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The discovery of power-laws and spectral 
properties of the Internet topology illus-
trates a complex underlying network in-
frastructure that carries a variety of the 
Internet applications. Analysis of spec-
tral properties of the Internet topology 
is based on matrices of graphs captur-
ing Internet structure on the Autono-
mous System (AS) level. The analysis of 
data collected from the Route Views and 
RIPE projects confirms the existence of 
power-laws and certain historical trends 
in the development of the Internet to-
pology. While values of various power-
laws exponents have not substantially 
changed over the recent years, spectral 
analysis of matrices associated with the 
Internet graphs reveals notable changes 
in the clustering of AS nodes and their 
connectivity. It also reveals new histori-
cal trends in the clustering of AS nodes 
and their connectivity. These properties 
of the Internet topology may be further 
analyzed by examining element values 
of the corresponding eigenvectors. 

I. Properties of the Internet Topology: An Overview

nalyzing the Internet topology using randomly generated graphs, 

where routers are represented by vertices and transmission lines 

by edges, has been widely replaced by mining data that capture 

information about Internet Autonomous Systems and by exploring prop-

erties of associated graphs on the AS-level [1]. The Route Views [2] and 

RIPE [3] datasets collected from Border Gateway Protocol (BGP) routing 

tables have been extensively used by the research community [5], [8], 

[14], [16]. The discovery of power-laws and spectral properties of the In-

ternet topology indicates a complex underlying network infrastructure. 

Analysis of the collected datasets indicates that the Internet topology 

is characterized by the presence of various power-laws observed when 

considering a node degree vs. node rank, a node degree frequency vs. 

degree, and a number of nodes within a number of hops vs. number of 

hops [8], [14]. Some of these early conclusions were subsequently revised 

by considering a more complete AS-level representation of the Internet to-

pology [4], [5]. These extended maps have heavy tailed or highly variable 

degree distributions and only the distribution tales have the power-law 

property. It has been observed that the power-law exponents associated 

with Internet topology have not substantially changed over the years in 

spite of the Internet exponential growth [11], [12]. Power-laws also appear 

in the eigenvalues of the adjacency matrix and the normalized Laplacian 

matrix vs. the order of the eigenvalues. They also show invariance regard-

less of the exponential growth of the Internet. 

While various power-law exponents associated with the Internet topol-

ogy have remained similar over the years, indicating that the power-laws 

Abstract

A

Feature

XIAOFAN LIU

Analysis of 
Internet Topologies

Ljiljana Trajković 
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do not capture every property of a graph and are only 

one measure used to characterize the Internet, spectral 

analysis of both the adjacency matrix and the normal-

ized Laplacian matrix of the associated graphs reveals 

new historical trends in the clustering of AS nodes and 

their connectivity. The eigenvectors corresponding to 

the largest eigenvalues of the normalized Laplacian ma-

trix have been used to identify clusters of AS nodes with 

certain characteristics [11]. Spectral analysis was em-

ployed to analyze the Route Views and RIPE datasets in 

order to find distinct clustering features of the Internet 

AS nodes [6]. For example, the connectivity graphs of 

these datasets indicate visible changes in the clustering 

of AS nodes and the AS connectivity over the period of 

five years [15], [12]. Clusters of AS nodes can be also 

identified based on the eigenvectors corresponding to 

the second smallest and the largest eigenvalues of the 

adjacency matrix and the normalized Laplacian matrix 

[15]. The connectivity and clustering properties of the 

Internet topology can be further analyzed by examining 

element values of the corresponding eigenvectors. 

II. The Internet Route Views and RIPE Datasets

Analyzing Internet topologies relies on capturing data 

information about Internet Autonomous Systems [1] 

and exploring properties of associated graphs on the 

AS-level [10]. These datasets collected from BGP routing 

tables indicate that Internet topology is characterized 

by the presence of various power-laws [8], [14]. It has 

also been observed that the power-law exponents asso-

ciated with the Internet topology have not substantially 

changed over the years in spite of the Internet exponen-

tial growth [11], [12], [15]. 

