
 1

Performance Evaluation of TCP over WLAN 802.11 with the Snoop
Performance Enhancing Proxy

Chi Ho Ng, Jack Chow, and Ljiljana Trajkovic

School of Engineering Science
Simon Fraser University

Vancouver, British Columbia
Canada V5A 1S6

cng@sierrawireless.com, jackchow@comeindustrial.com, ljilja@cs.sfu.ca

Abstract
The growing popularity of wireless devices used to access the
Internet and an increasing use of the TCP/IP protocol suites,
indicate that in the near future TCP protocol will be frequently
used over the wireless links connecting wireless devices. The
characteristics of wireless links are significantly different from
characteristics of wired network links because data is frequently
lost due to the volatile environment in which wireless links
operate. TCP was originally designed for wired networks, where
loss of data is assumed to be due to congestion only. This
assumption leads to poor performance of TCP in a wireless
environment. Hence, various mechanisms were proposed to
improve TCP performance over wireless links. One such
mechanism is a performance enhancing proxy, such as the
Snoop protocol.

In this paper, we study the effect of the Snoop protocol on the
performance of TCP over wireless links. We implemented and
simulated Snoop protocol in OPNET wireless LAN (WLAN)
devices. We measured the performance improvement by
comparing the performance of an FTP session with and without
the Snoop protocol. We found that the Snoop protocol
significantly improves the performance of TCP (~ 68 times
under 30% packet error rate). We show that this improvement is
achieved by preventing the TCP layer from reducing the
congestion window size.

1 Introduction
Transport Control Protocol (TCP) [1, 2] is a reliable protocol
designed to perform well in networks with low bit-error rates,
such as wired networks [3]. TCP assumes that all errors are due
to network congestion, rather than to loss. When congestion is
encountered, TCP adjusts its window size and retransmits the
lost packets. In wireless networks, however, packet loss is
mainly caused by high bit-error rates over air-links. Thus, the
TCP window adjustment and retransmission mechanisms result
in poor end-to-end performance.

A number of approaches have been proposed to improve the
TCP efficiency in an unreliable wireless network. One of these
approaches is the Snoop protocol [4, 5]. The protocol modifies
network-layer software, mainly at the base station, and preserves
end-to-end TCP semantics. Its main feature is to cache packets at
the base station and to perform local retransmissions across the
wireless links.

This paper is organized as follows. In Section 2, we present an
overview of TCP and the Snoop protocol. Section 3 describes

the OPNET implementation of the Snoop protocol. In Section 4,
we provide simulation results and analyze the performance
improvements. We present our conclusions in Section 5.

2 Overview of the Transport Control Protocol
TCP is a reliable transport protocol that performs efficiently in
wire-line networks. It uses a Go-back-N protocol and a timer-
based retransmission mechanism. The timer period (the timeout
interval) is calculated based on the estimated round-trip delay.
Packets whose acknowledgements are not received before the
timer expires are retransmitted. In the presence of frequent
retransmissions, TCP assumes that there is a congestion and
invokes its congestion control algorithm. The algorithm reduces
the transmission (also called congestion) window size. As the
window size is reduced, the transmission rate is also reduced.
This window size adjustment technique prevents the source from
overwhelming the network with an excessive number of packets.

In the presence of high bit error rates in wireless links, TCP
reacts the same way as in a wired link: it reduces the window
size before packet retransmission. This adjustment results in an
unnecessary reduction of the bandwidth utilization causing
significant performance degradation (poor throughput and long
delays). The bandwidth of the wired-link segments is especially
under-utilized because the high error rates occur only on the
wireless sections. Nevertheless, the window reduction affects all
transmission links.

2.1 Performance Enhancing Proxies
Performance Enhancing Proxies (PEPs) are methods employed
to reduce performance degradation due to distinct link
characteristics [4]. The Snoop protocol is one such method [5].
Its major goal is to improve the performance of communication
over wireless links without triggering retransmission and
window reduction polices at the transport layer.

