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Abstract 
One of the main reasons for TCP's degraded performance in 
wireless networks is TCP's interpretation that packet loss is 
caused by congestion. However, in wireless networks, 
packet loss occurs mostly due to high bit error rate, packet 
corruption, or link failure. TCP performance in 
wired/wireless networks may be substantially improved if 
the cause of packet loss could be distinguished and 
appropriate rectifying measures taken dynamically. We 
propose a new end-to-end TCP protocol named Selective-
TCP, which distinguishes between congestion and wireless 
link transmission losses (high bit error rate and/or packet 
corruption). When detecting packet loss, Selective-TCP 
invokes correction mechanisms. It is suited for mixed 
wired/wireless networks and shows increase in goodput 
when compared to TCP NewReno.  
 
1. INTRODUCTION 
 The transmission control protocol (TCP) is the most 
extensively used transport protocol by Internet applications 
due to its robust and reliable connectivity. Wireless 
communication technology has become widely popular for 
access networks. These wireless access networks, such as 
Wireless Local Area Networks (WLAN) and cellular 
networks, are usually connected to a wired backbone 
network. Although TCP is very reliable in wired networks, 
its performance deteriorates in wireless environments. The 
main reason for TCP’s performance degradation in wireless 
networks is TCP’s inability to distinguish congestion losses 
from other types of losses. In wireless links, the reasons for 
packet loss are high bit error rates (BER) due to bursty 
nature of wireless traffic, packet corruption, or link outage. 
However, TCP treats all these errors as congestion and 
initiates the congestion control mechanism. This results in 
low utilization of available bandwidth, unnecessary 
retransmissions, and, ultimately, low goodput and 
throughput. (Throughput is defined as the number of bits 
transmitted by the source host and it is presented in kbps, 

while goodput is the number of bits received by the 
destination host, less the duplicates.) 
 In this paper, we propose Selective-TCP, an end-to-end 
design that improves TCP performance in wired/wireless 
networks. It distinguishes packet loss due to congestion from 
packet loss due to transmission in wireless links. Selective-
TCP is an extension to TCP NewReno. We used the ns-2 
network simulator to evaluate its performance. 
 This paper is organized as follows. In Section 2, we 
provide background material and a short review of previous 
work. Selective-TCP is introduced in Section 3. Simulation 
results are given in Section 4. We conclude with Section 5. 
  
2. BACKGROUND AND RELATED WORK 
  
2.1 Background 
 Several techniques have been proposed to mitigate the 
effects of non-congestion related losses on TCP’s 
performance. They may be classified as: end-to-end 
(TCPReno [1], NewReno [2], and SACK [3]), link layer 
(Snoop-TCP [4] and TCP Packet Control [5]), and split-
connection (M-TCP [6] and I-TCP [7]) approaches. 
Comparative analysis of these approaches [8] indicates that 
link layer techniques are most effective in improving TCP 
performance in wireless networks, while split-connection 
based methods sometimes lead to poor end-to-end 
throughput due to shielding of the wireless from the wired 
section of the network. End-to-end schemes, although less 
effective than link layer based techniques, are the most 
promising because they achieve significant performance 
gain without requiring expensive changes in the intermediate 
nodes. We consider here end-to-end solutions that require 
changes only to the sender and the receiver.  
 Selective-TCP algorithm employs a loss differentiation 
scheme [9] that enables a TCP receiver to distinguish 
congestion losses from wireless losses based on packet inter-
arrival times at the receiver. In the case of wireless losses, 
Selective-TCP uses TCP with Selective Negative 
Acknowledgement (SNACK) option. SNACK is an 
extension of the Space Communication Protocol Standard-
Transport Protocol (SCPS-TP) [10]. SNACK improves 
performance of SCPS-TP in the case of high bit error rates 



by increasing link utilization and throughput. It has been 
widely used to improve TCP performance over satellite links 
and is rarely used in wireless links even though satellite and 
wireless links have similar characteristics: both are prone to 
high BER and packet corruption and introduce long network 
delays compared to wireline networks. Selective-TCP 
consists of a TCP-SNACK module implemented in TCP 
sink and a SNACK processing module implemented in TCP 
NewReno source [11]. In the case of packet loss due to 
wireless link errors, TCP sink sends acknowledgement with 
SNACK option to the source. This results in better 
bandwidth utilization, end-to-end throughput, and goodput. 
In the case of congestion loss, receiver sends the information 
about the bandwidth (measured at the receiver) to the 
sender. Sender then accordingly sets its congestion window. 
This restricts the TCP’s additive increase multiplicative 
decrease (AIMD) algorithm from setting congestion window 
lower than necessary. As a result, network goodput and 
throughput are improved. 
 
