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Abstract 
The growing popularity of wireless devices used to access the 
Internet and an increasing use of the TCP/IP protocol suites, 
indicate that in the near future TCP protocol will be frequently 
used over the wireless links connecting wireless devices. The 
characteristics of wireless links are significantly different from 
characteristics of wired network links because data is frequently 
lost due to the volatile environment in which wireless links 
operate. TCP was originally designed for wired networks, where 
loss of data is assumed to be due to congestion only.  This 
assumption leads to poor performance of TCP in a wireless 
environment. Hence, various mechanisms were proposed to 
improve TCP performance over wireless links. One such 
mechanism is a performance enhancing proxy, such as the 
Snoop protocol. 
 
In this paper, we study the effect of the Snoop protocol on the 
performance of TCP over wireless links. We implemented and 
simulated Snoop protocol in OPNET wireless LAN (WLAN) 
devices.  We measured the performance improvement by 
comparing the performance of an FTP session with and without 
the Snoop protocol. We found that the Snoop protocol 
significantly improves the performance of TCP (~ 68 times 
under 30% packet error rate). We show that this improvement is 
achieved by preventing the TCP layer from reducing the 
congestion window size. 
 
1 Introduction 
Transport Control Protocol (TCP) [1, 2] is a reliable protocol 
designed to perform well in networks with low bit-error rates, 
such as wired networks [3]. TCP assumes that all errors are due 
to network congestion, rather than to loss. When congestion is 
encountered, TCP adjusts its window size and retransmits the 
lost packets. In wireless networks, however, packet loss is 
mainly caused by high bit-error rates over air-links. Thus, the 
TCP window adjustment and retransmission mechanisms result 
in poor end-to-end performance. 
 
A number of approaches have been proposed to improve the 
TCP efficiency in an unreliable wireless network. One of these 
approaches is the Snoop protocol [4, 5]. The protocol modifies 
network-layer software, mainly at the base station, and preserves 
end-to-end TCP semantics. Its main feature is to cache packets at 
the base station and to perform local retransmissions across the 
wireless links. 
 
This paper is organized as follows. In Section 2, we present an 
overview of TCP and the Snoop protocol. Section 3 describes 

the OPNET implementation of the Snoop protocol. In Section 4, 
we provide simulation results and analyze the performance 
improvements. We present our conclusions in Section 5. 
 
2 Overview of the Transport Control Protocol  
TCP is a reliable transport protocol that performs efficiently in 
wire-line networks. It uses a Go-back-N protocol and a timer- 
based retransmission mechanism. The timer period (the timeout 
interval) is calculated based on the estimated round-trip delay. 
Packets whose acknowledgements are not received before the 
timer expires are retransmitted.  In the presence of frequent 
retransmissions, TCP assumes that there is a congestion and 
invokes its congestion control algorithm. The algorithm reduces 
the transmission (also called congestion) window size. As the 
window size is reduced, the transmission rate is also reduced. 
This window size adjustment technique prevents the source from 
overwhelming the network with an excessive number of packets.  
 
In the presence of high bit error rates in wireless links, TCP 
reacts the same way as in a wired link: it reduces the window 
size before packet retransmission. This adjustment results in an 
unnecessary reduction of the bandwidth utilization causing 
significant performance degradation (poor throughput and long 
delays). The bandwidth of the wired-link segments is especially 
under-utilized because the high error rates occur only on the 
wireless sections. Nevertheless, the window reduction affects all 
transmission links. 
 
2.1 Performance Enhancing Proxies 
Performance Enhancing Proxies (PEPs) are methods employed 
to reduce performance degradation due to distinct link 
characteristics [4]. The Snoop protocol is one such method [5]. 
Its major goal is to improve the performance of communication 
over wireless links without triggering retransmission and 
window reduction polices at the transport layer.  
 
2.2 Snoop Protocol 
The Snoop protocol runs on a Snoop agent that is implemented 
in a base station or a wireless device. The agent monitors 
packets that pass through the base station and caches the packets 
in a table. After caching, the agent forwards packets to their 
destinations and monitors the corresponding acknowledgements. 
 
