LAB ASSIGNMENT 1

For Lab Assignment 1, you are required to download the zip file posted from the course lab web
page and solve all of the problems given. Your assignment is due at 11:59:59pm on Monday,
September 28t. (Note; that this assignment has been updated from its initial posting and you need
to re-download both the folder and the description to be able to complete all of the problems listed
herein). Not all of the problems are of equal difficulty; hence they will be weighted differently when
they are marked. The different problems are divided into separate subfolders (probl through
prob6) and their “solution code” needs to be put in the same folder as the “problem” code. Your
completion of this Lab Assignment will be evaluated in the lab and electronically. To ensure that
your code can be properly evaluated electronically, please make sure you follow the exact
instructions on the web page for code submission. Also, be sure that you do not change the
name of the file folder or its directory structure.

Finally: For each problem (excluding Problem 1) be sure to try numerous test cases to verify
your code (not just the ones we give you here). Sharing your test cases with each other via
Piazza is a good way to have a larger pool of test conditions to try.

Problem 1: Use the sizeof() function to determine the size of the following predefined types as well
as the size of the custom datatypes described in CustomTypes.cpp found inside the prob1 folder.

1) short, 2) int, 3) long, 4) float, 5) double, 6) uint8_t, 7) uintl6_t, 8) char, 9) void, 10) short*,
11) int*, 12) long*, 13) float*, 14) double*, 15) uint8_t*, 16) uintl6_t*, 17) char*, 18) void*

I've numbered each of these types (the custom types are numbered in their comments). From your
main function, use the following format to print out the results to the monitor:

» short=7??bytes [Command line 1]
int = ?? bytes [Command line 2]
long = ?? bytes [Command line 3]
float = ?? bytes [Command line 4]

vV V V V

Problem 2: The code inside the prob2 folder implements a ‘quick sort’ algorithm, but there are
multiple bugs in it. Use commenting to localize each bug by commenting out different parts of the
code one by one and to try to debug it. You will also need to write code to get the input values to be
sorted from a file called “input.txt” that is located in the folder prob2. NOTE: Do NOT hard code the
variable used to indicate the number of values to be sorted (i.e. how many are stored in the file) as
this may change. Instead, you may create a “constant” variable named “max_length” and set it equal
to 200 (as this will be the maximum number of inputs we give you) for error checking.

Problem 3: Write member functions for the Class Complex (found inside the prob4 folder) to
define (overload) the basic arithmetic operations
° 1 l’l_l"*l’l/"'!=l,l==l’l>"l<l

* print_magnitude, and calculate_magnitude

* Be sure you test them well (don’t forget the corner cases).

Problem 4: This question has three Parts. The code is found inside folder prob4.

PART 1. For the class ETriangle (Equilateral Triangle), add the calculation to
initialize the height member variable for the constructor and mutator functions. Add
a Member function to the called get_surface_area()

PART 2: Create a new derived class called TriangularPrism that includes an
additional member variable, “length.” Write a constructor to initialize the
TriangularPrism's private member variable, "length"”, as well as its inherited
member variables, "side_length" and "height" Write the member function
get_volume() and write a member function to overload get_surface_area().

PART 3: Create a new derived class called "SquarePyramid" and write member
functions to overload get_volume() and get_surface_area() . Write a constructor to
initialize the SquarePyramid's private member variable "elevation" (from the base
of the pyramid to the apex), which can be used to initialize the inherited private
member variables, “side_length” and “height”. Write a SquarePyramid constructor
that takes the triangle's side length as input and uses it to initialize all the object's
member variables.

You should use the version of main provided here to test and verify these classes and for in-lab
marking only. Your electronic submission will require you to use a different “main” function. You
should rewrite the main function to ask the user to do the following:

>Enter side length of equilateral triangle:

>Enter length of triangle prism:

Our auto-checker will then expect the following output. The output should be written in 8 lines.
Only print the Numbers and NOTHING ELSE:

= Firstline :- Contains the height of the ETriangle

= Second Line:- Contains the perimeter of the ETriangle

= Third Line :- Contains the "surface" area (i.e. Area) of the ETriangle
= Fourth Line :- Contains the surface area of the ETriangle Prism

= Fifth Line :- Contains the volume of the ETriangle Prism

= Sixth Line :- Contains the surface area of the Square Pyramid

= Seventh Line :- Contains the volume of the Square Pyramid

= Eighth Line:- Contains the elevation of the Square Pyramid

Problem 5: Using the code given inside of the prob5 folder to create a class that initializes an array
and allows the user to search for values AND REMOVE them from the array. To complete this code
you need to:
1) In the main function, read the numbers from the file "input.txt" and insert the elements into
the array. The terminating "character” for the data in the array is -1.
Write a member function that returns the number of array members that have valid data.
Write a search function - the function should look for a number the user gives and if it exists
- DELETE it from the array. NOTE: This will require adjusting the positions of the remaining
values in the array accordingly so that data is still stored contiguously and terminated with

2)
3)

a-1.

4) To obtain the values you need to search for, you need to read them from file “search.txt”.
(as found in this folder).

Hints:

* The search function would benefit from helper functions to make your code more readable
(they should be private member functions).

* A'value" may appear more than once in the array in *ANY* position.

* Avalue may not appear in your array at all.

* The input.txt and search.txt files are only samples of the versions we will use to test your
code. Be sure to create your own for more thorough testing (and consider sharing them
with your fellow class mates to have a bigger search pool as mentioned previously).

Problem 6: Using the CoordinatePairs class code provided in the directory prob6, read in values
from “input.txt” to initialize the array and sort the array of objects using the quick sort algorithm
learned in part 2. I've provided a pseudocode template for your main function to show how you
should read in and write out the data.

I've also provided all of the member functions for the class you require to adapt the quick sort
algorithm to use these objects. However, you may choose to add your own public or private
member functions if you think it will make your code cleaner and more elegant. Note: This is an
implementation choice that will be based partially on the way you think, but also on how
comfortable you are with C/C++. The only requirement is that if you change the class (i.e.
add/change member functions), the class must still be an Abstract Data Type (ADT) after you are
done. Therefore, you CANNOT remove any public member functions (do you understand why?).

You will be sorting the objects in the array based on increasing Manhattan Distance between the
coordinate pairs. The Manhattan Distance between two coordinate pairs, (a,b) and (c,d), is defined
as the sum of the absolute distances between the points in both planes. In other words, the
Manhattan Distance = |a-c| + |b-d]|.

Hints:
* UsetheI/O code from prob2/prob5 to get yourself started.

* When adapting your sorting algorithm, your trying to swap the type int for CoordinatePairs,
but pay attention to the comparison points as you are comparing the Manhattan Distance.

