Software Design and Analysis for
Engineers

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc251

=@/ Simon Fraser University Slide Set: 10

=7 Date: November 2, 2015

What we're learning in this Slide Set:

 Test Results

 Templates

ENSC 251: Lecture Set 10

Textbook Chapters:

Relevant to this slide set:
 Chapter 17
 Reminderfrom Chapter 8.3

Coming soon:
 Chapter 18
* Discrete Math

ENSC 251: Lecture Set 10

36
33
30
27
24
21
18
15
12

O W O

Last Year's Test Results

IIIIL

0 1to 11to 21to 311to 41to 51to

10

20

30

40 50 o1

ENSC 251: Lecture Set 9

62to 71to 81to 91to 101
100 to 112

4

This Year's Test Results

Gol
00l

o
N

ENSC 251: Lecture Set 9

Grade Distribution (Percentage)
u | I I ‘ ‘ ‘
o
O

35
30
25
20
15
10

S)

0

What this means:
« 36% of the class received <55% (less than 53.5/97)

* In other words 88 people got an F or a D compared to
last year’s 105 (out of 160)

Max Grade: 97%
Min Grade: 16.5%
Average: 60.5%

Overall the class did much
better, so I'm really happy

NOTE: This test was not hard and the final exam will be

harder.
ENSC 251: Lecture Set 9

Translating your grade into a letter grade:

A+: 93-100% (3 people)
A: 85-93% (8 people)
A-: 80-84% (8 people)
B+: 75-79% (26 people)
B: 70-74% (31 people)
B-: 65-69% (21 people)
C+. 060-64% (27 people)
C: 95-59% (34 people)
D: 50-54% (27 people) [11% of the class]
F: <50 (61 people) [25% of the class]

ENSC 251: Lecture Set 9

Midterm

Mutator functions change the value of class member fields.
C is NOT a declarative programming language (imperative)
Unions can be hierarchical.

Structures CAN be hierarchical

Structures can have both member functions and member
variables in C++.

ENSC 251: Lecture Set 10 8

Midterm

The unnamed namespace and global namespace are NOT
accessible from anywhere.

It is NOT impossible to write an imperative styled program
using C++.

A derived class is also known as a child class.

The comparison operator is NOT automatically defined for
user defined types.

A member function can return a value that is a class type.
ENSC 251: Lecture Set 10 9

Midterm

Private member variables DO exist in derived classes.
Destructors should NOT be private member functions.
Int is an Abstract Data Type.

Class member functions CAN use recursive calls.

By default, the assignment operator is overloaded in a user-
defined types.

ENSC 251: Lecture Set 10 10

Midterm
Stacks are LIFO Data Structures.

Queues are NOT LIFO Data Structures. (FIFO)

The only advantage of implementing ADTs using separate .cpp
files from an application (i.e. separate compilation of ADTs) is
NOT the reduced compilation time for updates to application
code.

The unnamed and global namespace are both unnamed.

ENSC 251: Lecture Set 10 11

Midterm

Arity is the number of parameters in a function call.

Overloaded functions do not need to have parameters of
different types.

Friend functions have access to a class’ private data members.

ENSC 251: Lecture Set 10 12

Midterm

Objects have two aspects: State and Behaviour

A class is the data type; the object is the instantiation of that
type:

myClass my _object; //my_object is an instantiated object of
//myClass type with a default constructor

ENSC 251: Lecture Set 10 13

Midterm

Similarities between data types and abstract data types:
Both can be types for program defined objects/variables.

Differences between data types and abstract data types:

Abstract data types must provide a defined interface (including
comments); users are not allowed to “see”/manipulate private
member fields; the implementation of how the data is stored is
hidden.

ENSC 251: Lecture Set 10 14

Midterm

Constructors must:
1) Have the same name as the class.

2) Not return a value
3) Be a public member function.

3 characteristics of object oriented programming:

1) Encapsulation= Provides information hiding & abstraction
(e.g. classes-> public versus private members)

2) Inheritance= Code should be reusable/extendable
(e.g. allowed to derive classes)

3) Polymorphism= A single name may have multiple meanings
(e.g. overloading functions **virtual functions®xz)

Midterm

Similarities between public and private member functions:
Both functions are able to manipulate private data fields

Differences between public and private member functions:

Only public functions can be accessed outside of the class;
private functions can only be accessed by other class member
functions.