In TCP, a sequence number is associated with each 
acknowledgement (Ack). This number informs the sender of the 
index of the last byte successfully delivered to the receiver. If 
the sender receives the same acknowledgement sequence 
number more than once, this suggests that data sent since the last 
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received byte reported in the acknowledgement sequence 
number is lost. An Ack that contains a sequence number that is 
smaller than the sequence number of the last received Ack is 
called a duplicate Ack. 
 
Consider a scenario where a TCP sender sends packets 1, 2, 3, 4, 
and 5 that are forwarded by a base station. Assume that packet 2 
is lost due to an error on the wireless link. The Acks received for 
packets 3, 4, and 5 are thus considered duplicate Acks. When the 
sender receives these three duplicate Acks, it retransmits the 
packets and reduces the size of the congestion window, as shown 
in Figure 1.  
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Figure 1: TCP retransmission mechanism. 

The role of the Snoop agent is to cache data packets for a TCP 
connection. When data packets are lost (indicated by the 
reception of duplicate Acks), the Snoop agent retransmits those 
packets. It retransmits them locally without forwarding the 
ACKs to the sender. Hence, since the TCP layer is not aware of 
the packet loss, the congestion control algorithm is not triggered.  
In addition, the Snoop agent starts a retransmission timer for 
each TCP connection. When the retransmission timer expires, 
the agent retransmits the packets that have not been 
acknowledged yet. This timer is called a persist timer because, 
unlike TCP retransmission timer, it has a fixed value. Figure 2 
illustrates a Snoop agent implemented in a base station. 
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Figure 2: Snoop agent at a base station. 
 
Snoop protocol intercepts TCP packets, analyzes them, and 
retransmits them if necessary. As a result, no additional packet 
formats are introduced into the protocol, and all packets sent and 
received still conform to the TCP protocol. Moreover, no 

changes to the other layers in the TCP/IP protocol stack are 
necessary. This is rather important because the TCP/IP protocol 
is designed for wire-link network where most network servers 
are located.   
 
The goal of this project is to implement the Snoop agent in 
OPNET WLAN device. We expected that the implemented 
Snoop agent will improve the TCP performance and that it 
should not require modifying the default parameters. 
 
3 OPNET WLAN Model 
We implemented the Snoop protocol in the OPNET WLAN 
model. The wireless workstations modeling the medium access 
control (MAC) and the physical layer are comprised of the 
wirless_lan_mac process, transmitter, receiver, and the channel 
streams. The address resolution protocol (ARP) is an interface 
between the MAC and the upper layers. The ARP translates IP 
addresses into network interface addresses. This project focuses 
on the improvements of TCP performance over the wireless 
links and, hence, only the wireless workstation and the wireless 
server models (no wireless routers) are employed. 
 
3.1 Model Modifications 
The OPNET WLAN model does not allow the user to inject 
packet loss or bit error rate into the WLAN network. To 
facilitate testing of the Snoop protocol, we implemented an 
additional layer, called the Packet Error Generator (PEG), 
between the ARP and the IP layer. The PEG layer allows the 
user to specify the packet error rate generated according to a 
uniform distribution function. The Snoop agent is added on top 
of the PEG layer. The diagram of the modified WLAN layers is 
shown in Figure 3. 

                   
Figure 3: The modified WLAN device model. 
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The location of the additional process models is chosen to avoid 
modifications to both the upper and lower layer protocols. It 
only requires changes to the ARP model. The ARP model is 
modified to send and receive packets to and from the Snoop 
agent. 
 
3.2 Packet Error Generator (PEG) 
This process model simulates packet loss by dropping received 
packets. The number of packets to be dropped (as a percentage 
of the total packets received) can be exported as a model 
attribute. 
 
3.3 PEG Process Model 
Figure 4 shows the state diagram of the PEG process model. The 
Init state initializes the various global variables when the process 
is first instantiated. The process remains in the Wait state until a 
packet arrives either from the upper or the lower layer. 
Depending on the direction of the packet, the process enters the 
Send_Data or Recv_Data state.  The instructions implemented in 
the Send_Data and the Recv_Data states are used to decide 
whether or not the current packet should be discarded. 