It is well known that eigenvalues associated with a 

network graph are closely related to its topological char-

acteristics [7]. It is not surprising that power-laws also 

appear in the plots of eigenvalues of the adjacency ma-

trix and the normalized Laplacian matrix vs. the order of 

the eigenvalues. These power-laws also exhibit historical 

invariance [12]. The eigenvectors corresponding to the 

largest eigenvalues of the normalized Laplacian matrix 

have also been used to identify clusters of AS nodes with 

certain characteristics [11]. In reported studies [6], [12], 

[15] spectral analysis was employed to analyze the Route 

Views and RIPE datasets in order to find distinct clus-

tering features of the Internet AS nodes. Examination of 

eigenvectors of both the adjacency matrix and the nor-

malized Laplacian matrix illustrates that both matrices 

may be used to identify clusters of connected AS nodes. 

III. Spectrum of a Graph and Power-Laws

An Internet AS graph G represents a set of AS nodes (ver-

tices) connected via logical links (edge). The number of 

edges incident to a node is called the degree of the node. 

Two nodes are called adjacent if they are connected by a 

link. The graph is defined by the adjacency matrix A(G): 

A 1 i, j 2 5 e1 if i and j are adjacent

0 otherwise.

A diagonal matrix D(G) associated with A(G), with 

row-sums of A(G) as the diagonal elements, indicates 

the connectivity degree of each node. The Laplacian ma-

trix is defined as L(G) 5 D(G) 2 A(G). It is also known as 

Kirchhoff matrix and a matrix of admittance. The normal-

ized Laplacian matrix NL(G) of a graph is defined as: 

 NL 1 i, j 2 5 • 1 if i5 j and di 2 0

21/"didj if i and j are adjacent

0 otherwise,

,  

where di and dj are degrees of nodes i and j, respec-

tively. The spectrum of NL(G) is the collection of all 

its eigenvalues and contains 0 for every connected 

graph component. 

By analyzing plots of node degree vs. node rank, node 

degree frequency vs. degree, and eigenvalues vs. the or-

der index, number of nodes within a number of hops vs. 

number of hops, various power-laws have been associ-

ated with Internet graph properties [5], [8], [14], [12], 

[15]. Linear regression of the analyzed data determines 

the correlation coefficient between the regression line 

and the plotted data. A high correlation coefficient in-

dicates the existence of a power-law. The power-law ex-

ponents are calculated from the linear regression lines 

101a2 x1b2, with segment a and slope b when plotted on a 

log-log scale. 

Eigenvalues of matrices associated with Internet topol-

ogy graphs also exhibit power-law properties. The eigen-

values lai of the adjacency matrix and lLi of the normalized 

Laplacian matrix are sorted in decreasing order and plot-

ted vs. i, where i represents the order of the eigenvalue. 

Power-laws for the adjacency matrix and the normalized 

Spectral analysis of the Internet graphs reveals historical trends in the 
clustering of AS nodes and their connectivity.
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Laplacian matrix imply that lai ~ ie and lLi ~ iL, respec-

tively, where e and L are their respective eigenvalue pow-

er-law exponents. 

IV. Power-Laws and the Internet Topology

Most existing Autonomous System (AS) numbers are as-

signed by regional Internet Assigned Numbers Author-

ity (IANA) registries. The remaining AS numbers are 

designated by IANA for private use. Certain AS numbers 

are reserved and do not appear in the Internet graph. 

We only consider assigned and designated AS numbers, 

which range from 0 to 65,535 [1]. The assigned AS num-

bers are listed in Table I. In 2003, 33,983 AS numbers 

were assigned by IANA. This number increased to 49,149 

in 2008. The remaining AS numbers between 49,000 to 

64,000 are mostly left unassigned. 

Various graph properties may be observed from the 

Route Views and RIPE datasets collected over the pe-

riod of five years, from 2003 to 2008. The Route Views 

BGP routing tables were collected from multiple geo-

graphically  distributed BGP Cisco routers and Zebra 

servers. Most participating ASs were in North America. 

In  contrast to the centralized way of collecting routing 

data in Route Views, RIPE applied a distributed approach 

to the data collection and most participating ASs resided 

in Europe. The RIPE project Routing Information Service 

(RIS) collected and stored default-free BGP routing data 

using Remote Route Collectors (RRCs) at various Inter-

net exchanges deployed in Europe, North America, and 

Asia. These RRCs peered with local operators to collect 

the entire routing tables every eight hours. The col-

lected raw data was then transferred via an incremental 

file transfer utility to a central storage area at the RIPE 

center in Amsterdam. We used RIPE datasets collected 

from sixteen distinct locations. Analyzed datasets were 

collected at 00:00 am on July 31, 2003 and at 00:00 am on 

July 31, 2008 [2]. 