2.2 Snoop Protocol
The Snoop protocol runs on a Snoop agent that is implemented
in a base station or a wireless device. The agent monitors
packets that pass through the base station and caches the packets
in a table. After caching, the agent forwards packets to their
destinations and monitors the corresponding acknowledgements.

In TCP, a sequence number is associated with each
acknowledgement (Ack). This number informs the sender of the
index of the last byte successfully delivered to the receiver. If
the sender receives the same acknowledgement sequence
number more than once, this suggests that data sent since the last

 2

received byte reported in the acknowledgement sequence
number is lost. An Ack that contains a sequence number that is
smaller than the sequence number of the last received Ack is
called a duplicate Ack.

Consider a scenario where a TCP sender sends packets 1, 2, 3, 4,
and 5 that are forwarded by a base station. Assume that packet 2
is lost due to an error on the wireless link. The Acks received for
packets 3, 4, and 5 are thus considered duplicate Acks. When the
sender receives these three duplicate Acks, it retransmits the
packets and reduces the size of the congestion window, as shown
in Figure 1.

First transmission

Retransmission

Duplicate
acknowledgements

Sender Receiver

1

5

3
4

2

ack1

ack1

ack1
ack1

2
3
4
5

Figure 1: TCP retransmission mechanism.

The role of the Snoop agent is to cache data packets for a TCP
connection. When data packets are lost (indicated by the
reception of duplicate Acks), the Snoop agent retransmits those
packets. It retransmits them locally without forwarding the
ACKs to the sender. Hence, since the TCP layer is not aware of
the packet loss, the congestion control algorithm is not triggered.
In addition, the Snoop agent starts a retransmission timer for
each TCP connection. When the retransmission timer expires,
the agent retransmits the packets that have not been
acknowledged yet. This timer is called a persist timer because,
unlike TCP retransmission timer, it has a fixed value. Figure 2
illustrates a Snoop agent implemented in a base station.

Base station with Snoop agent
Host server

Mobile terminal
Router

1. Host server establishes
a TCP connection with
mobile terminal and starts
to send data

2. High bit error rate
in the wireless
channel

3. Snoop agent
re-transmits lost
packets locally

Figure 2: Snoop agent at a base station.

Snoop protocol intercepts TCP packets, analyzes them, and
retransmits them if necessary. As a result, no additional packet
formats are introduced into the protocol, and all packets sent and
received still conform to the TCP protocol. Moreover, no

changes to the other layers in the TCP/IP protocol stack are
necessary. This is rather important because the TCP/IP protocol
is designed for wire-link network where most network servers
are located.

The goal of this project is to implement the Snoop agent in
OPNET WLAN device. We expected that the implemented
Snoop agent will improve the TCP performance and that it
should not require modifying the default parameters.

3 OPNET WLAN Model
We implemented the Snoop protocol in the OPNET WLAN
model. The wireless workstations modeling the medium access
control (MAC) and the physical layer are comprised of the
wirless_lan_mac process, transmitter, receiver, and the channel
streams. The address resolution protocol (ARP) is an interface
between the MAC and the upper layers. The ARP translates IP
addresses into network interface addresses. This project focuses
on the improvements of TCP performance over the wireless
links and, hence, only the wireless workstation and the wireless
server models (no wireless routers) are employed.

3.1 Model Modifications
The OPNET WLAN model does not allow the user to inject
packet loss or bit error rate into the WLAN network. To
facilitate testing of the Snoop protocol, we implemented an
additional layer, called the Packet Error Generator (PEG),
between the ARP and the IP layer. The PEG layer allows the
user to specify the packet error rate generated according to a
uniform distribution function. The Snoop agent is added on top
of the PEG layer. The diagram of the modified WLAN layers is
shown in Figure 3.

Figure 3: The modified WLAN device model.