 
Figure 4: PEG process model. 

3.4 Algorithm and its Implementation 
The following pseudo-code is implemented in the Send_Data 
and Recv_Data states: 
 
random_val = op_dist_uniform (100.0) 
get TCP info of the packet 
if (packet is a SYN or FIN packet) 
{ 
  pass packets to the next layer 
} 
else if (random_val > packet_drop_rate) 
{ 
  pass packets to the next layer 
} 
else 
{ 
   destroy packet 
} 

 
The PEG model employs a uniform distribution variable to 
determine if a certain packet should be dropped. The uniform 
distribution implies that all packets have the same probability of 
being discarded. Thus, this model depicts scenarios where 
packet loss occurs randomly due to the characteristics of the 
environment. Figure 5 shows a typical packet loss.  
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Figure 5: Packet loss at 30% packet error rate. 

 
3.5 Implementation of the Snoop Protocol  
In this section we describe the implementation of the Snoop 
agent as a process model. Figure 6 shows the five states and the 
state transitions in the Snoop agent process model. 

 
Figure 6: Snoop agent process model. 

 
Snoop Cache: The Snoop cache is used to cache the packets that 
are received from upper layers. Packets are cached in a linear 
array. The C code definition of the Snoop cache is: 
 
typedef struct 
{ 
  /* Packet cache */ 
  Packet  cached_pkp[SNOOP_CACHE_SIZE];         
  /* ICI content cache */ 
  int   ici_addr[SNOOP_CACHE_SIZE];   
  /* Max number of packets that have been cached at                                          
the same time */  
  int   max_cached;     
  /* Number of packets that have been cached */      
  int   num_cached;     
  /* Number of packets that have been removed */    
  int   num_removed;    
  /* Current number of packets cached */ 
  int   curr_cached;    
} struct_snCache; 
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The cache table contains copies of packets and the Interface 
Control Information (ICI) content, as well as various counters 
such as the total number of packets that have been cached.  
 
Snoop Connection Table:The Snoop agent maintains a table to 
keep track of the TCP connections.  This table is required 
because the two connection ends may have multiple connections 
established, and each of these connections needs to be 
maintained separately (because sequence numbers are not unique 
among the distinct connections). The record format in the Snoop 
connection table is: 
 
typedef struct 
{ 
   /* Source IP */ 
   unsigned int    src_ip;    
   /* Destination IP */   
   unsigned int    dest_ip;  
   /* Source Port */    
   int             src_port;   
   /* Destination Port */  
   int             dest_port;  
   /* Last sent seq number */ 
   unsigned int    last_seq_num; 
   /* Last received seq number */   
   unsigned int    last_ack_num;    
   /* Determines if we have received repeat Acks */ 
   int             repeat_ack;  
   /* Determines if we have received FIN packet */ 
   int             fin_flag;     
   /* Seq num of the fin packet */ 
   unsigned        fin_seq_num;    
   /* Timeout event handle */ 
   Evhandle   timeout_evt;   
} struct_snTable;      

 
Each record identifies a TCP connection by its source and 
destination IP address and the TCP port pairs. It also keeps track 
of the last sequence number and the last acknowledgement 
number recorded for the connection. The timeout_evt is used for 
the retransmission timer. 
 
Init state: The Snoop process begins in the Init state where its 
cache table and the TCP connection table are initialized. 
 
Wait state: After the initialization tasks have been performed, 
the process transits from the Init state to the Wait state. The 
process remains in the Wait state until: 
• A packet arrives from the MAC layer 
• A packet arrives from the upper TCP/IP layer 
• The retransmission timer expires. 
 
All events arrive as interrupts. The packet arrival is represented 
as a stream interrupt. The retransmission timer expiration event 
is implemented as a self-scheduled interrupt. 
 
Snoop_Data state: When a packet from the upper TCP/IP layer 
arrives, the process transits from the Wait state to the 
Snoop_Data state. The Snoop agent keeps track of the last 
sequence number seen from the upper layer.  The packet is 
processed depending on its sequence number: 
• A new packet in the normal TCP sequence: This is the 

normal case when a new packet with a higher sequence 
number arrives. The packet is added to the Snoop cache and 
is forwarded to the lower layer.  

