v l

l
v IL v

= , where 
( ) ( ) ( )

( )( )l l
v IL v


 

  
= −  +  

( ) ( )
( )( )l

IL v


 
  

−    , ( ) ( )( )#

1

OL p k k

k
r p

=
= 

( )( )#

1

OL p k

k
p

= , ( )k
r  

is the subscript of the k-th linguistic term ( )k
OL ,     is the 

smallest integer greater than  , and     is  the greatest 

integer smaller than  . The deviation degree of NPNLTS is: 

( ) ( ) ( )( )( )
( )( )

1
2 2#

1
#

IL v l

l
NPN v F NPN IL v

=
= − . 

B. Extended Kalman Filter 

The Kalman filter algorithm is a popular method for the state 

estimation of linear systems [12]. The EKF algorithm was later 

proposed to deal with nonlinear systems in numerous fields 

[16]–[18]. Considering the nonlinear system in discrete time, 

the state and the observation vectors may be expressed as: 

( ) ( )( ) ( )

( ) ( )( ) ( )

, 1

,

X k f k X k w k

Z k h k X k k

= − +

= +
,                (5) 

where ( )X k  and ( )Z k  are the state and observation vectors 

at time k , respectively, f  is the nonlinear function, h  is the 

first order continuous partial derivative, and ( )w k  and ( )k  

are the process and measurement noise, respectively. They are 

both independent zero mean Gaussian distribution with the 

known variance-covariance matrices ( )Q k  and ( )R k :  

( ) ( )( )0,w k N Q k  and ( ) ( )( )0,k N R k . The variance-

covariance of the initial state ( )0 | 0X  is expressed as ( )0 | 0P . 

Assume that the estimate and variance–covariance at time k  

are denoted as ( )ˆ |X k k  and ( )|P k k , respectively. The 

predicted estimate ( )ˆ 1 |X k k+  and the variance-covariance 

( )1|P k k+  at the time +1k  are: 

( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )
'

ˆ ˆ1| , |

ˆ ˆ1| , | | , | 1

X k k f k X k k

P k k F k X k k P k k F k X k k Q k

+ =

+ = + +

, (6) 

where:  

( )( )
( )( )

( ) ( )ˆ 1| 1

,
ˆ, 1| 1 |

X k X k k

f k X k
F k X k k

X = − −


− − =


.   (7)                              

The predicting measurement value ( )1|Z k k+  is: 

( ) ( )( )ˆ1| 1, 1|Z k k h k X k k+ = + +                     (8)                              

with its associated variance–covariance matrix and Kalman 

gain: 

( ) ( ) ( ) ( ) ( )
'

1 1 1| 1 1S k H k P k k H k R k+ = + + + + + ,   (9)  

( ) ( )( ) ( ) ( )
'

1 1| k 1 1K k P k H k S k+ = + + + ,   (10)                               

where 

( )
( )( )

( ) ( ) ( )ˆ1 1|

1, , 1
1 |

1 X k X k k

h X k k k
H k

X k + = +

 + +
+ =

 +
 .     (11)                            

Updated state and variance–covariance are: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

ˆ ˆ1| 1 1| 1 1 1|

ˆ1| 1 1 1, 1| 1|

X k k X k k K k Z k Z k k

P k k I K k H k X k k P k k

+ + = + + +  + − +  

 + + = − + + + +
 

,  (12)  

where I  is the identity matrix. 

III. TRACE OPTIMIZATION WITH NESTED PROBABILISTIC-

NUMERICAL LINGUISTIC INFORMATION 

The trace optimization process with the maneuvering target 

has limited and uncertain information. For example, the finite 

measurement information obtained using sensors or other 

detecting tools has systemic errors. These errors depend on 

various motion states that are unknown in advance for each 

instance of the maneuvering target. In this Section, we first 

employ data collecting and preprocessing and then optimize 

sensors’ tracking errors at various motion states using nested 

probabilistic-numerical linguistic information. We then 

introduce the tracking optimization method based on EKF with 

nested probabilistic-numerical linguistic information (NPN-

EKFTO) and propose the algorithm. 

A.  Notation 

We first propose NPNLTSs based on PLTSs and other 

existing techniques. The parameters and notations are shown in 

Table I. 
TABLE I 

 NOTATION 

Notation Description 

kS
 

k –th sensor,
 

1,2, ,k l=  

iJ
 

i –th phases, 1,2, ,i m=  

jC  j –th evaluation index, 1,2, ,j n=  

pM
 

p –th motion state,
 

1,2, ,p q=  

kD  Distance between target and the k –th sensor  

gE  g –th expert system, 1,2, ,g t=  

  Azimuth angle 

  Pitch angle 

T
 

Recording time 


 

Longitude 


 

Latitude 

, ,k k kx y z  
Three-dimensional coordinates of the maneuvering target in 

the sensor coordinate system 

, ,k k kX Y Z  
Three-dimensional coordinates of the sensor in the geocentric 

coordinate system 

, ,k k kX Y Z  
Three-dimensional coordinates of the maneuvering target in 

the geocentric coordinate system 

B.  Unified coordinate system 

During the tracking process, the sensors usually record 

spherical coordinate parameters such as the distance and 

azimuth and pitch angles. The measurement data are listed in 

Table II.  
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TABLE II 
 MEASUREMENT DATA USING SENSORS 

Distance 

(m) 

Azimuth angle 

(degree) 

Pitch angle 

(degree) 

Time 

(s) 

Sensor 

label 

1D  1  
1  1T  

1S  

2D  
2  

2  
2T  

2S  

3D  
3  

3  
3T  

3S  

… … … … … 

The sensor measurements utilize their own coordinate 

system called sensor coordinate system (SCS). The SCS 

parameters are listed in Table III.   

TABLE III 

SCS PARAMETERS 

Parameter Description 

Origin C
 

Sensor center 

X-axis coordinate 
 

Tangent between the sensor center C  and the local 

latitude points to the East 

Y-axis coordinate 
Tangent between the sensor center C  and the local 

longitude points to the North 

Z-axis coordinate 
 

Line between the earth’s core and the sensor center 

C  points to the sky 

Azimuth angle   Angle in the XY plane: range from 0 to 360 degrees 

Pitch angle   
Angle between the sensor center and the CY-plane: 

range from -90 to 90 degrees 

In Fig. 1, A  and 'A  are the SCS position states at various 

positions of the maneuvering target. Shown also are the azimuth 

angle   and the pitch angle  . 