 3

The location of the additional process models is chosen to avoid
modifications to both the upper and lower layer protocols. It
only requires changes to the ARP model. The ARP model is
modified to send and receive packets to and from the Snoop
agent.

3.2 Packet Error Generator (PEG)
This process model simulates packet loss by dropping received
packets. The number of packets to be dropped (as a percentage
of the total packets received) can be exported as a model
attribute.

3.3 PEG Process Model
Figure 4 shows the state diagram of the PEG process model. The
Init state initializes the various global variables when the process
is first instantiated. The process remains in the Wait state until a
packet arrives either from the upper or the lower layer.
Depending on the direction of the packet, the process enters the
Send_Data or Recv_Data state. The instructions implemented in
the Send_Data and the Recv_Data states are used to decide
whether or not the current packet should be discarded.

Figure 4: PEG process model.

3.4 Algorithm and its Implementation
The following pseudo-code is implemented in the Send_Data
and Recv_Data states:

random_val = op_dist_uniform (100.0)
get TCP info of the packet
if (packet is a SYN or FIN packet)
{
 pass packets to the next layer
}
else if (random_val > packet_drop_rate)
{
 pass packets to the next layer
}
else
{
 destroy packet
}

The PEG model employs a uniform distribution variable to
determine if a certain packet should be dropped. The uniform
distribution implies that all packets have the same probability of
being discarded. Thus, this model depicts scenarios where
packet loss occurs randomly due to the characteristics of the
environment. Figure 5 shows a typical packet loss.

Packets dropped by PEG at 30% packet
error rate

0
10
20
30
40
50
60
70
80
90

100

0 500 1000 1500

Time (sec)

T
ot

al
 p

ac
ke

ts
 d

ro
pp

ed

Total sent
Total dropped

Figure 5: Packet loss at 30% packet error rate.

3.5 Implementation of the Snoop Protocol
In this section we describe the implementation of the Snoop
agent as a process model. Figure 6 shows the five states and the
state transitions in the Snoop agent process model.

Figure 6: Snoop agent process model.

Snoop Cache: The Snoop cache is used to cache the packets that
are received from upper layers. Packets are cached in a linear
array. The C code definition of the Snoop cache is:

typedef struct
{
 /* Packet cache */
 Packet cached_pkp[SNOOP_CACHE_SIZE];
 /* ICI content cache */
 int ici_addr[SNOOP_CACHE_SIZE];
 /* Max number of packets that have been cached at
the same time */
 int max_cached;
 /* Number of packets that have been cached */
 int num_cached;
 /* Number of packets that have been removed */
 int num_removed;
 /* Current number of packets cached */
 int curr_cached;
} struct_snCache;

 4

The cache table contains copies of packets and the Interface
Control Information (ICI) content, as well as various counters
such as the total number of packets that have been cached.

Snoop Connection Table:The Snoop agent maintains a table to
keep track of the TCP connections. This table is required
because the two connection ends may have multiple connections
established, and each of these connections needs to be
maintained separately (because sequence numbers are not unique
among the distinct connections). The record format in the Snoop
connection table is:

typedef struct
{
 /* Source IP */
 unsigned int src_ip;
 /* Destination IP */
 unsigned int dest_ip;
 /* Source Port */
 int src_port;
 /* Destination Port */
 int dest_port;
 /* Last sent seq number */
 unsigned int last_seq_num;
 /* Last received seq number */
 unsigned int last_ack_num;
 /* Determines if we have received repeat Acks */
 int repeat_ack;
 /* Determines if we have received FIN packet */
 int fin_flag;
 /* Seq num of the fin packet */
 unsigned fin_seq_num;
 /* Timeout event handle */
 Evhandle timeout_evt;
} struct_snTable;

Each record identifies a TCP connection by its source and
destination IP address and the TCP port pairs. It also keeps track
of the last sequence number and the last acknowledgement
number recorded for the connection. The timeout_evt is used for
the retransmission timer.