• An out-of-sequence packet that has been cached earlier: 
This occurs when lost packets cause timeouts at the sender. 
If the sequence number is higher than the last 
acknowledgement seen by Snoop agent, it is assumed that 
the packet is lost. The packet is therefore forwarded to the 
destination. If the sequence number is lower than the last 
acknowledgement, the packet is discarded.        

 
After processing the packet, the Snoop process transits back to 
the Wait state and awaits the next event. Figure 7 shows the flow 
chart of the algorithm implementation. 
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Figure 7: Snoop_Data implementation flow chart. 

 
In addition to implementing the Snoop algorithm, the OPNET 
implementation also cleans the connection table entry when the 
last packet (FIN) of the connection is detected. In addition, the 
test shown at the top of the flow chart is used to ensure that the 
Snoop agent does not mistakenly caches packets that contain 
data relevant to the opposite direction (e.g., Acks packets for 
acknowledged data packets in the opposite direction). 
 
Snoop_Ack state: When a packet from the MAC layer arrives to 
the Snoop agent, the process transits from the Wait state to the 
Snoop_Ack state. The packet is processed depending on the 
acknowledgement sequence number: 
• A new acknowledgement: This is an acknowledgement 
packet with an acknowledgement sequence number higher than 
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the last received. This initiates the cleaning of the corresponding 
cache entries. The acknowledgement is passed to the upper 
TCP/IP layers. 
• A false acknowledgement:  This is an acknowledgement 
packet with an acknowledgement sequence number lower than 
the last received. This rarely happens and the acknowledgement 
is discarded. 
• A duplicate acknowledgement: This is an acknowledgment 
packet that is identical to the last received. This causes the 
Snoop agent to assume that packets that have been sent with 
higher sequence number were lost.  The Snoop agent will 
retransmit all packets starting with the first lost packet.  
 
Figure 8 shows the flow chart of the steps executed by the 
Snoop_Ack state. 
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Figure 8: Snoop_Ack implementation flow chart. 

 
Timeout state: When the retransmission timer of a connection 
expires, the process transits from the Wait state to the Timeout 
state. Processing during the Timeout state is very similar to the 
processing of receiving a duplicate acknowledgement in the 
Snoop_Ack state: all packets that have not been acknowledged 
are retransmitted. 
 
The retransmission timer of a connection is extended when a 
new data packet is received from the upper layer, a new 
acknowledgement packet is received from the lower layer, or a 
retransmission timer has just expired. 
 
4 Performance Comparison 
This section describes how are the models, described in Section 
3, used to measure the protocol performance. 

Setup: We simulated three scenarios to validate the models, to 
measure the performance of a WLAN device with Snoop 
protocol, and to compare it to a device with unmodified TCP.  
 
Devices: Each scenario consists of two main types of WLAN 
nodes: mobile workstations and servers. The Snoop protocol 
model is implemented in both devices and it is enabled or 
disabled depending on the various scenarios. Device with Snoop 
protocol are called enhanced devices, while devices without 
Snoop are called the original devices. The remaining nodes that 
are used in the scenarios are Application Configuration and the 
Profile Configuration nodes. They enable the devices to generate 
traffic using the OPNET Application Model paradigm.  
 
TCP Model Parameters: TCP parameters used for the TCP 
models in WLAN nodes are listed in Table 1. 
 
TCP Parameters Values 
Maximum Segment Size (bytes) 2,264 
Receiver Buffer Size (bytes) 8,760 
Receiver Buffer Usage Threshold 0.0 
Delayed Ack Mechansim Segment/Clock Based 
Maximum Ack Delay 0.2 
Fast Transmit Enabled 
Fast Recovery Enabled 
Selective Ack (SACK) Disabled 
Nagle SWS Algorithm Disabled 
Karn’s Algorithm Enabled 
Retransmission Threshold Attempt Based 
Initial RTO 1.0 
Minimum RTO 0.5 
Maximum RTO 64 
RTT Gain 0.125 
Deviation Gain 0.25 
RTT Deviation Coefficient 4.0 
Timer Granularity 0.5 
Persist Timeout 1.0 

Table 1: TCP model parameters. 