2.2 Related Work 
 Previous work on improving TCP performance in 
wired/wireless networks was based on distinguishing types 
of packet losses.  
 TCP Veno [12], a combination of TCP Vegas [13] and 
TCP Reno [1], employs an end-to-end congestion control 
mechanism. If a packet is lost, TCP Veno employs proactive 
congestion control of TCP Vegas and, thus, distinguishes 
between the congested and non-congested network states. 
TCP Veno does not address the issue of burst errors and no 
corrective action is taken for wireless losses.  
 The differentiation between congestion and random 
losses in wireless networks is achieved by measuring the 
variation of round trip delay [14], [15]. If the loss is not due 
to congestion, TCP congestion control is suppressed and a 
modified recovery strategy is implemented. Two additional 
detection schemes   [16], [17] are based on controlling the 
TCP AIMD algorithm. None of these schemes imposes 
corrective actions in the case of wireless losses.  
 SNACK-Snoop [18] combines SNACK with Snoop [4]. 
It uses SNACK to provide explicit wireless loss notification 
between a base station and a mobile host. This is a link layer 
based scheme and requires major modification at the 
intermediate base station. It also introduces processing and 
memory overhead of the Snoop protocol at the base station. 
 TCP-Jersey [19] incorporates available bandwidth 
estimation at the sender, as is the case in TCP Westwood 
[20]. TCP-Jersey improves network throughput by 
estimating bandwidth in the case of congestion losses. It 
differentiates congestion from non-congestion losses with 
the help from intermediate routers and, thus, requires 
expensive changes at the routers. TCP-Jersey does not 
address corrections specific to wireless losses. 
 TCP-Real [21] is a receiver-oriented congestion control 
mechanism. If the network is congested, the receiver 
determines data sending rate and communicates that 

information to the sender.  TCP-Real employs two 
corrective mechanisms: congestion avoidance and advanced 
error detection. 
 
3. SELECTIVE-TCP ALGORITHM 
 
3.1 Overview of the Proposed Algorithm  
 Selective-TCP algorithm is based on differentiating the 
types of losses at the TCP receiver. It may be implemented 
as an extension to TCP NewReno. If an out-of-sequence 
packet is received at the sink, Selective-TCP distinguishes 
the loss due to congestion from the loss due to wireless 
transmission error. The loss differentiation technique ([9], 
[22]) used in Selective-TCP is based on packet inter-arrival 
times measured at the receiver. After distinguishing the type 
of packet loss, one of the corrective measures is taken to 
improve TCP performance. 
 In the case of loss due to congestion, the bandwidth is 
measured at the receiver and sent to the sender, rather than 
estimating available bandwidth at the sender only [19]. The 
sender then accordingly adjusts its congestion window size. 
Thus, Selective-TCP prevents TCP’s AIMD scheme from 
setting the sender’s congestion window size lower than 
necessary. Selective-TCP helps the TCP NewReno sender to 
achieve the optimum bandwidth faster, resulting in higher 
bandwidth utilization. 
 In the case of wireless transmission losses, receiver 
sends acknowledgement with SNACK option. This helps 
avoid TCP NewReno’s congestion control mechanism. As a 
result, the slow start threshold and congestion window size 
are not reset unnecessarily, resulting in better bandwidth 
utilization. 
 