Init state: The Snoop process begins in the Init state where its
cache table and the TCP connection table are initialized.

Wait state: After the initialization tasks have been performed,
the process transits from the Init state to the Wait state. The
process remains in the Wait state until:
• A packet arrives from the MAC layer
• A packet arrives from the upper TCP/IP layer
• The retransmission timer expires.

All events arrive as interrupts. The packet arrival is represented
as a stream interrupt. The retransmission timer expiration event
is implemented as a self-scheduled interrupt.

Snoop_Data state: When a packet from the upper TCP/IP layer
arrives, the process transits from the Wait state to the
Snoop_Data state. The Snoop agent keeps track of the last
sequence number seen from the upper layer. The packet is
processed depending on its sequence number:
• A new packet in the normal TCP sequence: This is the

normal case when a new packet with a higher sequence
number arrives. The packet is added to the Snoop cache and
is forwarded to the lower layer.

• An out-of-sequence packet that has been cached earlier:
This occurs when lost packets cause timeouts at the sender.
If the sequence number is higher than the last
acknowledgement seen by Snoop agent, it is assumed that
the packet is lost. The packet is therefore forwarded to the
destination. If the sequence number is lower than the last
acknowledgement, the packet is discarded.

After processing the packet, the Snoop process transits back to
the Wait state and awaits the next event. Figure 7 shows the flow
chart of the algorithm implementation.

Add table
successful?

Data length = 0?
(ack only)

Send
packet

Found in cache
(previously stored)?

New TCP
connection?

Send
packet

FIN = 1?

1. Send packet
2. Delete table
 record

1. Cache packet
2. Send packet
3. Last seq num
 = pkt seq num
4. Start timer

seq_num > last
sequence num on this

connection?

Send
packet

Extend
retransmission

timer

Add table
successful?

seq_num > last ack num
on this connection?

Discard
packet

1. Send packet
2. Update last_ack_num
 in tcp connection table
 = pkt seq num

no

no yes New TCP
connection?

yes no

yes
no

no

no

yes yes
no

yes no

yes
no

yes

yes

Figure 7: Snoop_Data implementation flow chart.

In addition to implementing the Snoop algorithm, the OPNET
implementation also cleans the connection table entry when the
last packet (FIN) of the connection is detected. In addition, the
test shown at the top of the flow chart is used to ensure that the
Snoop agent does not mistakenly caches packets that contain
data relevant to the opposite direction (e.g., Acks packets for
acknowledged data packets in the opposite direction).

Snoop_Ack state: When a packet from the MAC layer arrives to
the Snoop agent, the process transits from the Wait state to the
Snoop_Ack state. The packet is processed depending on the
acknowledgement sequence number:
• A new acknowledgement: This is an acknowledgement
packet with an acknowledgement sequence number higher than

 5

the last received. This initiates the cleaning of the corresponding
cache entries. The acknowledgement is passed to the upper
TCP/IP layers.
• A false acknowledgement: This is an acknowledgement
packet with an acknowledgement sequence number lower than
the last received. This rarely happens and the acknowledgement
is discarded.
• A duplicate acknowledgement: This is an acknowledgment
packet that is identical to the last received. This causes the
Snoop agent to assume that packets that have been sent with
higher sequence number were lost. The Snoop agent will
retransmit all packets starting with the first lost packet.

Figure 8 shows the flow chart of the steps executed by the
Snoop_Ack state.

Connection found in
 tcp connection table? Send packetno

Packet ack > last
ack number?

yes

yes

1. Delete cache record
2. Set last_ack_num to
 pkt_ack_num
3. Send packet
4. Stop retransmission
 timer

no

Repeat_ack > 0?

no

Discard packet

yes Retransmit lost packets

Figure 8: Snoop_Ack implementation flow chart.

Timeout state: When the retransmission timer of a connection
expires, the process transits from the Wait state to the Timeout
state. Processing during the Timeout state is very similar to the
processing of receiving a duplicate acknowledgement in the
Snoop_Ack state: all packets that have not been acknowledged
are retransmitted.