TERL RN

Similarities between “.” and “::”:

Both are used to define the scope of a function/data member
field.

ENSC 251: Lecture Set 10 16

Midterm

“ TR

Differences between “.” and “::":
.77 Is used as part of a function definition to define locality;

whereas “.” is used to access/execute a member field function
(different order of priority (:: before .).

Example: my struct.data = 10;

//my_struct is a struct with member field data that is assigned
/110

Example: myclass::myclass(void)
//A declaration for the default constructor of myclass.

ENSC 251: Lecture Set 10 17

Midterm

Similarities between Copy Constructors and Default
Constructors:

Both are used to create and initialize objects of a class type.

Differences between Copy Constructors and Default
Constructors:

Default constructors have no parameters, whereas copy
constructors must have a parameter that is of the same type
as the class itself.

ENSC 251: Lecture Set 10 18

Midterm

Pointers are always the same size as pointers ARE addresses
and address sizes are independent of variable/object memory

requirements.

Default constructors are created by you OR the compiler. The
compiler will automatically create a default constructor as long
as the user does not define a constructor.

Default constructors are needed to create an object with no
initialization parameters. For example:

my_midterm my_test; //Instantiates a my_midterm object

//called my _test.
ENSC 251: Lecture Set 10 19

Midterm

You need to be able to explicitly make constructor calls to
create dynamic memory.

Array Pro: Fast singular access of any value at any index

Array Con: Difficult/Impossible to remove data from list (need
additional memory to represent “invalid” data locations for *all*
array members).

Linked List Pro: Able to dynamically shrink/grow list for exact
data requirements; Can easily insert data at any location as a
singular operation

Linked List Con: Requires more memory than an array of the
same size: memory to store data *and* memory to provide

connectivity ENSC 251: Lecture Set 10 20

Midterm

You need a copy constructor when an object has member
fields with dynamically allocated memory AND the object will
be passed by value as part of function calls (e.g. overloaded
assignment operator).

The reason you need a copy constructor is for any behaviour
of data storage the compiler cannot know about — for example,
when dynamic memory is allocated with in the object. So when
you create a copy of an object, by default what you are
copying are the member fields of the object (i.e. the addresses
and not what the pointers point to- or a shallow copy).

ENSC 251: Lecture Set 10 21

Midterm

Example: Any example that shows what goes wrong without a
copy constructor and how using a custom copy constructor
solves the problem.

For example, say you are only copying the pointers to
dynamically allocated memory as in a default assignment
operator a=b. WWhen you manipulate the contents of object a
(i.e. what the pointers point to), it will also manipulate the
contents of object b (because they point to the same content).

Furthermore, if you destroy a, then b will be left with dangling
pointers.

ENSC 251: Lecture Set 10 22

Midterm

You harden the separation of the interface and implementation
by putting them in separate files (the interface in a .h file and
the implementation in a .cpp file).

The interface comprises:
- The public member functions of the class, and

- The comments that tell the user how to use the public
member functions.

ENSC 251: Lecture Set 10 23

Midterm

struct fractions

{
public:
char fixedpoint; [/[How many bytes = 1
float exp fraction; [/[How many bytes = 4
double long_exp fraction; //How many bytes = 8
I3

Total memory needed for variables of type fraction: 16

Reason: An additional 3 bytes is needed after the char field to
ensure memory alignment of the exp_fraction and
long_exp_fraction data fields.

ENSC 251: Lecture Set 10 24

Midterm

struct fractions

{
public:
char fixedpoint; [/[How many bytes = 1
float exp fraction; [/[How many bytes = 4
double long_exp fraction; //How many bytes = 8
I3

If | didn’t include the “public” label inside of the structure
definition, the member variables would still be public as all
member fields in a struct are public by default.

ENSC 251: Lecture Set 10 25

Midterm

The problem with the code is the while loop:

while (locate !=array[current_index])//Search the entire array until you find
//the value locate.

current_index++;

This code could attempt to access memory outside of the array
as the exit case is wrong.

