
Selective-TCP for Wired/Wireless Networks

Rajashree Paul and Ljiljana Trajković*

Simon Fraser University
Vancouver, BC, Canada
{rpaul2, ljilja}@cs.sfu.ca

* This research was supported by the NSERC Grant 216844–03 and
 Canada Foundation for Innovation.

Keywords: Wired/wireless networks, TCP NewReno,
Selective-TCP, loss detection.

Abstract
One of the main reasons for TCP's degraded performance in
wireless networks is TCP's interpretation that packet loss is
caused by congestion. However, in wireless networks,
packet loss occurs mostly due to high bit error rate, packet
corruption, or link failure. TCP performance in
wired/wireless networks may be substantially improved if
the cause of packet loss could be distinguished and
appropriate rectifying measures taken dynamically. We
propose a new end-to-end TCP protocol named Selective-
TCP, which distinguishes between congestion and wireless
link transmission losses (high bit error rate and/or packet
corruption). When detecting packet loss, Selective-TCP
invokes correction mechanisms. It is suited for mixed
wired/wireless networks and shows increase in goodput
when compared to TCP NewReno.

1. INTRODUCTION
 The transmission control protocol (TCP) is the most
extensively used transport protocol by Internet applications
due to its robust and reliable connectivity. Wireless
communication technology has become widely popular for
access networks. These wireless access networks, such as
Wireless Local Area Networks (WLAN) and cellular
networks, are usually connected to a wired backbone
network. Although TCP is very reliable in wired networks,
its performance deteriorates in wireless environments. The
main reason for TCP’s performance degradation in wireless
networks is TCP’s inability to distinguish congestion losses
from other types of losses. In wireless links, the reasons for
packet loss are high bit error rates (BER) due to bursty
nature of wireless traffic, packet corruption, or link outage.
However, TCP treats all these errors as congestion and
initiates the congestion control mechanism. This results in
low utilization of available bandwidth, unnecessary
retransmissions, and, ultimately, low goodput and
throughput. (Throughput is defined as the number of bits
transmitted by the source host and it is presented in kbps,

while goodput is the number of bits received by the
destination host, less the duplicates.)
 In this paper, we propose Selective-TCP, an end-to-end
design that improves TCP performance in wired/wireless
networks. It distinguishes packet loss due to congestion from
packet loss due to transmission in wireless links. Selective-
TCP is an extension to TCP NewReno. We used the ns-2
network simulator to evaluate its performance.
 This paper is organized as follows. In Section 2, we
provide background material and a short review of previous
work. Selective-TCP is introduced in Section 3. Simulation
results are given in Section 4. We conclude with Section 5.

2. BACKGROUND AND RELATED WORK

2.1 Background
 Several techniques have been proposed to mitigate the
effects of non-congestion related losses on TCP’s
performance. They may be classified as: end-to-end
(TCPReno [1], NewReno [2], and SACK [3]), link layer
(Snoop-TCP [4] and TCP Packet Control [5]), and split-
connection (M-TCP [6] and I-TCP [7]) approaches.
Comparative analysis of these approaches [8] indicates that
link layer techniques are most effective in improving TCP
performance in wireless networks, while split-connection
based methods sometimes lead to poor end-to-end
throughput due to shielding of the wireless from the wired
section of the network. End-to-end schemes, although less
effective than link layer based techniques, are the most
promising because they achieve significant performance
gain without requiring expensive changes in the intermediate
nodes. We consider here end-to-end solutions that require
changes only to the sender and the receiver.
 Selective-TCP algorithm employs a loss differentiation
scheme [9] that enables a TCP receiver to distinguish
congestion losses from wireless losses based on packet inter-
arrival times at the receiver. In the case of wireless losses,
Selective-TCP uses TCP with Selective Negative
Acknowledgement (SNACK) option. SNACK is an
extension of the Space Communication Protocol Standard-
Transport Protocol (SCPS-TP) [10]. SNACK improves
performance of SCPS-TP in the case of high bit error rates