The retransmission timer of a connection is extended when a
new data packet is received from the upper layer, a new
acknowledgement packet is received from the lower layer, or a
retransmission timer has just expired.

4 Performance Comparison
This section describes how are the models, described in Section
3, used to measure the protocol performance.

Setup: We simulated three scenarios to validate the models, to
measure the performance of a WLAN device with Snoop
protocol, and to compare it to a device with unmodified TCP.

Devices: Each scenario consists of two main types of WLAN
nodes: mobile workstations and servers. The Snoop protocol
model is implemented in both devices and it is enabled or
disabled depending on the various scenarios. Device with Snoop
protocol are called enhanced devices, while devices without
Snoop are called the original devices. The remaining nodes that
are used in the scenarios are Application Configuration and the
Profile Configuration nodes. They enable the devices to generate
traffic using the OPNET Application Model paradigm.

TCP Model Parameters: TCP parameters used for the TCP
models in WLAN nodes are listed in Table 1.

TCP Parameters Values
Maximum Segment Size (bytes) 2,264
Receiver Buffer Size (bytes) 8,760
Receiver Buffer Usage Threshold 0.0
Delayed Ack Mechansim Segment/Clock Based
Maximum Ack Delay 0.2
Fast Transmit Enabled
Fast Recovery Enabled
Selective Ack (SACK) Disabled
Nagle SWS Algorithm Disabled
Karn’s Algorithm Enabled
Retransmission Threshold Attempt Based
Initial RTO 1.0
Minimum RTO 0.5
Maximum RTO 64
RTT Gain 0.125
Deviation Gain 0.25
RTT Deviation Coefficient 4.0
Timer Granularity 0.5
Persist Timeout 1.0

Table 1: TCP model parameters.

Most values are the default OPNET values and they do not affect
the results of our simulation experiments. They are chosen
because the Snoop protocol is used as a PEP, and TCP
parameters should be left unaltered on wireless devices so that
they can be tuned to handle congestion cases.

Parameters that directly affect the experiment results are the
Maximum Segment Size and the Receiver Buffer Size. Choosing
smaller values for both parameters will causes a larger number
of TCP messages. Because the Snoop protocol is most effective
when more packets are lost, it is expected that choosing smaller
values for these parameters will enhance the Snoop performance.

Traffic: All simulation scenarios use the OPNET Application
Model to generate traffic. In order to study the effects of the
Snoop protocol, we used a simple traffic pattern: FTP transfers
of 100,000-byte files. Figure 9 illustrates a typical message
sequence of an FTP file transfer. During the data transfer, each
message contains 2,264 bytes of data. This value corresponds to
the WLAN TCP window size.

 6

Sender Receiver

syn (0)

data (seq 1; size 2264)

syn (0) ack (1)

ack (2265)
.
.
.

fin (1)

ack

ack

ack (1)

fin (1)

Figure 9: FTP transfers message sequence.

Wireless LAN Model Parameters: In our simulation scenarios,
we use the default values of the WLAN parameters. The goal of
the simulation is to evaluate the performance of an enhanced
device and compare it to the performance of an original device.
Therefore, it is important that all devices use identical WLAN
parameters. Their values are listed in Table 2.

Wireless LAN Parameters Values
Rts Threshold None
Fragmentation Threshold None
Data Rate 1 Mbps
Physical Characteristics Frequency Hopping
Buffer Size (bits) 256,000
Maximum Receive Lifetime
(sec)

0.5

Table 2: Wireless LAN parameters.

The use of the PEG process model embedded inside the device
protocol stack minimizes the effects of the WLAN parameters
on the simulation results. Therefore, most parameters were set to
the default OPNET values.

4.1 Simulation Scenario 1: Single Mobile Upload
This scenario is designed to verify the basic operation of the
Snoop protocol and to illustrate the improved network
performance with the Snoop protocol. In this scenario, the
mobile performs an FTP upload of 100,000 bytes to the server.
The simulation settings are listed in Table 3.