 
Fig. 1. The schematic SCS diagram using a sensor.                   

Multiple sensors are used to follow the maneuvering target 

in order to precisely detect the track. A sensor introduces a 

systemic error that cannot be avoided even though multiple 

sensors may reduce these errors. The position range of the 

maneuvering target may be narrowed by measuring data using 

multiple sensors at the same time instance. These sensors 

collect the measurement data during various periods using their 

independent sensor coordinate systems (SCSs). Since it is not 

convenient to observe the entire data collected at each time 

instance using multiple SCSs, we transform SCSs data to the 

geocentric coordinate system (GCS) shown in Fig. 2. GCS 

parameters are listed in Table IV. 

TABLE IV 

  GCS PARAMETERS 

Parameter Description 

Origin O
 

Earth’s core 

X-axis coordinate 
 

Intersection of the prime meridian plane and 

equatorial plane to the West 

Y-axis coordinate 
Right-handed system with the Y-axis and vertical 

XZ-plane 

Z-axis coordinate 
 

North overlaps with the rotation-axis of the Earth 

 
Fig. 2. The GCS schematic diagram.                              

The GCS with the origin O  and two SCSs with the sensor 

centers 
1C  and 

2C  are shown in Fig. 2. On the right, the GCS 

is expanded to illustrate transformation of SCSs to GCS. Let us 

assume that the GCS longitude and latitude coordinates of each 

sensor are ( )( ), 1, 2, ,k k k l  = , where the range of the 

longitude 
k  is 0~180°W or 0~180°E and the range of the 

latitude 
k  is 0~90°N or 0~90°S. The radius of the Earth is R  

and the relative GCS position coordinates with the origins 

( )1,2, ,kC k l=  are: 

( ) ( )

( ) ( )

( )

cos 180 cos 180

sin 180 cos 180

sin 180

k

k k

k

k k

k

k

X R

Y R

Z R

   

   

 

=    

=    

=  

.    (13)                        

The translation and rotation transformation of coordinates 

between SCS and GCS leads to: 

=

k k k

k k k k

k k k

X X x

Y Y L y

Z Z z

     
     

+     
     
     

,                     (14) 

where 
'

, ,k k kX Y Z    are GCS coordinates of the maneuvering 

target, 
'

, ,k k kX Y Z   are GCS coordinates of the sensor 

( )1,2, ,kS k l= , 
'

, ,k k kx y z    are the SCS coordinates of the 

maneuvering target, and 
kL  is the transformation matrix 

between SCS and GCS. 

Discussion: The range of the longitude   is 0~180°W or 

0~180°E. Hence, sin  has a significant positive or negative 

effect (13). Therefore, we consider two cases regarding the 

longitude  : 
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(1) When the longitude (0,90   , the sensor 
1C  is located 

in 0~90°W or 0~90°E, as shown in Fig. 3. 

In this case, sin 0  and 

( )

( )

sin cos cos + sin

sin cos sin cos

cos sin

X y z x

Y y z x

Z y z

   

   

 

= − +

= − + +

= +

 .                (15) 

 

Fig. 3. The GCS schematic diagram when the longitude (0,90   .      

 (2) When the longitude (90 ,180   , the sensor 
2C  is 

located in 90°W~180°W or 90°E~180°E, as shown in Fig. 4. 

  
Fig. 4. The schematic diagram when the GCS longitude (90 ,180   .     

In this case, sin 0   and: 

( )

( )

sin cos cos sin

sin cos sin cos

cos sin

X y z x

Y y z x

Z y z

   

   

 

= − + −

= − + +

= +

.          (16)                              

C.  Parameter optimization with nested probabilistic–

numerical linguistic information 

 The measurement data recorded by different sensors contain 

errors in various motion states, where the motion state of the 

maneuvering target depends on the time instance. However, due 

to the uncertainty and complexity of the tracking errors, the 

systemic and maximum errors of the sensor at a certain motion 

state of the maneuvering target is often used to optimize the 

trace during the entire tracking process [5]. Therefore, it is 

necessary to minimize the tracking errors based on different 

motion states to further optimize tracking the maneuvering 

target. The maneuvering target often records motion states, 

such as constant velocity (CV), constant acceleration (CA), 

coordinate turn (CT), and current statistical (CS). We describe 

the maneuvering target at various phases during the tracking 

process using the nested probabilistic–numerical linguistic 

information. 

Let  1 2, , , mJ J J J=  be a finite set of m  phases during 

the tracking process and  1 2, , , nC C C C=  be a set of n  

evaluation indexes with the weight vector ( )1 2, , ,
T

n   = , 

where 0, 1,2, ,j j n  =  and 
1

1
n

ii


=
= . Considering the 

evaluation indexes ( )1,2, ,jC j n=  over the phases 

( )1,2, ,iJ i m= , the expert systems evaluation information is 

represented by the OPLTSs ( )ijOL p =
( ) ( ){ ( ) | 1, 2,...,
h h

ij ijOL p h =

# ( )}ijOL p , where ( ) ( )( )h h

ij ijOL p  is the h–th linguistic term 

element in the OLTS { | 0,1,2, , }OS s  = =  associated with 

the probability ( )h

ijp , ( ) 0h

ijp  , and # ( )ijOL p  is the number of 

linguistic term elements in ( )ijOL p . For example, suppose  

 0 1 2 3, , ,OS s CV s CA s CT s CS= = = = = , when the expert 

systems consider that the motion state is 
1s  over the phase 

iJ  

with respect to the evaluation index jC  with the sensor k , and 

its probability is 0.6. Then, the OPLTS is  1( ) (0.6)k

ijOL p s= . 

The outer–layer decision matrix ( )k k

ij m n
OR OL p


 =     is shown 

in Table V. 