by increasing link utilization and throughput. It has been
widely used to improve TCP performance over satellite links
and is rarely used in wireless links even though satellite and
wireless links have similar characteristics: both are prone to
high BER and packet corruption and introduce long network
delays compared to wireline networks. Selective-TCP
consists of a TCP-SNACK module implemented in TCP
sink and a SNACK processing module implemented in TCP
NewReno source [11]. In the case of packet loss due to
wireless link errors, TCP sink sends acknowledgement with
SNACK option to the source. This results in better
bandwidth utilization, end-to-end throughput, and goodput.
In the case of congestion loss, receiver sends the information
about the bandwidth (measured at the receiver) to the
sender. Sender then accordingly sets its congestion window.
This restricts the TCP’s additive increase multiplicative
decrease (AIMD) algorithm from setting congestion window
lower than necessary. As a result, network goodput and
throughput are improved.

2.2 Related Work
 Previous work on improving TCP performance in
wired/wireless networks was based on distinguishing types
of packet losses.
 TCP Veno [12], a combination of TCP Vegas [13] and
TCP Reno [1], employs an end-to-end congestion control
mechanism. If a packet is lost, TCP Veno employs proactive
congestion control of TCP Vegas and, thus, distinguishes
between the congested and non-congested network states.
TCP Veno does not address the issue of burst errors and no
corrective action is taken for wireless losses.
 The differentiation between congestion and random
losses in wireless networks is achieved by measuring the
variation of round trip delay [14], [15]. If the loss is not due
to congestion, TCP congestion control is suppressed and a
modified recovery strategy is implemented. Two additional
detection schemes [16], [17] are based on controlling the
TCP AIMD algorithm. None of these schemes imposes
corrective actions in the case of wireless losses.
 SNACK-Snoop [18] combines SNACK with Snoop [4].
It uses SNACK to provide explicit wireless loss notification
between a base station and a mobile host. This is a link layer
based scheme and requires major modification at the
intermediate base station. It also introduces processing and
memory overhead of the Snoop protocol at the base station.
 TCP-Jersey [19] incorporates available bandwidth
estimation at the sender, as is the case in TCP Westwood
[20]. TCP-Jersey improves network throughput by
estimating bandwidth in the case of congestion losses. It
differentiates congestion from non-congestion losses with
the help from intermediate routers and, thus, requires
expensive changes at the routers. TCP-Jersey does not
address corrections specific to wireless losses.
 TCP-Real [21] is a receiver-oriented congestion control
mechanism. If the network is congested, the receiver
determines data sending rate and communicates that

information to the sender. TCP-Real employs two
corrective mechanisms: congestion avoidance and advanced
error detection.

3. SELECTIVE-TCP ALGORITHM

3.1 Overview of the Proposed Algorithm
 Selective-TCP algorithm is based on differentiating the
types of losses at the TCP receiver. It may be implemented
as an extension to TCP NewReno. If an out-of-sequence
packet is received at the sink, Selective-TCP distinguishes
the loss due to congestion from the loss due to wireless
transmission error. The loss differentiation technique ([9],
[22]) used in Selective-TCP is based on packet inter-arrival
times measured at the receiver. After distinguishing the type
of packet loss, one of the corrective measures is taken to
improve TCP performance.
 In the case of loss due to congestion, the bandwidth is
measured at the receiver and sent to the sender, rather than
estimating available bandwidth at the sender only [19]. The
sender then accordingly adjusts its congestion window size.
Thus, Selective-TCP prevents TCP’s AIMD scheme from
setting the sender’s congestion window size lower than
necessary. Selective-TCP helps the TCP NewReno sender to
achieve the optimum bandwidth faster, resulting in higher
bandwidth utilization.
 In the case of wireless transmission losses, receiver
sends acknowledgement with SNACK option. This helps
avoid TCP NewReno’s congestion control mechanism. As a
result, the slow start threshold and congestion window size
are not reset unnecessarily, resulting in better bandwidth
utilization.