3.2 Loss Differentiation Mechanism 
 The loss differentiation technique used in Selective-
TCP is based on measuring the packet inter-arrival times at 
the receiver. The heuristic technique assumes that the 
wireless link is the only network bottleneck, that it is the last 
hop in the connection path, and that sender performs bulk 
data transfer [9]. We also assume that all packets are of 
same size. The wireless link is the only bottleneck in the 
network and, hence, packets accumulate at the base station. 
Therefore, most packets will be sent back-to-back over the 
wireless link. In the case of no packet loss, let T be the 
minimum packet inter-arrival time at the receiver. If there is 
no packet loss then the inter-arrival time between two 
consecutive packets is ~T as shown in Fig. 1(a). If a packet 
is lost in the wired link, the packet inter-arrival gap is still 
~T because the packets queue at the base station before 
being transmitted on the wireless link, as shown in Fig. 1(b). 
However, if a packet is lost in the wireless link, the inter-
arrival gap at receiver is ~2T because the lost packet has 
traveled on the wireless link for some time before being lost, 
as shown in Fig. 1(c). Using this heuristic, the type of packet 
loss is differentiated according to Algorithm 1. 
 
 



n = number of packets lost between two packet arrivals  
if ( packet loss){ 
  if ((n+1)T ≤ packet inter-arrival time < (n+2)T) 
   wireless transmission loss 
  else  
   congestion loss 
} 
 

Algorithm 1. Pseudo-code of the algorithm for 
differentiating types of packet losses [9]. 
 

 
 
Fig. 1. Inter-arrival times between consecutive TCP packets: 
(a) no packet loss, (b) packet loss in the wired link, and (c) 
packet loss in the wireless link. R1 is an intermediate router 
and BS is the base station for the wireless destination node 
R. Solid and dashed lines represent wired and wireless link, 
respectively. 
 
3.3 Selective Negative Acknowledgement (SNACK) 
 SNACK is an option of SCPS-TP [10]. It is widely used 
for improving TCP performance over satellite links. By 
sending SNACK, the receiver informs the sender about the 
segments that it did not receive. SNACK conveys 
information about multiple lost segments. This helps TCP to 
continue transmission even after a packet loss without 
reducing the congestion window size. SNACK information 
is stored in the optional area of the TCP header. In the 
presence of packet re-ordering, it is advantageous to delay 
SNACK because this permits re-ordered packets to reach the 
receiver. On receiving a SNACK, the TCP sender 
aggressively retransmits all packets indicated as empty slots 
in the receiver queue. These aggressive retransmissions 
prevent retransmission time-outs and avoid link idle time, 
resulting in higher bandwidth utilization [11]. 
 
3.4 Selective-TCP Module at the TCP Receiver 
 If an out-of-sequence packet arrives at a TCP receiver, 
Selective-TCP first distinguishes the type of packet loss. In 
the case of congestion loss, Selective-TCP increments 
congestion_count counter. When a threshold value k is 
reached, the receiver measures the bandwidth and sends it to 
the sender for setting the congestion window size, rather 
than searching for the optimum congestion window size and 
waiting for TCP to initiate congestion control. Bandwidth is 
measured as: (no. of received packets × size of packets in 
bits) ∕ (inter-arrival time between previous in-sequence 

packet received and most recent in-sequence packet 
received × 1,000) in kbps. To explain this further, 
bandwidth of a network is defined as the data rate supported 
by a network connection.  
 TCP-Westwood [20] estimates the available bandwidth 
at the sender side based on the interval of returning 
acknowledgements: 