TABLE V 

 THE OUTER–LAYER DECISION MATRIX 
kOR   

 1C  2C   nC  

1J  
11( )kOL p  

12( )kOL p   
1 ( )k

nOL p  

2J  
21( )kOL p  

22( )kOL p   
2 ( )k

nOL p  
     

mJ  
1( )k

mOL p  
2( )k

mOL p   ( )k

mnOL p  

The second evaluation information over the outer-layer 

linguistic term elements ( )0,1, ,s  =  in the OLTS 

{ | 0,1,2, , }OS s  = =  with respect to the inner–layer 

linguistic term elements ( )0,1,2, ,n  =  in the ILTS 

{ | 0,1,2, , }IS n  = =  is represented by the INLTSs 

( ) ( )( ) { ( ) | 0,1,..., }l lIL v IL v l   = = , where ( ) ( )( )l lIL v   is the l-th 

linguistic term in the ILTS associated with the value ( )lv , 

( ) 0lv   and 1 +  is the number of inner-layer linguistic terms 

in ( )IL v . For example, 
0 1{ ,distanseerrorIS n n= = =

2, }azimuth angle error n pitchangle error= , ( )1 0.6s  with 

respect to the inner-layer linguistic term elements 

( )0,1,2n  =  may be expressed as ( ) ( ) ( )1 0 10.6 { 50 , 5 ,s n n

( )2 10 }n  indicating that the distance, the azimuth angle, and the 

pitch angle errors are 50, 5, and 10, respectively, under the 

motion state CA  with probability 0.6. The inner-layer decision 

matrix ( )IR IL v  
 =    is shown in Table VI. 
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TABLE VI 

 THE INNER–LAYER DECISION MATRIX IR   

 0n  
1n   n  

0s  
00 ( )IL v  

01( )IL v   
0 ( )IL v

 

1s  
10 ( )IL v  

11( )IL v   
1 ( )IL v

 

     
s  

0 ( )IL v
 

1( )IL v
  ( )IL v

 

Therefore, combined with the outer-layer decision matrix 
kOR  and the inner-layer decision matrix IR , the nested 

probabilistic-numerical linguistic decision matrix =kR  

( )  ( )  

   =   
k k

ijm n m n

NPN OL p IL v may be expressed 

using NPNLTS as: 

11 12 1

21 22 2

1 2

k k k

n

k k k

k k n

ij m n

k k k

m m mn

NPN NPN NPN

NPN NPN NPN
R NPN

NPN NPN NPN



 
 
  = =   
 
  

  .  (17)                      

The overall decision matrix k k

ij m n
R NPN


 =    with the 

sensor k  based on NPNLTSs is shown in Table VII. 

TABLE VII 

 THE OVERALL DECISION MATRIX 
kR   

 1C  2C   nC  

1J  ( ) 11( )kOL p IL v  ( ) 12 ( )kOL p IL v   ( ) 1 ( )k

nOL p IL v  

2J  ( ) 21( )kOL p IL v  ( ) 22 ( )kOL p IL v   ( ) 2 ( )k

nOL p IL v  
     

mJ  ( ) 1( )k

mOL p IL v  ( ) 2 ( )k

mOL p IL v   ( ) ( )k

mnOL p IL v  

Finally, we may aggregate 
k k

ij m n
R NPN


 =    from the 

OPLTSs and the INLTSs to get the optimized error parameters 

( ) *

i iIZ n v=  over the phase 
iJ . If the inner linguistic term 

set of the error parameters is  0 1 2, ,IS n nD n = = = = , the 

optimized error parameters ( ), ,i i i

op op opD    may be obtained 

considering the overall factors such as the sensor type, motion 

state, and state phases. 

D.  Trace optimization 

Due to the complex environment of the maneuvering target, 

the state estimation system is nonlinear. Combined with the 

EKF, f  and h  (5) are both nonlinear functions. Let 

( ) ( )1 1X X k k= − − −  and ( ) ˆX̂ X k k= − . Linearization using 

Taylor series and taking EKF as the first-order gives: 

( )( ) ( ) ( )( )
( )

( ) ( )
' , 1 :

, 1 , 1 ' , 1

= , 1
kf k k G

k

f k X k f k k f k k X

f k k G X
− =

−  − + −

− +

,      (18) 

( )( ) ( ) ( )( )
( )

( ) ( )
' :

ˆ ˆ ˆˆ ˆ, '
kh k H

kh k X k h k h k X h k H X
=

 + = + .    (19) 

We next insert relevant parameters: the initial state ( )0 | 0X , 

the observation vector ( )Z k , the process noise ( )w k , the 

measurement noise ( )k , and the initial variance–covariance 

( )0 | 0P . In particular, the variance–covariance at time k  (6) 

depends on the optimized error parameters calculated in Section 

III-C.  

We finally calculate the predicted measurement value 

( )1|Z k k+  (8) with its associated variance–covariance matrix 

( )1S k +  (9) and the Kalman gain ( )1K k +  (10) to further 

update the state ( )ˆ 1| 1X k k+ +  and the variance–covariance 

( )1| 1P k k+ +  (12). We then obtain the optimized tracking 

based on nested probabilistic–numerical linguistic information. 

E.  NPN-EKFTO: Algorithm 

The main steps of the tracking optimization algorithm using 

the NPN–EKFTO method are:  
Step 1. Collect the spherical coordinate parameters from the 

sensors and transform them to the three–dimensional coordinate 

parameters of the maneuvering target. 

Step 2. Convert each SCS to the GCS and describe the scatter 

diagram and initial GCS trajectory of the maneuvering target. 

Step 3. Optimize the coordinates by the data preprocessing 

(having at least two recording data points at the same time 

instance) and divide the movement phases of the maneuvering 

target according to the initial trajectory. 

Step 4. Given the NPNLTSs by expert systems about the 

error parameters over various phases at various motion states 

with respect to the evaluation indexes, aggregate NPNLTSs to 

obtain the optimized error parameters at each phase. 

Step 5. Obtain the optimal tracking with optimized error 

parameters based on the EKF algorithm. 