In this scenario, shown in Figure 9, the mobile is the host and the
server is the receiver. The send_data_drop_rate and the
recv_data_drop_rate are identical. This simulates the case where
both TCP data and TCP acknowledgement messages may be
lost. The values of the send_data_drop_rate and the
recv_data_drop rate are called the packet error rate (PER). The

value of the Snoop protocol retransmission timeout is set to the
initial retransmission timeout (RTO) value of the TCP model.

Figure 10: Network model used in Scenario 1.

Parameters Setup Values

Snoop Model Attribute in Mobile 1
Snoop Enabled 1 (Enabled)
Snoop Retransmission Timeout 1 sec

PEG Model Attribute in Mobile 1
Send_Data_Drop_Rate Varied
Recv_Data_Drop_Rate Varied

Snoop Model Attribute in Server
Snoop Enabled 0 (Disabled)

PEG Model Attribute in Server
Send_Data_Drop_Rate 0
Recv_Data_Drop_Rate 0

Table 3: Simulation parameters used in Scenario 1.

4.1.1 Results and Observations
Figure 11 shows the upload response time of the 100,000-byte
file transfer. The response time is measured from the first SYN
packet sent from Mobile 1 to the last acknowledgement packet
received for the last FIN packet.

Simulation results indicate that the performance improvement of
Snoop protocol increases as packet error rate increases. At a
packet loss rate of 30%, the Snoop protocol improves the TCP
performance approximately 68 times. This large improvement is
due to the combination of two effects: packet caching and local
retransmission timeout.

 7

Scenario 1: Upload reponse time

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100
Packet error rate (%)

T
im

e
(s

ec
)

Snoop enabled

Snoop disabled

Figure 11: Upload response time of a 100,000-byte file.

4.1.2 Caching Packets
The Snoop protocol caches packets and retransmit them on
behalf of TCP once it detects packet loss due to the received
duplicate acknowledgement sequence.

Figure 12 shows the number of packets cached during the file
upload. The number of cached packets increases as the mobile
packets are transmitted to the server without receiving
acknowledgement packets. A maximum of four packets can be
cached because the mobile can transmit up to four data messages
before filling up the receive buffer. (The receiver window buffer
size is 8,760 and the maximum segment size is 2,264.) The
number of packets in the cache decreases as the Snoop protocol
receives the acknowledgements of those packets. The number of
cached packets is zero when the connection ends. This verifies
that all packets are cleared at the end of the connection.

Figure 13 shows the size of the congestion window during file
upload at 20% packet error rate. TCP shrinks its congestion
window when it detects that packets are lost because TCP
assumes packet loss occurs due to congestion in the network.
While this is often true for wired line networks, it is not true for
wireless networks where packets loss is mainly caused by bit
errors resulting from environmental effects (e.g., background
noise, Doppler effect, multi-path delays).

Packet caching prevents TCP congestion window from
shrinking. It is the most critical factor in improving the
performance of data transfers. Shrinking the congestion
windows has a “cyclic” effect. It causes TCP to send less data in
each packet, which implies sending more data packets across the
network. Since sending more data packets increases the chances
of packets getting corrupted, this, in turn, will shrink the
congestion window further, and the cycle repeats.

Figure 14 shows the sequence number (recorded at the TCP
layer) sent across the network during the file transfer. The
sequence number ends at 100,001 because the sequence number
starts from 0, and is incremented for every byte of data sent. In
addition, there is one extra byte for the SYN packet and one for
the FIN packet. It is evident that without the Snoop protocol, the

TCP layer has to retransmit the same sequence number (and,
hence, same data bytes) several times.

Number of cached packets

0

1

2

3

4

5

0 5 10 15

Time (sec)

N
um

be
r

of
 c

ac
he

d
pa

ck
et

s

Figure 12: Number of cache packets during file upload.