In recent studies of the Route Views and RIPE datasets 

[12], [15] the presence of power-laws was observed when 

various properties of AS nodes such as node  degree 

Figure 1. RIPE (a) 2003 and (b) 2008 datasets: The node 
degree power-law exponents R are 20.7636 and 20.8439 
for 2003 and 2008 datasets, respectively. The correlation 
coefficients are (a) 20.9687 for 2003 and (b) 20.9744 for 
2008 datasets.
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Figure 2. RIPE (a) 2003 and (b) 2008 datasets: The CCDF 
power-law exponents D are 21.2830 and 21.5010 for 2003 
and 2008 datasets, respectively. The correlation coeffi-
cients are (a)20.9810 for 2003 and (b) 20.9676 for 2008 
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and frequency of node degree were analyzed. The graph 

nodes v are sorted in descending order based on their 

degrees dv and are indexed with a sequence of numbers 

indicating their ranks rv. The (rv, dv 2  pairs are plotted on 

the log-log scale. The power-law implies dv ~ r v
R, where v 

is the node number and R is the node degree power-law 

exponent. Node degrees in decreasing order vs. the rank, 

plotted on a log-log scale, are shown in Fig. 1. The com-

plementary cumulative distribution function (CCDF) Dd 

of a node degree d is equal to the number of nodes hav-

ing degree less than or equal to d, divided by the number 

of nodes. The power-law implies that Dd ~ d 
D, where D 

is the CCDF power-law exponent. The CCDFs of node de-

grees, plotted on log-log scale, are shown in Fig. 2. 

The eigenvalues lai and lLi of the adjacency matrix 

and the normalized Laplacian matrix are sorted in de-

creasing order and plotted vs. the associated increas-

ing sequence of numbers i representing the order of 

the eigenvalue. Power-laws for the adjacency matrix 

and the normalized Laplacian matrix imply lai ~ ie and 

lLi ~ iL, respectively, where e and L are their respec-

tive eigenvalue power-law exponents. Power-laws ap-

peared in the plots of eigenvalues of the adjacency 

matrix and the normalized Laplacian matrix vs. the 

order of the eigenvalues. For example, the dependen-

cies between the graph eigenvalues and the eigenval-

ue index shown in Fig. 3 and Fig. 4 are similar to the 

reported graphs of the Route Views datasets [12]. Plot-

ted on a log-log scale are eigenvalues in decreasing or-

der. Only the 150 largest eigenvalues are plotted. The 

analysis indicates that in spite of the Internet growth, 

increasing number of users, and the deployment of 

new network elements, power-law exponents have not 

changed substantially. 

V. Spectral Analysis of the Internet Topology

The second smallest eigenvalue of a normalized Lapla-

cian matrix is related to the connectivity characteristic 

of the graph. Connectivity measures the robustness of 

a graph and can be designated as vertex or edge con-

nectivity. Vertex (edges) connectivity of a graph is the 

minimal number of vertices (edges) whose removal 

would result in a disconnected graph. The second small-

est eigenvalue of a graph reflects the vertex and edge 

connectivities and it is called the algebraic  connectivity 

of a graph [9]. Its value is zero if and only if the graph 

is not connected. It has also been observed that ele-

ments of the eigenvector corresponding to the largest 

eigenvalue of the normalized Laplacian matrix tend to 

be positioned close to each other if they correspond to 

nodes with similar connectivity patterns constituting 

clusters  [11]. 

Figure 3. RIPE (a) 2003 and (b) 2008 datasets: The eigen-
value power-law exponents e are 20.5232 and 20.4927 
for 2003 and 2008 datasets, respectively. The correlation 
coefficients are (a) 20.9989 for 2003 and (b) 20.9970 
for 2008 datasets.
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Table 1. 
Autonomous System (AS) numbers.