The tracking optimization process based on the NPN–

EKFTO method is implemented in the NPN-EKFTO Algorithm: 

Algorithm: NPN-EKFTO 

Input parameters: 

P – the number of processes               L – the number of sensors 

M – the number of phrases                 iT – the recording time of process i  
k

iD – the distance with sensor k  of process i  
k

i – the azimuth angle with sensor k  of process i  
k

i –the pitch angle with sensor k  of process i  
1. // Calculate coordinates in GCS 

2. for i : =1 to P 

3.   for k : =1 to L 

4.   [ k

iX , k

iY , k

iZ ] : = GCS [ k

iD , k

i , k

i ] 

5.  loc ( iT ) : =  [
iX ,

iY ,
iZ ] 

6.  // Select repetition time 

7.  i = 1, ii=1 

8.  while (i ~ = P+1)  

9.  if number ( iT ) >1 

10. i=i+1 

11. if length (number ( iT )) ~ = 1 

12. ii=ii+1, i=i+1 

13. repetition time : = iT +1 

14. // Do data preprocessing 

15.  if ii ~ = 1 

16.  location ( iT ) : = overlapping region (repetition time) 
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17.  else  

18.   return location (
iT ) 

19. // Optimize the error parameters 

20. for i = 1 to P 

21.   for j = 1 to M 

22. [ i

opD , i

op , i

op ] : = aggregate. NPN [ ijD , ij , ij ] 

23. // Optimize tracking based on EKF 

24.  for i = 2 to P 

25. predict. loc (i) : = f_nonlinear (optimal. loc (i), optimal. loc (i-1))  

26. predict. cov (i) :  = cov (i-1) + R. cov (i) 

27. gain (i) : = predict. cov (i) * (predict. cov (i) + Q. cov (i)) -1 

28. optimal. loc (i) : = predict. loc (i) + gain (i) * coefficient (i) 

29. cov (i) : = (I - gain (i)) * predict. cov (i) 

30. return optimal. loc (i)  

31. return cov (i) 

F.  NPN-EKFTO: Flow chart 

The flow chart of the NPN-EKFTO algorithm is shown in 

Fig. 5. 

Fig. 5. The flow chart of the NPN-EKFTO algorithm. 

The NPN-EKFTO system may be divided into three stages: 

The preparation stage that transforms each SCS coordinate to 

GCS and organizes the recording parameters in the three–

dimensional GCS coordinates; The evaluation stage that 

assesses the tracking error parameters over different phases at 

various motion states with respect to the evaluation NPNLTSs 

indexes; The tracking of the maneuvering target with the 

optimal error parameters based on the EKF algorithm. 

IV. CASE STUDY OF THE MANEUVERING TARGET TRACKING 

USING THE NPN-EKFTO METHOD  

A. Case description 

Target tracking is very important in predicting the intentions 

of the maneuvering target in many fields. Maneuvering target 

tracking technology is indispensable in securing personal safety, 

financial security, and information assurance.  

We consider the case of an unknown maneuvering target in 

Sichuan province. Sichuan province, located in Southwestern 

China, is topographically high in the West and low in the East. 

It is well-known for its complex terrain with plains, hills, 

mountains, and plateaus, offering rich environmental factors for 

target tracking. In order to detect the maneuvering target’s 

intent and guide its action, the instructor requires tracking the 

status of the maneuvering target using three sensors. The 

tracking data are returned from real-world experiments in real 

time. 728 sets of measurement data of the maneuvering target 

are collected with the three sensors at slightly different times. 

Specifically, sensor 1, sensor 2, and sensor 3 record 237, 264, 

and 227 sets of measurement data, respectively. The 

measurement data (partial list) and the correlation system 

information from the three sensors are shown in Table VIII and 

Table IX, respectively. 

TABLE VIII 

 PART LIST OF THE MEASUREMENT DATA USING THREE SENSORS 

Distance 
(m) 

Azimuth angle 
(degree) 

Pitch angle 
(degree) 

Time 
(s) 

Sensor 
label 

61709.26 29.03 0.28 36620.4 1 

61566.09 29.30 0.18 36621.4 1 

61556.81 30.01 0.39 36622.4 1 

… … … … … 

65030.10 32.76 0.30 36874.4 1 

56774.49 173.61 0.12 36919.4 2 

56861.94 173.89 0.02 36920.4 2 

56846.59 174.22 0.64 36921.4 2 

… … … … … 

63469.37 173.71 0.29 37119.4 2 

18367.97 280.84 1.67 37119.4 3 

63348.41 173.53 0.12 37120.4 2 

18346.51 281.78 2.04 37120.4 3 

… … … … … 

21310.12 281.00 1.54 37367.4 3 

21069.02 280.54 1.69 37368.4 3 

21143.01 281.39 1.84 37369.4 3 

Remark 1. Sensor 1 records the measurement data of the 

maneuvering target at different times. There are no identical 

recording times using Sensor 2 and Sensor 3. Sensor 2 and 

Sensor 3 have 79 identical recording times.  
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TABLE IX 
 THE CORRELATION SYSTEM INFORMATION USING THREE SENSORS  

Sensor label 
Longitude   

(degree) 

Latitude   

(degree) 

Height h  

(m) 

1 102.1 30.5 0 

2 102.4 31.5 0 

3 102.7 31.9 0 

Remark 2. The three sensors are located in the horizontal plane, 

as evident by their heights. They are located at the East 

longitudes and the North latitudes. 

Based on the longitudes of the three sensors shown in Table 

VIII, (90 ,180k    ( )1,2,3k =  and, hence, belong to the 

second phase described in Section III-B. Thus, we may 

construct the transformation matrix kL  as: 

sin sin cos cos cos

cos sin sin cos sin

0 cos sin

k k k k k

k k k k k k

k k

L

    

    

 

 − −
 

= − 
 
 

. 

Combined with (14), we have: 

sin sin cos cos cos

= cos sin sin cos sin

0 cos sin

k k k k k k k k

k k k k k k k k

k k k k k

X X x

Y Y y

Z Z z

    

    

 

       − −
       

+ −       
       
       

. 

Therefore, relative GCS coordinates , ,k k kX Y Z    

( )1,2,3=k  of the maneuvering target may be obtained from 

the SCS. Trajectories of the maneuvering target in three SCSs 

and the GCS are shown as track diagrams in Fig. 6. 

Figures 6 (a) to (c) show that the shape of the track diagram 

using Sensor 1 is similar to a “U” shape while the shapes of the 

track diagrams using Sensor 2 and Sensor 3 both have spiral 

shapes. The overall track of the maneuvering target using three 

sensors, shown in Fig. 6(d), is similar to the position 

coordinates using Sensor 2 and Sensor 3 while the track 

diagram using Sensor 1 is relatively independent. This 

observation corresponds to Remark 1. 

  
(a) SCS1: Track diagram 

 
(b) SCS2: Track diagram. 

 
  (c) SCS3: Track diagram in. 