3.2 Loss Differentiation Mechanism
 The loss differentiation technique used in Selective-
TCP is based on measuring the packet inter-arrival times at
the receiver. The heuristic technique assumes that the
wireless link is the only network bottleneck, that it is the last
hop in the connection path, and that sender performs bulk
data transfer [9]. We also assume that all packets are of
same size. The wireless link is the only bottleneck in the
network and, hence, packets accumulate at the base station.
Therefore, most packets will be sent back-to-back over the
wireless link. In the case of no packet loss, let T be the
minimum packet inter-arrival time at the receiver. If there is
no packet loss then the inter-arrival time between two
consecutive packets is ~T as shown in Fig. 1(a). If a packet
is lost in the wired link, the packet inter-arrival gap is still
~T because the packets queue at the base station before
being transmitted on the wireless link, as shown in Fig. 1(b).
However, if a packet is lost in the wireless link, the inter-
arrival gap at receiver is ~2T because the lost packet has
traveled on the wireless link for some time before being lost,
as shown in Fig. 1(c). Using this heuristic, the type of packet
loss is differentiated according to Algorithm 1.

n = number of packets lost between two packet arrivals
if (packet loss){
 if ((n+1)T ≤ packet inter-arrival time < (n+2)T)
 wireless transmission loss
 else
 congestion loss
}

Algorithm 1. Pseudo-code of the algorithm for
differentiating types of packet losses [9].

Fig. 1. Inter-arrival times between consecutive TCP packets:
(a) no packet loss, (b) packet loss in the wired link, and (c)
packet loss in the wireless link. R1 is an intermediate router
and BS is the base station for the wireless destination node
R. Solid and dashed lines represent wired and wireless link,
respectively.

3.3 Selective Negative Acknowledgement (SNACK)
 SNACK is an option of SCPS-TP [10]. It is widely used
for improving TCP performance over satellite links. By
sending SNACK, the receiver informs the sender about the
segments that it did not receive. SNACK conveys
information about multiple lost segments. This helps TCP to
continue transmission even after a packet loss without
reducing the congestion window size. SNACK information
is stored in the optional area of the TCP header. In the
presence of packet re-ordering, it is advantageous to delay
SNACK because this permits re-ordered packets to reach the
receiver. On receiving a SNACK, the TCP sender
aggressively retransmits all packets indicated as empty slots
in the receiver queue. These aggressive retransmissions
prevent retransmission time-outs and avoid link idle time,
resulting in higher bandwidth utilization [11].

3.4 Selective-TCP Module at the TCP Receiver
 If an out-of-sequence packet arrives at a TCP receiver,
Selective-TCP first distinguishes the type of packet loss. In
the case of congestion loss, Selective-TCP increments
congestion_count counter. When a threshold value k is
reached, the receiver measures the bandwidth and sends it to
the sender for setting the congestion window size, rather
than searching for the optimum congestion window size and
waiting for TCP to initiate congestion control. Bandwidth is
measured as: (no. of received packets × size of packets in
bits) ∕ (inter-arrival time between previous in-sequence

packet received and most recent in-sequence packet
received × 1,000) in kbps. To explain this further,
bandwidth of a network is defined as the data rate supported
by a network connection.
 TCP-Westwood [20] estimates the available bandwidth
at the sender side based on the interval of returning
acknowledgements:

)(1−−
=

kk

k
k

tt
db ,

where, dk is the amount of acknowledged data at time tk and
tk-1 is the time when previous acknowledgement was
received. This sample bandwidth is smoothed further by a
low-pass filtering to obtain estimated bandwidth.
 TCP-Jersey [19] adopts the same idea. It employs time-
sliding window (TSW) estimator at the sender and estimated
available bandwidth as:

RTT
tt

LRRTTR
nn

n
nn +

−
+=

−
−

)(
*

1
1 ,

where, Rn is the estimated bandwidth when the n-th
acknowledgement arrives at time tn. tn-1 is the time when
previous acknowledgement arrived. Ln is the size of data
acknowledged by the n-th acknowledgement and RTT is the
TCP’s estimation of the end-to-end RTT delay at time tn.
Since duplicate acknowledgements also account for
available bandwidth, both these bandwidth estimation
approaches [19], [20] consider duplicate ACKs in the cases
of packet loss in the network.
 Unlike TCP-Westwood and TCP-Jersey, Selective-TCP
estimates bandwidth at the receiver and, hence, it measures
the available bandwidth as the number of packets received in
a given period of time. In cases of packet loss, the available
bandwidth would be smaller since fewer packets will be
received than in the case of no packet loss. Selective-TCP
measures available bandwidth as:

,
000,1*)(

8**
1

kbps
tt

snBW
nn

pp

−−
=

where, tn is the time when most recent in-sequence packet is
received, tn-1 is the time when previous in-sequence packet
was received, np is the number of packets received within (tn
– tn-1), and sp is the size of packets in bytes.
 In the case of wireless loss, the receiver sends ACK
with SNACK option to the sender. As a consequence, the
TCP sender retransmits the missing packets indicated by
SNACK. Acknowledgments with SNACK options are sent
after a certain delay (snack_delay). As a result, the chance
of unnecessarily retransmitting a delayed or misordered
segment is limited [23]. Since the SNACK option triggers a
retransmission, there is no reliance on the Fast Retransmit
algorithm to detect the loss. This independence from the
Fast Retransmit algorithm is important because duplicate
ACKs may never be received when operating over a highly
lossy link. The pseudo-code is shown in Algorithm 2.

if (out-of-order packet received) {
 // check type of loss
 if (wireless loss) {

 if (snack_delay = 0)
 send SNACK
 else
 do nothing
 }
 else { // congestion loss
 1) set congestion_count = congestion_count + 1

2) set congestion_info = current bandwidth measured at
the TCP receiver

 if (congestion_count = k) {
 1) send congestion_info to the TCP sender
 2) reset congestion_count
 }
 else

send ACK //as in the case of TCP NewReno
receiver

 }
}
else // in-sequence packet received
 send ACK // same as TCP NewReno receiver

Algorithm 2. Pseudo-code of the Selective-TCP algorithm
at the receiver.

3.5 Selective-TCP Module at the TCP Sender
 When a SNACK is received, the TCP sender
aggressively retransmits the packet(s) indicated as lost
packet(s), without waiting for retransmission time-out to
occur. Hence, congestion control mechanism and
unnecessary retransmissions are avoided, leading to higher
bandwidth utilization. Congension_info stores the
bandwidth measured at the receiver in time, packet loss is
detected. If the congestion_info field in the TCP header has
a non-zero value, the sender sets its congestion window size
equal to congension_info*base_rtt, where base_rtt is the
initial round trip time. This prevents the TCP AIMD
algorithm from setting the congestion window size to be
unnecessarily small. Congestion_info is multiplied by
base_rtt to increase the congestion window size. The
pseudo-code is shown in Algorithm 3.

if (SNACK received) {
 1) retransmit packet(s) indicated as lost
 2) reset retransmission timer
 }
else if (congestion_info ≠ 0) {
 // set size of congestion window equal tothe bandwidth
 // measured at receiver
 1) set cwnd_ = congestion_info * base_rtt

// cwnd_ denotes congestion window size and base_rtt //is the
base round trip time measured at sender

 2) reset congestion_info
 }
else // standard ACK received
 do as TCP NewReno sender

Algorithm 3. Pseudo-code of the Selective-TCP algorithm
at the sender.

4. SIMULATION MODEL AND RESULTS
 We simulated mixed wired/wireless network with a
dumbbell topology where the source nodes are wired and
destination nodes are wireless. Wireless links are the
network bottleneck. We describe the network topology used
in simulation scenarios, the error model, and the simulation
results. We used network simulator ns-2.27 [24] to simulate
the wired/wireless network and to evaluate performance of
Selective-TCP as an extension to TCP NewReno.

4.1 Network Topology
 The network (dumbbell) topology is shown in Fig. 2.
The TCP sender is a wired node, while the TCP receiver is a
wireless node. The TCP source sends file transfer protocol
(FTP) traffic. The user datagram protocol (UDP) source
sends constant bit rate (CBR) traffic. The UDP source is a
wired node, while the UDP sink is a wireless node. The FTP
traffic and the CBR traffic share a common wired link from
router R1 to base station BS. The TCP and UDP sender
rates are 2 Mbps and 512 Kbps, respectively. Wired links
have 2 Mbps bandwidth. Bandwidth of the wired link
between R1 and BS is: (i) 2 Mbps when simulating
Selective-TCP’s performance in presence of congestion (the
sum of TCP and UDP data rates is 2.5 Mbps) and (ii) 4
Mbps when simulating the case without congestion.
Propagation delay of the wired links is 1 ms. Wireless links
have 1 Mbps bandwidth and 5 ms propagation delay. The
model used for the wireless links is WLAN.