Most values are the default OPNET values and they do not affect 
the results of our simulation experiments. They are chosen 
because the Snoop protocol is used as a PEP, and TCP 
parameters should be left unaltered on wireless devices so that 
they can be tuned to handle congestion cases.  
 
Parameters that directly affect the experiment results are the 
Maximum Segment Size and the Receiver Buffer Size. Choosing 
smaller values for both parameters will causes a larger number 
of TCP messages. Because the Snoop protocol is most effective 
when more packets are lost, it is expected that choosing smaller 
values for these parameters will enhance the Snoop performance. 
 
Traffic: All simulation scenarios use the OPNET Application 
Model to generate traffic. In order to study the effects of the 
Snoop protocol, we used a simple traffic pattern: FTP transfers 
of 100,000-byte files. Figure 9 illustrates a typical message 
sequence of an FTP file transfer. During the data transfer, each 
message contains 2,264 bytes of data. This value corresponds to 
the WLAN TCP window size. 
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Figure 9: FTP transfers message sequence. 

 
Wireless LAN Model Parameters: In our simulation scenarios, 
we use the default values of the WLAN parameters. The goal of 
the simulation is to evaluate the performance of an enhanced 
device and compare it to the performance of an original device. 
Therefore, it is important that all devices use identical WLAN 
parameters.  Their values are listed in Table 2. 
 
Wireless LAN Parameters Values 
Rts Threshold None 
Fragmentation Threshold None 
Data Rate 1 Mbps 
Physical Characteristics Frequency Hopping 
Buffer Size (bits) 256,000 
Maximum Receive Lifetime 
(sec) 

0.5 

Table 2: Wireless LAN parameters. 

The use of the PEG process model embedded inside the device 
protocol stack minimizes the effects of the WLAN parameters 
on the simulation results. Therefore, most parameters were set to 
the default OPNET values. 
 
4.1 Simulation Scenario 1: Single Mobile Upload 
This scenario is designed to verify the basic operation of the 
Snoop protocol and to illustrate the improved network 
performance with the Snoop protocol. In this scenario, the 
mobile performs an FTP upload of 100,000 bytes to the server. 
The simulation settings are listed in Table 3. 
 
In this scenario, shown in Figure 9, the mobile is the host and the 
server is the receiver. The send_data_drop_rate and the 
recv_data_drop_rate are identical. This simulates the case where 
both TCP data and TCP acknowledgement messages may be 
lost. The values of the send_data_drop_rate and the 
recv_data_drop rate are called the packet error rate (PER). The 

value of the Snoop protocol retransmission timeout is set to the 
initial retransmission timeout (RTO ) value of the TCP model.  
 
 

 

Figure 10: Network model used in Scenario 1. 
 
Parameters Setup Values 
  
Snoop Model Attribute in Mobile 1  
Snoop Enabled 1 (Enabled) 
Snoop Retransmission Timeout 1 sec 
  
PEG Model Attribute in Mobile 1  
Send_Data_Drop_Rate Varied 
Recv_Data_Drop_Rate Varied 
  
Snoop Model Attribute in Server  
Snoop Enabled 0 (Disabled) 
  
PEG Model Attribute in Server  
Send_Data_Drop_Rate 0 
Recv_Data_Drop_Rate 0 

Table 3: Simulation parameters used in Scenario 1. 

4.1.1 Results and Observations 
Figure 11 shows the upload response time of the 100,000-byte 
file transfer. The response time is measured from the first SYN 
packet sent from Mobile 1 to the last acknowledgement packet 
received for the last FIN packet. 
 
Simulation results indicate that the performance improvement of 
Snoop protocol increases as packet error rate increases. At a 
packet loss rate of 30%, the Snoop protocol improves the TCP 
performance approximately 68 times. This large improvement is 
due to the combination of two effects: packet caching and local 
retransmission timeout. 
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Scenario 1: Upload reponse time 
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Figure 11: Upload response time of a 100,000-byte file. 