 
                  (d) GCS: Track diagrams. 

Fig. 6. Track diagrams of the maneuvering target in SCSs and GCS. 

B. Data preprocessing 

The location parameters of a maneuvering target such as the 

longitude, the latitude, and the height should be unique at each 

time instance [44]. However, according to Table VIII and 

Remark 1, the recording times are not unique when the three 

sensors track the maneuvering target because measurement data 

are recorded at the same time instance by different sensors. 

Therefore, it is necessary to narrow the range of possible 

positions of the maneuvering target at each moment using the 

systemic error parameters (data preprocessing) and then further 
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optimize its track. Examples of systemic error parameters for 

the three sensors are shown in Table X. 

TABLE X 

 SYSTEMIC ERROR PARAMETERS FOR THE THREE SENSORS  

Sensor label 
Distance–measuring 

 error D (m) 

Error of   

(degree) 

Error of 

  

(degree) 

1 50 0.4 0.4 

2 60 0.5 0.5 

3 60 0.5 0.5 

Remark 3. The sensors’ systemic error parameters when 

measuring the distance D , the azimuth angle  , and the pitch 

angle   shown in Table VIII are the maximum errors 

considering multiple factors in as many cases as possible during 

the tracking process. 

According to the measurement data, Sensor 2 and Sensor 3 

have the same recording times during the time interval 37,119.4 

s to 37,219.4 s where there are 79 sets of overlapping 

measurement data at the same time instance. For example, in 

494th and 495th sets of the measurement data, the relevant 

position parameters with Sensor 2 and Sensor 3 are shown in 

Table XI.  

TABLE XI 

 POSITION PARAMETERS AT 494TH
 AND 495TH

  SETS
 

Sensor 

 label 

Distance  

(m) 

Azimuth angle 

(degree) 

Pitch angle 

(degree) 

Time 

(s) 

2 60,583 174.3312 0.1283 37,164 

3 19,997 289.3387 0.9417 37,164 

According to the systemic error parameters shown in Table 

VIII, we may identify possible positions and the overlapping 

region at 494th and 495th sets with Sensor 2 and Sensor 3 as 

shown in Fig. 7. 

  
(a) Possible position region               (b) Overlapping region 

Fig. 7. Possible position and overlapping regions at 494th and 495th sets.  

Fig. 7 (a) represents possible position regions at 494th and 

495th sets with Sensor 2 and Sensor 3 at the same time instance: 

the green area shows possible position region at 494th under the 

systemic errors with the Sensor 2 while the blue area shows 

possible position region at 495th under the systemic errors with 

Sensor 3. Fig. 7(b) shows the overlapping region between the 

green and the blue areas. The most likely position at this time 

instant should be in the overlapping region because it satisfies 

both systemic errors with both sensors. Hence, the range of the 

possible position region of the maneuvering target can be 

narrowed down by data preprocessing, as shown in Fig. 7. 

Therefore, the position accuracy of tracking the maneuvering 

target will be greatly improved by considering all 79 sets of 

overlapping measurement data. 

C. Using the NPN-EKFTO method 

Based on the NPN-EKFTO algorithm introduced in Section 

III-E, the initial trajectory of the maneuvering target needs to 

be described by considering various movement phases. After 

data preprocessing described in Section IV-B, we may generate 

the observable trace with the maneuvering target shown in Fig. 

8. 

 

 (a) Observable trace. 

 
                               (b) Movement phases. 

Fig. 8. The initial trajectory of the maneuvering target. 

Remark 4. Three main phases of motion states need to be 

evaluated from the start to end point shown in Fig. 8 (a). Note 

that Phase 1 (blue track) is similar to a straight-line movement, 

Phase 2 (green track) is similar to a turning motion, and Phase 

3 (red track) resembles circular movement, as shown in Fig. 8 

(b). 

NPNLTSs are then used to optimize the error parameters 

with respect to various motion states of the corresponding 

phases and analyze the trace optimization by taking into 

account three main evaluation indexes: (1) 
1C : movement 

shape; (2) 
2C : accelerated speed; and (3) 

3C : location 

coordinate. The weight vector is ( )0.3,0.5,0.2
T

 = . We define 

the OLTS and ILTS:  

 0 1 2 3, , ,OS s CV s CA s CT s CS= = = = =  
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 0 1 2, , .IS n n azimuth angle errordista n pitchnce err angle eor rror= = = =  

In order to evaluate phases ( )1,2,3iJ i = , where the elements 

of OLTS are types of motion state introduced in Section III-C 

while the elements of ILTS are error parameters. Combined 

with the systemic error parameters using sensors shown in 

Table VIII, the inner–layer information matrices of the error 

parameters with respect to various motion states with different 

sensors is shown in Table XII. 

Table XII  

INNER–LAYER INFORMATION MATRIX USING DIFFERENT SENSORS  

Sensor 1 0n  
1n  

2n  

0s  40 0.3 0.3 

1s  30 0.2 0.2 

2s  50 0.4 0.4 

3s  40 0.3 0.3 

Sensor 2 0n  1n  2n  

0s  50 0.4 0.4 

1s  40 0.3 0.3 

2s  60 0.5 0.5 

3s  50 0.4 0.4 

Sensor 3 0n  1n  
2n  

0s  50 0.4 0.4 

1s  40 0.3 0.3 

2s  60 0.5 0.5 

3s  50 0.4 0.4 

The outer-layer information about the motion states with 

respect to evaluation indexes at different phases may be given 

as probabilities by expert systems, as shown in Table XIII. 

After collecting the outer-layer and the inner-layer information 

related to three sensors, we obtain the overall information 

matrix ij m n
R NPN


 =    with nested probabilistic–numerical 

linguistic information.  