TCP congestion window size at 20%
packet error rate

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80

Time (sec)

C
on

ge
st

io
n

w
in

do
w

si

ze
 (

bi
ts

)

Snoop enabled

Snoop disabled

Figure 13: Congestion window of the TCP connection at 20 %

packet error rate.

Sequence numbers at 20% packet error
rate

0

20000

40000

60000

80000

100000

0 20 40 60 80

Time (sec)

T
ra

ns
m

itt
ed

 s
eq

ue
nc

e
nu

m
be

r

Snoop enabled

Snoop disabled

Figure 14: Transmitted sequence numbers.

 8

4.1.3 Local Retransmission Timeout
The retransmission timeout mechanism in TCP is designed to
handle network congestion. Therefore, the TCP timeout values
are modified according to the level of network congestion that is
inferred by the amount of packet loss. Similar to the congestion
window size, this assumption is often false in the case of
wireless networks. The Snoop protocol uses persist
retransmission timeout period of 1 sec. It increases the
performance by using a more appropriate timeout period for the
wireless link, and prevents TCP from changing its own
retransmission timeout period due to packet loss. The timeout
period can be tuned to the wireless link characteristics by
employing algorithms such as Karn’s algorithm for updating the
period over time. The important aspect, however, is that the
Snoop protocol allows a retransmission timeout value to be
adjusted for the wireless links separately.

Figure 15 shows the changes of the retransmission timeout
period recorded at the TCP layer. As a result of caching packets,
the Snoop protocol prevents TCP from incorrectly adjusting the
retransmission timeout due to packet loss.

Retransmission timeout at 20% packet
error rate

0

10

20

30

40

50

60

70

0 20 40 60 80 100

Time (sec)

R
et

ra
ns

m
is

si
on

 ti
m

eo
ut

in

te
rv

al
 (s

ec
)

Snoop enabled

Snoop disabled

Figure 15: Retransmission timeout of TCP models for file
upload at 20% packet error rate.

4.2 Simulation Scenario 2: Multiple Mobile Downloads
This scenario is designed to verify that the Snoop protocol can
handle multiple connections simultaneously. In this scenario, the
Snoop protocol in the server is enabled. The OPNET
Application Model is configured so that each mobile downloads
a 100,000-byte file from the server. Figure 16 shows the network
model for this scenario. The simulation settings are listed in
Table 4.

4.2.1 Results and Observations
Figure 17 shows the average download time for the two mobiles.
Similar to Scenario 1, the Snoop protocol improves the
performance of the 100,000-byte file transfer. The fact that the
mobiles can download simultaneously verifies that the Snoop
protocol can handle multiple connections. The decrease in
response time of the original mobile for packet error rates
between 15% and 20% is most likely caused by the random
packet loss generated by the PEG process model.

Figure 16: Network model used in Scenario 2.

Parameters Setup Values
Mobile 1
Snoop Enabled 0 (Disabled)
PEG Model Attribute in Mobile 1
Send_Data_Drop_Rate 0
Recv_Data_Drop_Rate 0
Mobile 2
Snoop Enabled 0 (Disabled)
PEG Model Attribute in Mobile 2
Send_Data_Drop_Rate 0
Recv_Data_Drop_Rate 0
Server
Snoop Enabled 1 (Enabled)
Snoop Retransmission Timeout (sec) 1
PEG Model Attribute in Server
Send_Data_Drop_Rate Varied
Recv_Data_Drop_Rate Varied

Table 4: Simulation parameters used in Scenario 2.

Average download response time

0

50
100

150

200

250

300
350

400

0 10 20 30 40

Packet error rate (%)

T
im

e
(s

ec
)

Snoop enabled

Snoop disabled

Figure 17: Average download response time for a 100,000-
byte file.