To fix it:

while ((locate !=array[current_index]) && (current_index <
MAX_ARRAY_SIZE))

//Search the entire array until you find the value locate or reach the end of

/[the array (MAX_ARRAY_SIZE-Q.
ENSC 251: Lecture Set 10 26

Midterm

Criteria 1: No possiblity for infinite recursion (NOT A LOOP)

Sol'n: Decrement n (by 1 and two respectively) for each
success recursive call.

Criteria 2: There are stopping/base cases that will calculate the
correct values.

Sol’n: F(0) = 0; F(1) = 1

Criteria 3: The results of the recursive calls are correct
meaning/proving that the overall (general) case is correct.

Sol’'n: Our recursive case should calculate:
F(n)=F(n-1) + F(n-2)

ENSC 251: Lecture Set 10 27

Midterm

int Fibonacci (int n)

{
if (n <0) [[Error case- anything less than 0 is illegal
exit(1);
elseif(n<2) //Base case: return F(0)=0and F(1) =1
return 7; /[This is an error; should be: return n;
else /[This is a recursive call...
return Fibonacci(n-1) + Fibonacci(n-2);
}

ENSC 251: Lecture Set 10 28

Midterm

You might chose to use an iterative solution instead of a
recursive solution because:

1) The recursive solution will be much slower. It will generally
have to make numerous recursive calls, which will be much
slower than running a single loop iteratively. Furthermore,
most Fibonacci values will require more recursive function
calls than loop iterations.

2) If the max Fibonacci value that may be calculated is
extremely high (or unknown), you may run out of memory
and crash the program as each successive function call will
store a new stack frame on the stack and it may not be big

enough.
ENSC 251: Lecture Set 10 29

Midterm

int Fibonacci (int n)

{

inti,f n,f n_1,f n_2;// Counter, f(n), f(n-1), f(n-2)

if (n <0) //Error case- anything less than O is illegal
exit(1);

else if (n < 2) //Base case: return F(0) = 0and F(1) =1
return 17; /[This is an error; should be: return n;

else /[This is the iterative case replacing recursion

{
for(f n 2=0,fn1=1,i=2ji<=n;f n2=fn 1,fn 1=1fn)

fn=fn2+fn1;

return f_n;

}

} ENSC 251: Lecture Set 10 30

And now, templates....

ENSC 251: Lecture Set 10

31

Templates

Some functions are extremely generic and we want to be

able to use them for multiple types. For example, this swap
function:

void swap_values(int& variablel, 7nt& variable2)

{
int temp;
temp = variablel,;
variablel = variable?2;
variable2 = temp;

}

It is useful for swapping integers, but ...

ENSC 251: Lecture Set 10 32

Templates

It is equally useful for swapping characters:

void swap_values(char& variablel, char& variable2)

{
char temp;
temp = variablel;
variablel = variable2;
variable2 = temp;

¥

Note that the only thing to change in these two pieces of
code is the types being swapped.

ENSC 251: Lecture Set 10

33

Templates

As such, even though we can write these overloaded
functions for the different types, what really want is
something that can be generically applied to any type:

void swap_values(Type Of The Variables& variablel,
Type Of The Variables& variable2)

{
Type_Of_The_Variables temp;
temp = variablel;
variablel = variable2;
variable2 = temp;

}

Let's remind ourselves of the template class vector (from
Section 8.3)

ENSC 251: Lecture Set 10 34

Vectors

Vectors are basically arrays that can grow and shrink in
size (unlike actual arrays).

They do this by allocating a “capacity” amount of memory,
but only letting you access a “size” amount of memory.

* Once you want to store more data than the capacity

allows, the vector is allocated more memory to increase
its capacity.

Let’'s see what this looks like.

ENSC 251: Lecture Set 10 35

Vectors

You declare a variable v for a vector with the base type int
using: vector<int> v;

The <Base_Type> notation with the vector allows you to
substitute the type for the vector (similar to arrays)

You can use any type (including class types).

Vectors are indexed starting at ‘O’ (same as arrays).

ENSC 251: Lecture Set 10 36

Vectors

You can use the square brackets notation to read or
change any previously initialized element in a vector.