 
4.1.2 Caching Packets 
The Snoop protocol caches packets and retransmit them on 
behalf of TCP once it detects packet loss due to the received 
duplicate acknowledgement sequence.  
 
Figure 12 shows the number of packets cached during the file 
upload. The number of cached packets increases as the mobile 
packets are transmitted to the server without receiving 
acknowledgement packets. A maximum of four packets can be 
cached because the mobile can transmit up to four data messages 
before filling up the receive buffer. (The receiver window buffer 
size is 8,760 and the maximum segment size is 2,264.) The 
number of packets in the cache decreases as the Snoop protocol 
receives the acknowledgements of those packets. The number of 
cached packets is zero when the connection ends. This verifies 
that all packets are cleared at the end of the connection. 
 
Figure 13 shows the size of the congestion window during file 
upload at 20% packet error rate. TCP shrinks its congestion 
window when it detects that packets are lost because TCP 
assumes packet loss occurs due to congestion in the network. 
While this is often true for wired line networks, it is not true for 
wireless networks where packets loss is mainly caused by bit 
errors resulting from environmental effects (e.g., background 
noise, Doppler effect, multi-path delays). 
 
Packet caching prevents TCP congestion window from 
shrinking. It is the most critical factor in improving the 
performance of data transfers.  Shrinking the congestion 
windows has a “cyclic” effect. It causes TCP to send less data in 
each packet, which implies sending more data packets across the 
network. Since sending more data packets increases the chances 
of packets getting corrupted, this, in turn, will shrink the 
congestion window further, and the cycle repeats. 
 
Figure 14 shows the sequence number (recorded at the TCP 
layer) sent across the network during the file transfer. The 
sequence number ends at 100,001 because the sequence number 
starts from 0, and is incremented for every byte of data sent.  In 
addition, there is one extra byte for the SYN packet and one for 
the FIN packet. It is evident that without the Snoop protocol, the 

TCP layer has to retransmit the same sequence number (and, 
hence, same data bytes) several times. 
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Figure 12: Number of cache packets during file upload. 
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Figure 13: Congestion window of the TCP connection at 20 % 

packet error rate. 
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4.1.3 Local Retransmission Timeout 
The retransmission timeout mechanism in TCP is designed to 
handle network congestion. Therefore, the TCP timeout values 
are modified according to the level of network congestion that is 
inferred by the amount of packet loss. Similar to the congestion 
window size, this assumption is often false in the case of 
wireless networks. The Snoop protocol uses persist 
retransmission timeout period of 1 sec. It increases the 
performance by using a more appropriate timeout period for the 
wireless link, and prevents TCP from changing its own 
retransmission timeout period due to packet loss. The timeout 
period can be tuned to the wireless link characteristics by 
employing algorithms such as Karn’s algorithm for updating the 
period over time. The important aspect, however, is that the 
Snoop protocol allows a retransmission timeout value to be 
adjusted for the wireless links separately. 
 
Figure 15 shows the changes of the retransmission timeout 
period recorded at the TCP layer. As a result of caching packets, 
the Snoop protocol prevents TCP from incorrectly adjusting the 
retransmission timeout due to packet loss. 
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Figure 15: Retransmission timeout of TCP models for file 
upload at 20% packet error rate. 

 
4.2 Simulation Scenario 2: Multiple Mobile Downloads 
This scenario is designed to verify that the Snoop protocol can 
handle multiple connections simultaneously. In this scenario, the 
Snoop protocol in the server is enabled. The OPNET 
Application Model is configured so that each mobile downloads 
a 100,000-byte file from the server. Figure 16 shows the network 
model for this scenario. The simulation settings are listed in 
Table 4. 
 
4.2.1 Results and Observations  
Figure 17 shows the average download time for the two mobiles. 
Similar to Scenario 1, the Snoop protocol improves the 
performance of the 100,000-byte file transfer. The fact that the 
mobiles can download simultaneously verifies that the Snoop 
protocol can handle multiple connections. The decrease in 
response time of the original mobile for packet error rates 
between 15% and 20% is most likely caused by the random 
packet loss generated by the PEG process model. 
 