)( 1−−
=

kk

k
k

tt
db , 

where, dk is the amount of acknowledged data at time tk and 
tk-1 is the time when previous acknowledgement was 
received. This sample bandwidth is smoothed further by a 
low-pass filtering to obtain estimated bandwidth. 
 TCP-Jersey [19] adopts the same idea. It employs time-
sliding window (TSW) estimator at the sender and estimated 
available bandwidth as: 
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where, Rn is the estimated bandwidth when the n-th 
acknowledgement arrives at time tn. tn-1 is the time when 
previous acknowledgement arrived. Ln is the size of data 
acknowledged by the n-th acknowledgement and RTT is the 
TCP’s estimation of the end-to-end RTT delay at time tn. 
Since duplicate acknowledgements also account for 
available bandwidth, both these bandwidth estimation 
approaches [19], [20] consider duplicate ACKs in the cases 
of packet loss in the network.  
 Unlike TCP-Westwood and TCP-Jersey, Selective-TCP 
estimates bandwidth at the receiver and, hence, it measures 
the available bandwidth as the number of packets received in 
a given period of time. In cases of packet loss, the available 
bandwidth would be smaller since fewer packets will be 
received than in the case of no packet loss. Selective-TCP 
measures available bandwidth as: 
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where, tn is the time when most recent in-sequence packet is 
received, tn-1 is the time when previous  in-sequence packet 
was received, np is the number of packets received within (tn 
– tn-1), and sp is the size of packets in bytes.  
 In the case of wireless loss, the receiver sends ACK 
with SNACK option to the sender. As a consequence, the 
TCP sender retransmits the missing packets indicated by 
SNACK. Acknowledgments with SNACK options are sent 
after a certain delay (snack_delay). As a result, the chance 
of unnecessarily retransmitting a delayed or misordered 
segment is limited [23]. Since the SNACK option triggers a 
retransmission, there is no reliance on the Fast Retransmit 
algorithm to detect the loss. This independence from the 
Fast Retransmit algorithm is important because duplicate 
ACKs may never be received when operating over a highly 
lossy link. The pseudo-code is shown in Algorithm 2. 
 

if (out-of-order packet received) { 
 // check type of loss  
 if ( wireless loss) { 



  if (snack_delay = 0) 
   send SNACK 
  else 
   do nothing 
 } 
 else { // congestion loss 
  1) set congestion_count = congestion_count + 1 

2) set congestion_info = current bandwidth  measured at 
the TCP receiver 

  if (congestion_count = k) { 
   1) send congestion_info to the TCP sender       
  2) reset  congestion_count 
   } 
  else 

send ACK //as in the case of TCP NewReno 
receiver 

 } 
} 
else // in-sequence packet received 
 send ACK // same as TCP NewReno receiver 
 

Algorithm 2.  Pseudo-code of the Selective-TCP algorithm 
at the receiver.  
 
3.5 Selective-TCP Module at the TCP Sender 
 When a SNACK is received, the TCP sender 
aggressively retransmits the packet(s) indicated as lost 
packet(s), without waiting for retransmission time-out to 
occur. Hence, congestion control mechanism and 
unnecessary retransmissions are avoided, leading to higher 
bandwidth utilization. Congension_info stores the 
bandwidth measured at the receiver in time, packet loss is 
detected. If the congestion_info field in the TCP header has 
a non-zero value, the sender sets its congestion window size 
equal to congension_info*base_rtt, where base_rtt is the 
initial round trip time. This prevents the TCP AIMD 
algorithm from setting the congestion window size to be 
unnecessarily small. Congestion_info is multiplied by 
base_rtt to increase the congestion window size. The 
pseudo-code is shown in Algorithm 3. 
 

if (SNACK received) { 
 1) retransmit packet(s) indicated as lost 
 2) reset retransmission timer 
 } 
else if (congestion_info ≠ 0) { 
 // set size of congestion window equal tothe bandwidth 
 // measured at receiver 
 1) set cwnd_ = congestion_info * base_rtt 

// cwnd_ denotes congestion window size and base_rtt //is the 
base round trip time measured at sender 

 2) reset congestion_info 
 } 
else // standard ACK received 
 do as TCP NewReno sender 
 

Algorithm 3.  Pseudo-code of the Selective-TCP algorithm 
at the sender. 
 

4. SIMULATION MODEL AND RESULTS 
 We simulated mixed wired/wireless network with a 
dumbbell topology where the source nodes are wired and 
destination nodes are wireless. Wireless links are the 
network bottleneck. We describe the network topology used 
in simulation scenarios, the error model, and the simulation 
results. We used network simulator ns-2.27 [24] to simulate 
the wired/wireless network and to evaluate performance of 
Selective-TCP as an extension to TCP NewReno. 
 