Date 2003–07–31 2008–07–31 

Assigned AS 
numbers

1–30979 (30979) 1–30979 (30979)

(number of AS 
nodes)

31810–33791 (1981) 30980–48127 (17147)

64512–65534 (1022) 64512–65534 (1022)
65535 (1) 65535 (1)

In spite of the Internet growth, increasing number of users, and the deployment 
of new network elements, power-law exponents have not changed substantially.
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We examined the second smallest and the largest 

eigenvalues and their associated eigenvectors of both 

the adjacency and the normalized Laplacian matrix 

for Route Views and RIPE datasets. Each element of 

an eigenvector was first associated with the AS hav-

ing the same index. Each AS was then sorted in the 

ascending order based on that eigenvector values 

and the sorted AS vector was then indexed. The con-

nectivity status was defined to be equal to 1 if the AS 

was connected to another AS or zero if the AS was 

isolated or was absent from the routing table. The 

connectivity graphs for Route Views and RIPE data-

sets indicated visible changes in the clustering of AS 

nodes and the AS connectivity over the period of five 

years [12], [15]. 

It is interesting to observe that the connectivity sta-

tus based on the second smallest eigenvalue and the 

largest eigenvalue of the adjacency matrix and based 

on the normalized Laplacian matrix are asymmetric. 

The connectivity graph based on the second  smallest 

eigenvalue of the normalized Laplacian matrix is simi-

lar to the connectivity graph based on the largest 

eigenvalue of the adjacency matrix, and vice versa. 

In order to observe clusters of connected AS nodes 

in the RIPE 2003 and RIPE 2008 datasets, we plotted 

patterns of the adjacency matrix shown in Fig. 5. (No 

connectivity is shown between the unassigned AS 

nodes.) The Route Views 2003 and RIPE 2003 datasets 

showed similarity in clustering patterns. The same 

observation held for the Route Views 2008 and RIPE 

2008 datasets. 

In a simple example of a small world network with 20 

nodes [17], elements of the eigenvector corresponding 

to the largest eigenvalue of the adjacency matrix indicat-

ed clusters of connected nodes. Values of the elements 

Figure 5. RIPE (a) 2003 and (b) RIPE 2008 datasets: Pat-
terns of the adjacency matrix. A dot in position (x, y) rep-
resents the connection between two AS nodes. 
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for 2003 and 2008 datasets, respectively. The correlation 
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of the eigenvector corresponding to the largest eigenval-

ue of the adjacency matrix divided nodes into clusters 

depending on the node degrees. 

In search of identifying clusters of nodes in Internet 

topology, we examined values of the elements of eigen-

vectors corresponding to the second smallest and the 

largest eigenvalue of the adjacency matrix and the nor-

malized Laplacian matrix. Sample plots shown in Fig. 6 

indicate that values of the elements of eigenvectors 

separate graph nodes into clusters. Only those nodes on 

the lowest and the highest ends of the rank spectrum 

are shown. The majority of the nodes that are ranked 

 in-between belong to a cluster having almost identical 

values of the eigenvector. Note that the adjacency matrix 

provided clustering information similar to the normal-

ized Laplacian matrix. However, the normalized Lapla-

cian matrix revealed additional details regarding spectral 

properties of graphs. Sample plots of nodes at the higher 

end of the rank spectrum are shown in Fig. 7 (top) for the 

second smallest eigenvalue and in Fig. 7 (bottom) for the 

largest eigenvalue of the normalized Laplacian matrix. 

They indicate a more prominent separation between the 

datasets when compared to plots that correspond to the 

adjacency matrix. 

Figure 6. Route Views and RIPE 2003 and 2008 datasets: 
Elements of the eigenvectors corresponding to the sec-
ond smallest eigenvalue of the adjacency matrix. Shown 
are nodes at (a) the lowest and (b) the highest ends of the 
rank spectrum. 
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VI. Conclusions

Analysis of the Route Views and RIPE datasets have 

confirmed the presence of similar power-laws in graphs 

capturing the AS-level Internet topology in both data-

sets. Spectral analysis based on both the normalized 

Laplacian matrix and the more intuitive adjacency ma-

trix emanating from these graphs was used to examine 

 connectivity of Internet graphs. Clusters of AS nodes 

can be identified based on the eigenvectors correspond-

ing to the second smallest and the largest eigenvalue of 

these matrices. While many properties of Internet to-

pology graphs have not substantially changed over the 

years, spectral analysis revealed notable changes in the 

connectivity and clustering of AS nodes. 
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