Fig. 2. Simulated network topology: R1 is an intermediate
router. BS is the base station for the wireless destination
nodes. Solid and dashed lines represent wired and wireless
links, respectively.

4.2 The Error Model
 We simulate wireless links with burst errors [25] using a
two-state Markov model (Gilbert model), shown in Fig. 3. It
has a good (error-free) and a bad (erroneous) state. Good
state implies no packet loss, while bad state denotes 1 packet
loss.
 The model is defined by a transition probability matrix
П and the steady state error rate ε [26]:

∏ 







−

−
=

qq
pp

1
1 and

qp
p
−−

−=
2

1ε .

We assume the wireless link is in the good state at the
beginning of simulation and the transition probabilities p =
0.9913 and q = 0.8509 model the effect of burst errors. The
error rate ε = 5%. These parameters have been reported for
burst errors measured in deployed wireless networks [27].

Fig. 3. Two-state Markov model: p is the probability of
successfully transmitting a packet given that the previous
packet was successfully transmitted; 1-q is the probability of
successfully transmitting a packet given that the previous
packet was dropped.

4.3 Simulation Results
 We compare performance of Selective-TCP and TCP
NewReno in the presence and in the absence of a congested
link. In both cases, the error in the wireless link has been
introduced. For the first 100 s of simulation time, there is
only CBR (constant bit rate)/UDP traffic. After 100 s, TCP
connection starts and exists along with UDP connection. All
connections end after 300 s of simulation time.
 1) Presence of a congested link: The common wired
link has bandwidth 2 Mbps. Goodput in the presence of
congested link is shown in Fig. 4. Selective-TCP achieves
up to 45% higher goodput when compared to TCP
NewReno. Selective-TCP shows larger congestion window
size than TCP NewReno, indicating better utilization of
available bandwidth, as shown in Fig. 5.
 The slow start threshold and the average network
throughput for Selective-TCP are shown in Figs. 6 and 7,
respectively. A comparison of Selective-TCP performance
with no wireless error, 1% random error, and 5% burst error,
is shown in Fig. 8.

Fig. 4. Goodput is represented as the maximum number of
packets that reached the destination.

Fig. 5. Size of congestion window for Selective-TCP is
significantly larger than for TCP NewReno.

Fig. 6. Selective-TCP sender maintains a constant value of
slow start threshold over a longer period of time. The initial
value of the slow start threshold is equal to 20.

Fig. 7. The average throughput of Selective-TCP (161.5
kbps) is larger than the average throughput of TCP
NewReno (110.91 kbps).

Fig. 8. Goodput of Selective-TCP: maximum goodput is
achieved when no wireless error is introduced.

 2) Absence of a congested link: The bandwidth of the
common wired link is 4 Mbps. Goodput (maximum
sequence number received) vs. simulation time without
congestion in the common wired link is shown in Fig. 9.
Selective-TCP improves goodput by 45% compared to TCP
NewReno over 300 s of TCP connection time. Congestion
window size, slow start threshold, and throughput as
functions of time are shown in Figs. 10, 11, and 12,
respectively. We compare performance of Selective-TCP
and TCP NewReno in a non-congested network. Similar to
the case of congested network, Selective-TCP performs
better than NewReno for non-congested network. If no error
is introduced in wireless link, Selective-TCP achieves ~1.5
times the goodput in the case of 5% burst error, as shown in
Fig. 13.

Fig. 9. Selective-TCP shows significant increase in
goodput.

Fig. 10. The size of congestion window for Selective-TCP
remains larger than for TCP NewReno.

Fig. 11. Slow start threshold of Selective-TCP remains
constant over a longer period of time.

Fig. 12. Average throughput of Selective-TCP (169.15
kbps) and of TCP NewReno (115.65 kbps).

Fig. 13. Effect of wireless errors: goodput of Selective-TCP
in the absence of congested link.