 

Figure 16: Network model used in Scenario 2. 
 
Parameters Setup Values 
Mobile 1  
Snoop Enabled 0 (Disabled) 
PEG Model Attribute in Mobile 1  
Send_Data_Drop_Rate 0 
Recv_Data_Drop_Rate 0 
Mobile 2  
Snoop Enabled 0 (Disabled) 
PEG Model Attribute in Mobile 2  
Send_Data_Drop_Rate 0 
Recv_Data_Drop_Rate 0 
Server  
Snoop Enabled 1 (Enabled) 
Snoop Retransmission Timeout (sec) 1  
PEG Model Attribute in Server  
Send_Data_Drop_Rate Varied 
Recv_Data_Drop_Rate Varied 

Table 4: Simulation parameters used in Scenario 2. 
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It can be noticed that the average download time of the two 
mobiles is larger than the upload time shown in Scenario 1. For 
packet error rate of 0%, Scenario 1 requires 9.4 sec, while 
Scenario 2 requires 17 sec. The reason is that the two mobiles 
are competing resources on the radio link. This effect will be 
shown again in Scenario 3. 
 
4.3 Scenario 3: Multiple Mobile Uploads 
This scenario is designed to illustrate the effect of coexistence of 
an enhanced and an original mobile in the same network. Mobile 
1 is configured with Snoop protocol disabled, and Mobile 2 is 
configured with Snoop enabled. The Application Model is 
configured to have both mobiles upload a 100,000-byte file to 
the server.  The network model is shown in Figure 18. The 
simulation settings are listed in Table 5. 
 

 
Figure 18: Network model used in Scenario 3. 

 
Parameters Setup Values 
Mobile 1  
Snoop Enabled 0 (Disabled) 
PEG Model Attribute in Mobile 1  
Send_Data_Drop_Rate 0 
Recv_Data_Drop_Rate 0 
Mobile 2  
Snoop Enabled 1 (Enabled) 
Snoop Retransmission Timeout (sec) 1.0 
PEG Model Attribute in Mobile 2  
Send_Data_Drop_Rate 0 
Recv_Data_Drop_Rate 0 
Server  
Snoop Enabled 0 (Disabled) 
PEG Model Attribute in Server  
Send_Data_Drop_Rate Varied 
Recv_Data_Drop_Rate Varied 

Table 5: Simulation parameters used in Scenario 3. 

4.3.1 Results and Observations 
The upload response time of the two mobiles are shown in 
Figure 19. As expected, the mobile using the Snoop protocol 
outperforms the mobile without it. It is interesting to note that 
the time required for uploading a 100,000-byte file in Scenario 3 

for Mobile 2 (Snoop protocol disabled) is larger than that 
required in Scenario 2. This suggests that the Mobile 1 (Snoop 
enabled) takes a larger portion of the available bandwidth (i.e., it 
retransmits more often) and, hence, reduces the bandwidth that 
can be allocated to Mobile 2.  
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Figure 19: Upload response time of the two mobiles used in 
Scenario 3. 

 
5. Conclusions 
Our simulation results indicate that the Snoop protocol is 
implemented correctly (it can support multiple connection 
simultaneously) and can significantly increase the performance 
of TCP transfers (~ 68 times at 30% packet error rate) without 
modifying other layers in the protocol stack. The Snoop protocol 
significantly improves the TCP performance by preventing the 
transport layer from reducing the congestion window size. 
 
Our results also show that devices with the Snoop protocol 
(enhanced devices) can co-exist with those without it (original 
devices). However, when transferring data simultaneously, the 
performance of original devices is affected because the enhanced 
devices are more active in competing for resources (they 
retransmit more often). 
 
Improvements to the current implementation may include a 
mechanism to calculate the retransmission timer value based on 
the round-trip delay estimated from the time of sending a data 
packet to the time the acknowledgement is received. Currently, 
the retransmission timer value is set to a fixed value. 
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