TABLE XIII 

 THE OVERALL INFORMATION MATRIX R  

 1C  2C  3C  

1J  

( ) ( ) ( ) 
( ) ( ) ( ) 

( ) ( ) ( ) 
( ) ( ) ( ) 

0 0 1 2

1 0 1 2

2 0 1 2

3 0 1 2

,

,

(0.6) 40 , 0.3 , 0.3 ,

(0.4) 30 , 0.2 , 0.2 ,

(0) 50 , 0.4 , 0.4

(0) 40 , 0.3 , 0.3n

s n n n

s n n n

s n n n

s n n

 
 
 
 
  
 
 
 
 
 
  

  

( ) ( ) ( ) 
( ) ( ) ( ) 

( ) ( ) ( ) 
( ) ( ) ( ) 

0 0 1 2

1 0 1 2

2 0 1 2

3 0 1 2

,

,

(0.6) 40 , 0.3 , 0.3 ,

(0.3) 30 , 0.2 , 0.2 ,

(0) 50 , 0.4 , 0.4

(0.1) 40 , 0.3 , 0.3

s n n n

s n n n

s n n n

s n n n

 
 
 
 
  
 
 
 
 
 
  

 

( ) ( ) ( ) 
( ) ( ) ( ) 

( ) ( ) ( ) 
( ) ( ) ( ) 

0 0 1 2

1 0 1 2

2 0 1 2

3 0 1 2

,

,

(0.5) 40 , 0.3 , 0.3 ,

(0.5) 30 , 0.2 , 0.2 ,

(0) 50 , 0.4 , 0.4

(0) 40 , 0.3 , 0.3

s n n n

s n n n

s n n n

s n n n

 
 
 
 
  
 
 
 
 
 
  

 

2J  

( ) ( ) ( ) 
( ) ( ) ( ) 

( ) ( ) ( ) 
( ) ( ) ( ) 

0 0 1 2

1 0 1 2

2 0 1 2

3 0 1 2

,

,

(0) 40 , 0.3 , 0.3 ,

(0) 30 , 0.2 , 0.2 ,

(0.7) 50 , 0.4 , 0.4

(0.3) 40 , 0.3 , 0.3

s n n n

s n n n

s n n n

s n n n

 
 
 
 
  
 
 
 
 
 
  

 

( ) ( ) ( ) 
( ) ( ) ( ) 

( ) ( ) ( ) 
( ) ( ) ( ) 

0 0 1 2

1 0 1 2

2 0 1 2

3 0 1 2

,

,

(0) 40 , 0.3 , 0.3 ,

(0) 30 , 0.2 , 0.2 ,

(0.8) 50 , 0.4 , 0.4

(0.2) 40 , 0.3 , 0.3

s n n n

s n n n

s n n n

s n n n

 
 
 
 
  
 
 
 
 
 
  

 

( ) ( ) ( ) 
( ) ( ) ( ) 

( ) ( ) ( ) 
( ) ( ) ( ) 

0 0 1 2

1 0 1 2

2 0 1 2

3 0 1 2

,

,

(0.1) 40 , 0.3 , 0.3 ,

(0) 30 , 0.2 , 0.2 ,

(0.7) 50 , 0.4 , 0.4

(0.2) 40 , 0.3 , 0.3

s n n n

s n n n

s n n n

s n n n

 
 
 
 
  
 
 
 
 
 
  

 

3J  

( ) ( ) ( ) 
( ) ( ) ( ) 
( ) ( ) ( ) 
( ) ( ) ( ) 

0 0 1 2

1 0 1 2

2 0 1 2

3 0 1 2

,

(0.1) 50 , 0.4 , 0.4 ,

(0.1) 40 , 0.3 , 0.3 ,

(0.3) 60 , 0.5 , 0.5

(0.5) 50 , 0.4 , 0.4

s n n n

s n n n

s n n n

s n n n

 
 
 
 
  
 
 
 
 
 
  

 

( ) ( ) ( ) 
( ) ( ) ( ) 
( ) ( ) ( ) 
( ) ( ) ( ) 

0 0 1 2

1 0 1 2

2 0 1 2

3 0 1 2

,

(0.1) 50 , 0.4 , 0.4 ,

(0.1) 40 , 0.3 , 0.3 ,

(0.2) 60 , 0.5 , 0.5

(0.6) 50 , 0.4 , 0.4

s n n n

s n n n

s n n n

s n n n

 
 
 
 
  
 
 
 
 
 
  

 

( ) ( ) ( ) 
( ) ( ) ( ) 
( ) ( ) ( ) 
( ) ( ) ( ) 

0 0 1 2

1 0 1 2

2 0 1 2

3 0 1 2

,

(0.2) 50 , 0.4 , 0.4 ,

(0.1) 40 , 0.3 , 0.3 ,

(0.3) 60 , 0.5 , 0.5

(0.4) 50 , 0.4 , 0.4

s n n n

s n n n

s n n n

s n n n

 
 
 
 
  
 
 
 
 
 
  

 

Remark 5. Although the error parameters using the sensor vary 

under different motion states, they should all be smaller than 

the systemic maximum errors using the corresponding sensors 

shown in Table VIII. Furthermore, it can be seen that Sensor 1 

traces Phase 1 and Phase 2, while the measurement data of 

Phase 3 should come from Sensor 2 and Sensor 3 shown in Fig. 

6 and Fig. 8, respectively. Because the error parameters are 

identical using Sensor 2 and Senor 3 shown in Table VIII and 

Table X, respectively, there is no difference in errors between 

Sensor 2 and Sensor 3. 

We now need to aggregate the NPNLTs shown in Table XI 

based on the method introduced in Section II-A and obtain the 

optimized error parameters at each phase. The outer-layer 

results ( )( )1,2,3iOZ i =  are: 

( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) 

1 0 1 2 3

2 0 1 2 3

3 0 1 2 3

0.58 , 0.37 , 0 , 0.05

0.02 , 0 , 0.75 , 0.23

0.12 , 0.1 , 0.25 , 0.53

OZ s s s s

OZ s s s s

OZ s s s s







=

=

=

. 

The outer–layer’s scores ( )( )iOE OZ  ( )1,2,3i =  are: 

( )( ) ( )( ) ( )( )1 0.52 2 2.19 3 2.19, ,OE OZ s OE OZ s OE OZ s  = = = . 

Thus, the inner–weight vector can be obtained as: 

( ) ( ) ( )1 2 30,0.48,0.52,0 , 0,0,0.81,0.19 , 0,0,0.81,0.19 .
T T T

  = = =  

Finally, we optimize and aggregate the INLTSs with the 

inner–weight: 

( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) 

1 1 0 1 2

2 2 0 1 2

3 3 0 1 2

40.4 , 0.304 , 0.304

48.1 , 0.381 , 0.381

58.1 , 0.481 , 0.481

IZ n n n

IZ n n n

IZ n n n







=

=

=

. 