4.4 Comparison of Selective-TCP to Other TCP Variants
 We also compare Selective-TCP and TCP NewReno
with TCP Reno [1], TCP SACK [3], TCP Westwood [20],
and TCP Packet Control algorithm [5].
 1) Presence of congested link: Selective-TCP achieves
larger congestion window compared to other TCP variants,
as shown in Fig. 14. TCP SACK and TCP Westwood show
smaller bandwidth utilization.

Fig. 14. Size of congestion window vs. simulation time:
congestion window size is the largest for Selective-TCP,
compared to other TCP variants.

 TCP Packet Control algorithm achieves the highest
goodput, followed by Selective-TCP, TCP Reno, and
NewReno, as shown in Fig 15. However, performance of
TCP Westwood and TCP SACK deteriorates significantly
due to poor bandwidth utilization. TCP Packet Control
algorithm, being the only link layer based algorithm,
achieves the highest goodput in a mixed wired/wireless
network with 5% burst error in the wireless links.

Fig. 15. Goodput vs. simulation time: network performance
deteriorates for TCP SACK and TCP Westwood.

 2) Absence of congested link: The congestion window
sizes are shown in Fig. 16. Selective-TCP again has the
largest congestion window because it measures the available
bandwidth at the time of packet loss and accordingly sets
congestion window size. TCP Westwood employs
bandwidth estimation to set congestion window size, which
should be larger compared to TCP Reno, NewReno, SACK,
and TCP Packet Control algorithm (none employs
bandwidth measurement/estimation). However, congestion
window for TCP Westwood is similar to other TCP variants.

Fig. 16. Congestion window size for 300 s of simulation
time.

 Fig. 17 shows the goodput of TCP Reno, NewReno,
SACK, Westwood, Selective-TCP, and TCP Packet Control
algorithm for 300 s of simulation time. Selective-TCP
performs best, followed by TCP Westwood because both
algorithms employ bandwidth measurement/estimation. TCP
Reno, NewReno, and SACK perform comparably. TCP
Packet Control algorithm, unlike in the case of congestion,
achieves lower goodput. Selective-TCP performs well in
cases of both congested and non-congested links.

Fig. 17. Goodput vs. simulation time.

5. CONCLUSIONS
 In this paper, we proposed Selective-TCP, a new end-
to-end protocol for mixed wired/wireless networks.
Selective-TCP distinguishes between congestion and
wireless errors and takes corrective measures. In the case of
wireless errors, the receiver sends SNACK to the sender
and, thus, prevents the initiation of congestion control
otherwise performed by TCP. When the loss is due to
network congestion, the receiver informs the sender of the
measured bandwidth and the sender accordingly sets the
congestion window size. Thus, Selective-TCP stops the TCP
AIMD algorithm from setting the congestion window lower
than necessary. Selective-TCP is implemented as an
extension to the TCP NewReno sender and receiver and
requires no modifications in the intermediate routers. It
improves the bandwidth utilization and increases goodput up
to 45% compared to the TCP NewReno.

REFERENCES
[1] M. Allman, V. Paxson, and W. Stevens, “TCP congestion

control” IETF RFC 2581, Apr. 1999.
[2] S. Floyd and T. Henderson, “The NewReno modification to

TCP’s fast recovery algorithm,” IETF RFC 2582, Apr. 1999.
[3] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP

selective acknowledgement options,” IETF RFC 2018, Apr.
1996.

[4] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz,
“Improving TCP/IP performance over wireless networks,” in
Proc. ACM Int. Conf. on Mobile Computing and Networking,
Berkeley, CA, Nov. 1995, pp. 2–11.

[5] W. G. Zeng and Lj. Trajković, “TCP packet control for
wireless networks,” in Proc. IEEE WiMob, Montreal, Canada,
Aug. 2005, pp. 196–203.

[6] K. Brown and S. Singh, “M-TCP: TCP for mobile cellular
networks,” ACM Computer Commun. Review, vol. 27, no. 5,
pp. 19–43, Oct. 1997.

[7] A. Bakre and B. R. Badrinath, “I-TCP: indirect TCP for
mobile hosts,” in Proc. 15th ICDCS, Vancouver, Canada,
May 1995, pp. 136–143.