 9

It can be noticed that the average download time of the two
mobiles is larger than the upload time shown in Scenario 1. For
packet error rate of 0%, Scenario 1 requires 9.4 sec, while
Scenario 2 requires 17 sec. The reason is that the two mobiles
are competing resources on the radio link. This effect will be
shown again in Scenario 3.

4.3 Scenario 3: Multiple Mobile Uploads
This scenario is designed to illustrate the effect of coexistence of
an enhanced and an original mobile in the same network. Mobile
1 is configured with Snoop protocol disabled, and Mobile 2 is
configured with Snoop enabled. The Application Model is
configured to have both mobiles upload a 100,000-byte file to
the server. The network model is shown in Figure 18. The
simulation settings are listed in Table 5.

Figure 18: Network model used in Scenario 3.

Parameters Setup Values
Mobile 1
Snoop Enabled 0 (Disabled)
PEG Model Attribute in Mobile 1
Send_Data_Drop_Rate 0
Recv_Data_Drop_Rate 0
Mobile 2
Snoop Enabled 1 (Enabled)
Snoop Retransmission Timeout (sec) 1.0
PEG Model Attribute in Mobile 2
Send_Data_Drop_Rate 0
Recv_Data_Drop_Rate 0
Server
Snoop Enabled 0 (Disabled)
PEG Model Attribute in Server
Send_Data_Drop_Rate Varied
Recv_Data_Drop_Rate Varied

Table 5: Simulation parameters used in Scenario 3.

4.3.1 Results and Observations
The upload response time of the two mobiles are shown in
Figure 19. As expected, the mobile using the Snoop protocol
outperforms the mobile without it. It is interesting to note that
the time required for uploading a 100,000-byte file in Scenario 3

for Mobile 2 (Snoop protocol disabled) is larger than that
required in Scenario 2. This suggests that the Mobile 1 (Snoop
enabled) takes a larger portion of the available bandwidth (i.e., it
retransmits more often) and, hence, reduces the bandwidth that
can be allocated to Mobile 2.

Upload response time

0
100
200
300
400
500
600
700
800
900

0 10 20 30 40 50

Packet error rate (%)

U
pl

oa
d

re
sp

no
se

 ti
m

e
(s

ec
)

Snoop enabled
Snoop disabled

Figure 19: Upload response time of the two mobiles used in
Scenario 3.

5. Conclusions
Our simulation results indicate that the Snoop protocol is
implemented correctly (it can support multiple connection
simultaneously) and can significantly increase the performance
of TCP transfers (~ 68 times at 30% packet error rate) without
modifying other layers in the protocol stack. The Snoop protocol
significantly improves the TCP performance by preventing the
transport layer from reducing the congestion window size.

Our results also show that devices with the Snoop protocol
(enhanced devices) can co-exist with those without it (original
devices). However, when transferring data simultaneously, the
performance of original devices is affected because the enhanced
devices are more active in competing for resources (they
retransmit more often).

Improvements to the current implementation may include a
mechanism to calculate the retransmission timer value based on
the round-trip delay estimated from the time of sending a data
packet to the time the acknowledgement is received. Currently,
the retransmission timer value is set to a fixed value.

References
[1] W. R. Stevens, TCP/IP Illustrated, Volume 1. Reading, MA:

Addison Wesley, Professional Computing Series, 1984.
[2] A. S. Tanenbaum, Computer Networks, Third Edition. Englewood

Cliffs, NJ: Prentice-Hall Press, 1996.
[3] IEEE 802.11 Workgroup:

http://grouper.ieee.org/groups/802/11/index.html (last accessed in
August 2002).

[4] Performance Enhancing Proxy (PEP) Request for Comments:
http://community.roxen.com/developers/idocs/drafts/draft-ietf-pilc-
pep-04.html (last accessed in August 2002).

[5] Improving TCP/IP Performance over Wireless Networks:
http://www2.cs.cmu.edu/~srini/Papers/publications/1995.mobicom
/mobicom95.pdf (last accessed in August 2002).