Thus, the optimal error parameters ( ), ,i i i

op op opD    with 

respect to the phases ( )1,2,3iJ i =  are ( )1 1 1, ,op op opD   =

( )40.4,0.304,0.304 , ( )2 2 2, , (48.1,op op opD   = 0.381,0.381) , and 

( )3 3 3, ,op op opD   = ( )58.1,0.481,0.481 , respectively. Then, the 

optimal tracking of the maneuvering target may be described 

based on the EKF algorithm with the optimal error parameters, 

as shown in Fig. 9. 

The entire trace of the maneuvering target is shown in Fig. 9, 

where the red and black dots are the start and end points, 

respectively. The green and blue dashed lines are the 

observation and the filtered traces, respectively. 

 
(a)  Two-dimensional chart.  
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(b) Three-dimensional chart. 

Fig. 9. The optimal tracking of the maneuvering target. 

After transforming the coordinate system from SCSs to GCS 

and after data preprocessing, we obtain the optimized error 

parameters of the three sensors at each phase and then get the 

optimal tracking of the maneuvering target based on the NPN-

EKFTO approach. As shown in Fig. 9, the tracking of the 

maneuvering target is similar to cruising first over a wide range 

and then reduces to a circle around a certain area. Therefore, we 

may focus on this area to deduce the intention of the 

maneuvering target. The proposed method enables us to define 

the area more precisely through the optimal tracking.  

V. COMPARATIVE ANALYSES  

In order to show the advantages of the proposed method, we 

consider effect of using multiple sensors, the EKF algorithm, 

and NPN linguistic information. 

A. Multiple sensors 

When tracking a maneuvering target by a sensor, the 

measurement data at a time is unique. The filtered trace only 

depends on the data and the sensor’s error. However, multiple 

sensors may reduce the detection error of the target as discussed 

in Section IV-B.  In the case study, there are 79 sets of 

overlapping measurement data by Sensor 2 and Sensor 3 at the 

same time instance. According to the observable points, we 

obtain filtered traces using one sensor and two sensors. The 

performances are shown in Fig. 10. 

  
(a) Filtered trace by one sensor.                   (b) Filtered trace by two sensors. 

Fig. 10. Observable points and the filtered trace of the maneuvering target. 

Within the same time frame, the data points are more 

dispersed in Fig. 10 (a) than in Fig. 10 (b). After data 

preprocessing, the filtered trace is much smoother than when 

using a single sensor. We next compare the observable trace and 

the filtered trace using EKF with one and two sensors, 

respectively.  

 
(a) Filtered trace by one sensor. 

 
                                (b) Filtered trace by two sensors. 

Fig. 11. The observable trace and filtered trace of the maneuvering target. 

The observable trace using one sensor shown in Fig. 11(a) 

fluctuates more widely than using two sensors. The filtered 

trace based on EKF is much smoother, as shown in Fig. 11 (b).  

Furthermore, the errors in X, Y, and Z derived by using 

different numbers of the sensors are shown in Fig. 12, Fig. 13, 

and Fig. 14, respectively.  

 
Fig. 12. X direction: errors using different numbers of the sensors. 

 
Fig. 13. Y direction: errors using different numbers of the sensors. 
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Fig. 14. Z direction: errors using different numbers of the sensors. 

As expected, the errors when using three sensors are the 

smallest than those in other two situations. The performances 

are also evaluated when using different numbers of the sensors, 

and when using different combinations of the sensors. 

Parameters such as mean error (ME), mean-square error (MSE), 

and standard deviation (SD) are shown in Table XIV, and in 

Table XV, respectively. 

Table XIV 

COMPARISONS OF ERRORS USING DIFFERENT NUMBERS OF SENSORS 

X direction ME MSE SD 

One sensor 15.6924 75.7635 9.4324 

Two sensors 9.5373 46.7834 4.7534 

Three sensors  7.4159 32.7825 3.6713 

Y direction ME MSE SD 

One sensor 10.2747 57.3245 8.5642 

Two sensors 6.5635 36.7832 5.0636 

Three sensors 4.7931 33.5591 4.1074 

Z direction ME MSE SD 

One sensor 19.5393 96.3462 15.4687 

Two sensors 10.4535 68.2144 8.6206 

Three sensors 8.4913 58.2351 6.8924 

Table XV 

COMPARISONS OF ERRORS USING DIFFERENT COMBINATIONS OF SENSORS 

X direction ME MSE SD 

Sensor 1 and Sensor 2 9.1417 45.9653 4.7856 

Sensor 1 and Sensor 3 9.2565 46.0164 4.8215 

Sensor 2 and Sensor 3  11.6746 48.9042 5.6543 

Y direction ME MSE SD 

Sensor 1 and Sensor 2 6.7881 37.5427 5.6724 

Sensor 1 and Sensor 3 6.8932 37.9752 5.8924 

Sensor 2 and Sensor 3  8.2351 39.2409 6.9982 

Z direction ME MSE SD 

Sensor 1 and Sensor 2 10.3852 68.9924 8.5785 

Sensor 1 and Sensor 3 11.0324 70.1954 9.1241 

Sensor 2 and Sensor 3  13.5362 72.3499 11.2733 

According to statistical values shown in Table XIV and 

Table XV, errors with three sensors are the smallest ones. When 

using different combinations of sensors, the performances 

depend on the systematic errors of the sensor. For example, 

there are little difference of errors when using the sensor 1 and 

the sensor 2 or 3 because of the same systematic errors of the 

sensor 2 and the sensor 3. Hence, since multiple sensors 

effectively reduce errors based on data preprocessing, tracking 

a maneuvering target by multiple sensors is more accurate. 

B. EKF algorithm 

In addition to the EKF algorithm, there are other filtering 

algorithms that deal with nonlinear systems, such as the UKF 

and the CKF. In order to verify the proposed method, we 

recorded 1,200 sets of data using three sensors. There are 400 

sets of overlapping measurement data at the same time instance. 

We conduct the case study using EKF, UKF, and CKF methods. 

The errors in X, Y, and Z directions are shown in Fig. 15, Fig. 

16, and Fig. 17, respectively. 

 
Fig. 15. Errors in the X direction. 

 
Fig. 16. Errors in the Y direction. 

 
Fig. 17. Errors in the Z direction. 