4.1 Network Topology 
 The network (dumbbell) topology is shown in Fig. 2. 
The TCP sender is a wired node, while the TCP receiver is a 
wireless node. The TCP source sends file transfer protocol 
(FTP) traffic. The user datagram protocol (UDP) source 
sends constant bit rate (CBR) traffic. The UDP source is a 
wired node, while the UDP sink is a wireless node. The FTP 
traffic and the CBR traffic share a common wired link from 
router R1 to base station BS. The TCP and UDP sender 
rates are 2 Mbps and 512 Kbps, respectively. Wired links 
have 2 Mbps bandwidth. Bandwidth of the wired link 
between R1 and BS is: (i) 2 Mbps when simulating 
Selective-TCP’s performance in presence of congestion (the 
sum of TCP and UDP data rates is 2.5 Mbps) and (ii) 4 
Mbps when simulating the case without congestion. 
Propagation delay of the wired links is 1 ms. Wireless links 
have 1 Mbps bandwidth and 5 ms propagation delay. The 
model used for the wireless links is WLAN.   

 
 

Fig. 2.  Simulated network topology: R1 is an intermediate 
router. BS is the base station for the wireless destination 
nodes. Solid and dashed lines represent wired and wireless 
links, respectively. 
 
4.2 The Error Model 
 We simulate wireless links with burst errors [25] using a 
two-state Markov model (Gilbert model), shown in Fig. 3. It 
has a good (error-free) and a bad (erroneous) state. Good 
state implies no packet loss, while bad state denotes 1 packet 
loss. 
 The model is defined by a transition probability matrix 
П and the steady state error rate ε [26]: 
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We assume the wireless link is in the good state at the 
beginning of simulation and the transition probabilities p = 
0.9913 and q = 0.8509 model the effect of burst errors. The 
error rate ε = 5%. These parameters have been reported for 
burst errors measured in deployed wireless networks [27]. 
 

 
 

Fig. 3.  Two-state Markov model: p is the probability of 
successfully transmitting a packet given that the previous 
packet was successfully transmitted; 1-q is the probability of 
successfully transmitting a packet given that the previous 
packet was dropped. 
 
4.3 Simulation Results  
 We compare performance of Selective-TCP and TCP 
NewReno in the presence and in the absence of a congested 
link. In both cases, the error in the wireless link has been 
introduced. For the first 100 s of simulation time, there is 
only CBR (constant bit rate)/UDP traffic. After 100 s, TCP 
connection starts and exists along with UDP connection. All 
connections end after 300 s of simulation time.  
 1) Presence of a congested link: The common wired 
link has bandwidth 2 Mbps. Goodput in the presence of 
congested link is shown in Fig. 4. Selective-TCP achieves 
up to 45% higher goodput when compared to TCP 
NewReno. Selective-TCP shows larger congestion window 
size than TCP NewReno, indicating better utilization of 
available bandwidth, as shown in Fig. 5. 
 The slow start threshold and the average network 
throughput for Selective-TCP are shown in Figs. 6 and 7, 
respectively. A comparison of Selective-TCP performance 
with no wireless error, 1% random error, and 5% burst error, 
is shown in Fig. 8. 

 
Fig. 4.  Goodput is represented as the maximum number of 
packets that reached the destination. 

 
Fig. 5.  Size of congestion window for Selective-TCP is 
significantly larger than for TCP NewReno. 

 
Fig. 6.  Selective-TCP sender maintains a constant value of 
slow start threshold over a longer period of time. The initial 
value of the slow start threshold is equal to 20. 

 
Fig. 7.  The average throughput of Selective-TCP (161.5 
kbps) is larger than the average throughput of TCP 
NewReno (110.91 kbps). 



 
Fig. 8.  Goodput of Selective-TCP: maximum goodput is 
achieved when no wireless error is introduced. 
 
 2) Absence of a congested link: The bandwidth of the 
common wired link is 4 Mbps. Goodput (maximum 
sequence number received) vs. simulation time without 
congestion in the common wired link is shown in Fig. 9. 
Selective-TCP improves goodput by 45% compared to TCP 
NewReno over 300 s of TCP connection time. Congestion 
window size, slow start threshold, and throughput as 
functions of time are shown in Figs. 10, 11, and 12, 
respectively. We compare performance of Selective-TCP 
and TCP NewReno in a non-congested network. Similar to 
the case of congested network, Selective-TCP performs 
better than NewReno for non-congested network. If no error 
is introduced in wireless link, Selective-TCP achieves ~1.5 
times the goodput in the case of 5% burst error, as shown in 
Fig. 13. 
 