[8] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H.
Katz, “A comparison of mechanisms for improving TCP

performance over wireless links,” ACM Computer Commun.
Review, vol. 26, no. 4, pp. 256–269, Aug. 1996.

[9] S. Biaz and N. H. Vaidya, “Discriminating congestion losses
from wireless losses using inter-arrival times at the receiver,”
in Proc. IEEE Symposium on ASSET, Richardson, TX, Mar.
1999, pp. 10–17.

[10] Consultative Committee for Space Data Systems, Space
Communications Protocol Specification—Transport Protocol
(SCPS-TP), Blue Book, issue 1, May 1999.

[11] D. Anantharaman, “Performance analysis of SNACK in
satellite networks through simulation,” M.S. Thesis, Lamar
University, Lamar, TX, 2004.

[12] C. P. Fu and S. C. Liew, “TCP Veno: TCP enhancement for
transmission over wireless access networks,” IEEE J. Select.
Areas Commun., vol. 21, no. 2, pp. 216–228, Feb. 2003.

[13] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP
Vegas: new techniques for congestion detection and
avoidance,” in Proc. SIGCOMM, London, UK, Oct. 1994, pp.
24–35.

[14] N. K. G. Samaraweera, “Non-congestion packet loss detection
for TCP error recovery using wireless links,” IEE Proc.
Commun., vol. 146, no. 4, pp. 222–230, Aug. 1999.

[15] D. Barman and I. Matta, “Effectiveness of loss labeling in
improving TCP performance in wired/wireless networks,” in
Proc. 10th IEEE ICNP, Boston, MA, Nov. 2002, pp. 2–11.

[16] C. Parsa and J. J. Garcia-Luna-Aceves, “Differentiating
congestion vs. random loss: a method for improving TCP
performance over wireless links,” in Proc. IEEE WCN,
Chicago, IL, Sept. 2000, vol. 1, pp. 90–93.

[17] T. Kim, S. Lu, and V. Bharghavan, “Improving congestion
control performance through loss differentiation,” in Proc.
ICCCN, Boston, MA, Oct. 1999, pp. 412–418.

[18] F. Sun, V. O. K. Li, and S. C. Liew, “Design of SNACK
mechanism for wireless TCP with new snoop,” in Proc. IEEE
WCNC, Atlanta, GA, Mar. 2004, vol. 2, pp. 1051–1056.

[19] K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for wireless IP
communications,” IEEE J. Select. Areas Commun., vol. 22,
no. 4, pp. 747–756, May 2004.

[20] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R.
Wang, “TCP Westwood: end-to-end congestion control for
wired/wireless networks,” Wireless Networks, vol. 8, no. 5,
pp. 467–479, Sept. 2002.

[21] V. Tsaoussidis and C. Zhang, “TCP-Real: receiver-oriented
congestion control,” ACM Computer Networks, vol. 40, no. 4,
pp. 477–497, Nov. 2002.

[22] S. Cen, P. C. Cosman, and G. M. Voelker, “End-to-end
differentiation of congestion and wireless losses,” IEEE/ACM
Trans. Networking, vol. 11, no. 5, pp. 703–717, Oct. 2003.

[23] R. C. Durst, G. J. Miller, and E. J. Travis, “TCP extensions
for space communications,” in Proc. MOBICOM, Rye, NY,
Nov. 1996, pp. 15–26.

[24] ns-2 [Online]. Available: http://www.isi.edu/nsnam/ns.
[25] A. Gurtov and S. Floyd, “Modeling wireless links for

transport protocols,” ACM Computer Commun. Review, vol.
34, no. 2, pp. 85–96, Apr. 2004.

[26] J. McDougall and S. Miller, “Sensitivity of wireless network
simulations to a two-state Markov model channel
approximation,” in Proc. GLOBECOM, San Francisco, CA,
Dec. 2003, pp. 697–701.

[27] A. Konrad, B. Y. Zhao, A. D. Joseph, and R. Ludwig, “A
Markov-based channel model algorithm for wireless
networks,” Wireless Networks, vol. 9, no. 3, pp. 189–199,
May 2003.