Fig. 15 to Fig. 17 show the errors in X, Y, and Z directions 

when using three different filtering algorithms. The direction in 

which the greatest average error is in the Z direction, and the 

smallest average error is in the Y direction. The errors are 

smaller by using the EKF than those by using UKF and CKF. 

file:///C:/Users/76091/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
file:///C:/Users/76091/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
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 Since performance depends on noise parameters, simulation 

results using different ( )Q k  and ( )R k , and parameters such 

as mean error (ME), mean-square error (MSE), and average 

operation time (AOT) are shown in Table XVI. 

Table XVI 

COMPARISONS OF THREE FILTERS 
2 21, 10Q R= =  ME MSE AOT 

EKF 2.2612 16.5732 0.0232 

UKF 1.9873 15.7896 0.0563 

CKF 1.8287 15.5675 0.0321 

2 2100, 100Q R= =  ME MSE AOT 

EKF 18.3821 35.7246 0.0221 

UKF 26.4245 48.7142 0.0589 

CKF 20.5632 38.2451 0.0342 

The experimental results shown in Table XVI indicate 

that when the noise parameters are relatively small, accuracy 

using UKF and CKF methods is slightly better than using EKF. 

while their time costs are larger than the EKF. The precision 

and the timeliness of the EKF are superior to the UKF and CKF 

when the noise parameters are relatively large. Hence, selecting 

an appropriate filter should be based on the detection 

environment. 

C. NPN linguistic information 

For comparison, we employ the fuzzy EKF and the EKF 

algorithms without the NPN linguistic information. During the 

process, irrespective of the motion state of the maneuvering 

target, we use the systemic error parameters shown in Table 

VIII to describe the tracking of the maneuvering target shown 

in Fig. 18. 

  
(a)  Two-dimensional chart.                                       (b) Three-dimensional chart. 

Fig. 18. Tracking with systemic error parameters. 

Enlarged sections of the trace with the error parameters 

before and after the optimization are shown in Fig. 19. 

  

(a) Before optimization (two-dimensions).    (b) After optimization (two-dimensions). 

 
(c) Before optimization (three-dimensions).   (d) After optimization (three-dimensions). 

Fig. 19. Trace with error parameters before and after the optimization. 

The range of the filtered trace with the systemic error 

parameters is larger than after the optimization as shown in Fig. 

19. The error parameters are reduced using multiple sensors of 

the maneuvering target. By considering the motion state of the 

maneuvering target, the systemic error parameters in various 

phases with the optimized error parameters based on NPNLTSs, 

are compared in Table XVII. 

Table XVII 

 ERROR PARAMETERS BEFORE AND AFTER OPTIMIZATION 

Before 

(After) 
D (

opD )  (
op )  (

op ) 

Phases 1 50 (40.4) 0.4 (0.304) 0.4 (0.304) 

Phases 2 50 (48.1) 0.4 (0.381) 0.4 (0.381) 

Phases 3 60 (58.1) 0.5 (0.481) 0.5 (0.481) 

Rate of 

descent 
DR  R  R  

Phases 1 19.2% 24% 24% 

Phases 2 3.8% 4.75% 4.75% 

Phases 3 3.17% 3.8% 3.8% 

The optimization method using NPNLTSs efficiently 

reduces the effect of the error in parameter values in various 

phases and, to a certain extent, improves localization precision. 

Combined with 1,200 sets of data by three sensors, the errors 

using the fuzzy EKF algorithm [21] and the EKF algorithms 

with NPN linguistic information in X, Y, and Z directions are 

shown in Fig. 20, Fig. 21, and Fig. 22, respectively. 

 
Fig. 20. Errors in the X direction. 

 

Fig. 21. Errors in the Y direction. 
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Fig. 22. Errors in the Z direction. 

Fig. 20 to Fig. 22 show the errors in X, Y, and Z directions 

under three situations. The direction in which the greatest 

average error is in the Z direction, and the smallest average error 

is in the Y direction. As expected, tracking the maneuvering 

target using EKF with NPN linguistic information reduces the 

errors. Compared with the curves in Figs. 15-17, and Figs. 20-

22, some parameters are shown in Table XVIII.   

Table XVIII 
ERROR PARAMETERS USING DIFFERENT METHODS 

 ME MSE AOT 

UKF 1.9873 15.7736 0.0592 

CKF 1.8212 15.5865 0.0351 

EKF without NPN 2.3634 15.6498 0.0232 

Fuzzy EKF 1.6732 13.5621 0.0284 

EKF with NPN 1.1528 9.2289 0.0279 

The experiment results show that the NPN-EKFTO method 

improves the accuracy more efficiently than other four methods. 

The reason may be that NPNLTS considers both quantitative 

and qualitative information to obtain more precise error 

parameters. Hence, to some extent, the proposed method 

reduces the detection errors and could be used in 

communication, radar, navigation, control, and guidance due to 

its good systemic performance. 

VI. CONCLUSION 

Various methods for tracking a maneuvering target such as 

the EKF, UKF, and CKF algorithms have been proposed to deal 

with the complexity of the tracking problem. We have proposed 

the NPN-EKFTO method based on the NPNLTSs and the EKF 

algorithm. The NPN-EKFTO method optimizes the error 

parameters by considering the environmental factors and by 

being combined with the motion state of the maneuvering target 

at each phase. It may be used to handle complex situations in 

practice, such as the aircraft commander’s emergency decision, 

dynamic mobile localization in urban area, control of trajectory 

tracking, and tracking optimization problems of a maneuvering 

target. It is feasible to use the NPN-EKFTO algorithm in 

practice.  

The method considers the effect of the error parameters with 

respect to the environmental factors. We have proposed 

unifying the coordinate system with different SCSs, introduced 

data preprocessing of identical recording time using different 

sensors, and devised the NPN-EKFTO method to solve trace 

optimization problems. To illustrate the practicability of the 

proposed method, we have conducted a case study for trace 

optimization of unknown maneuvering target. We have 

compared the proposed and the traditional EKF methods and 

have provided analyses of the results.  

Further study of the NPN-EKFTO method may include 

deriving the weight vector of the evaluation indexes such as 

analytic hierarchy process with NPNLTSs, considering non-

Gaussian noise, and further increasing the number of phases of 

the maneuvering target in order to improve tracing precision. 
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