 
Fig. 9.  Selective-TCP shows significant increase in 
goodput. 
 

 
Fig. 10.  The size of congestion window for Selective-TCP 
remains larger than for TCP NewReno. 

 
Fig. 11.  Slow start threshold of Selective-TCP remains 
constant over a longer period of time. 
 

 
Fig. 12.  Average throughput of Selective-TCP (169.15 
kbps) and of TCP NewReno (115.65 kbps). 
 



 
Fig. 13.  Effect of wireless errors: goodput of Selective-TCP 
in the absence of congested link. 
 
4.4 Comparison of Selective-TCP to Other TCP Variants 
 We also compare Selective-TCP and TCP NewReno 
with TCP Reno [1], TCP SACK [3], TCP Westwood [20], 
and TCP Packet Control algorithm [5].  
 1) Presence of congested link: Selective-TCP achieves 
larger congestion window compared to other TCP variants, 
as shown in Fig. 14. TCP SACK and TCP Westwood show 
smaller bandwidth utilization.  
 

 
Fig. 14.  Size of congestion window vs. simulation time: 
congestion window size is the largest for Selective-TCP, 
compared to other TCP variants. 
 
 TCP Packet Control algorithm achieves the highest 
goodput, followed by Selective-TCP, TCP Reno, and 
NewReno, as shown in Fig 15. However, performance of 
TCP Westwood and TCP SACK deteriorates significantly 
due to poor bandwidth utilization. TCP Packet Control 
algorithm, being the only link layer based algorithm, 
achieves the highest goodput in a mixed wired/wireless 
network with 5% burst error in the wireless links. 
 

 
Fig. 15.  Goodput vs. simulation time: network performance 
deteriorates for TCP SACK and TCP Westwood. 
 
 2) Absence of congested link: The congestion window 
sizes are shown in Fig. 16. Selective-TCP again has the 
largest congestion window because it measures the available 
bandwidth at the time of packet loss and accordingly sets 
congestion window size. TCP Westwood employs 
bandwidth estimation to set congestion window size, which 
should be larger compared to TCP Reno, NewReno, SACK, 
and TCP Packet Control algorithm (none employs 
bandwidth measurement/estimation). However, congestion 
window for TCP Westwood is similar to other TCP variants. 

 
Fig. 16.  Congestion window size for 300 s of simulation 
time. 
 

 Fig. 17 shows the goodput of TCP Reno, NewReno, 
SACK, Westwood, Selective-TCP, and TCP Packet Control 
algorithm for 300 s of simulation time. Selective-TCP 
performs best, followed by TCP Westwood because both 
algorithms employ bandwidth measurement/estimation. TCP 
Reno, NewReno, and SACK perform comparably. TCP 
Packet Control algorithm, unlike in the case of congestion, 
achieves lower goodput. Selective-TCP performs well in 
cases of both congested and non-congested links. 



 
Fig. 17.  Goodput vs. simulation time. 
 
5. CONCLUSIONS 
 In this paper, we proposed Selective-TCP, a new end-
to-end protocol for mixed wired/wireless networks. 
Selective-TCP distinguishes between congestion and 
wireless errors and takes corrective measures. In the case of 
wireless errors, the receiver sends SNACK to the sender 
and, thus, prevents the initiation of congestion control 
otherwise performed by TCP. When the loss is due to 
network congestion, the receiver informs the sender of the 
measured bandwidth and the sender accordingly sets the 
congestion window size. Thus, Selective-TCP stops the TCP 
AIMD algorithm from setting the congestion window lower 
than necessary. Selective-TCP is implemented as an 
extension to the TCP NewReno sender and receiver and 
requires no modifications in the intermediate routers. It 
improves the bandwidth utilization and increases goodput up 
to 45% compared to the TCP NewReno. 
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