* You cannot use it to initialize an element.

vii] = 42;
cout << "The answer 1is

<< v[1];

You cannot use the above statement to initialize Vv[i].

However, once it has been initialized, you can use square
bracket notation.

ENSC 251: Lecture Set 10 37

Vectors

To add an element to an index position of a vector for the
first time, you normally use the member function

push_back
vector<double> sample;

sample.push_back(0.0);

sample.push_back(1l.1);

sample.push_back(2.2);

This adds elements to a vector in order of positions, where
the position is dictated by the next available position that is
currently unused.

In C++11 you can also initialize a vector similar to an array:

vector <double> sample = {0.0, 1.1, 2.2};

ENSC 251: Lecture Set 10 38

Vectors

The vector template also has a size member function that
can be used to determine how many elements are in a
vector.

Assuming the declaration here
vector <double> sample = {0.0, 1.1, 2.2},

sample.size() returns 3.

ENSC 251: Lecture Set 10

39

Vectors

You can use this to output all the elements stored in the
array. for (int i = 0; 1 < sample.size(); i++)
cout << sample[1] << endl;

Note: sample.size() returns an unsigned int.

« So the compiler will need to use a coercion function to
convert it to an int in the above example and

— You may see a warning (which you can get rid of by type casting
or declaring ‘i’ as an unsigned int)

for (unsigned int 1 = 0; 1 < sample.size(); 1++)
cout << sample[i] << endl;

Let's see an example...

ENSC 251: Lecture Set 10 40

Source code

#include <iostream>
#include <vector>
using namespace std;

int main()

{

vector<int> v;
cout << "Enter a list of positive numbers.\n"

<< "Place a negative number at the end.\n";

int next;
cin >> next;
while (next > 0)

{
v.push_back(next);
cout << next << " added. ";
cout << "v.size() = " <<v.size() <<endl;
cin >> next;
}

cout << "You entered:\n";

for (unsigned int i = 0; 1 <v.size(); i++)
cout << v[i] << " ";

cout << endl;

return 0;

41

Sample output

Enter a lTist of positive numbers.

Place a negative number at the end.
-1
V.

2 46 8

2 added.
4 added.
6 added.
8 added.

Vl
V.
VI

size()
size()
size()
size()

You entered:

2 468

|
A W N R

ENSC 251: Lecture Set 10

42

Vectors

There is a vector constructor that takes one integer
argument and initializes the number of positions specified
In the argument

vector<int> v(10);

This initializes the first ten elements to zero for vector ‘v’

* In general, when you use the constructor with an integer
argument, the vectors values are initialized to the “zero”
of that type.

 If the base type is a class, the default constructor is used
for initialization.

« Toinitialize the 11" position in the vector, you would use
push_back.

ENSC 251: Lecture Set 10 43

Vectors

The vector definition is given in the library vector in the std
namespace:

#include <vector>
using namespace std;

Note: if you try to use square brackets to set a value for Vi,

where | >= v.size() (i.e. v[i] = n;), you may not get an
error message, but your program won't work properly

ENSC 251: Lecture Set 10 44

Summary Vectors

Vectors are used very much like arrays are used, but a vector does not
have a fixed size. If it needs more capacity to store another element, its
capacity is automatically increased. Vectors are defined in the library
<vector>, which places them in the std namespace. Thus, a file that uses
vectors would include the following (or something similar):

#include <vector>
using namespace std;

The vector class for a given Base_Type is written vector <Base_Type>.
Two sample vector declarations are

vector<int> v; //default constructor
//producing an empty vector.
vector<AClass> record(20); //vector constructor
//for AClass to initialize 20
elements.

Elements are added to a vector using the member function push_back, as
illustrated below:

v.push_back(42);

Once an element position has received its first element, either with
push_back or with a constructor initialization, that element position can
then be accessed using square bracket notation, just like an array element.

Other Vector Notes

The assignment operator does an element-by-element
assignment to the vector on the LHS of the assignment
operator

It will increase capacity if needed and reset the size of
the vector on the LHS of the assignment operator.

* Therefore, if the provided (overloaded) assignment
operator of the base type makes an independent copy of
the element of the base type, then the assignment
operator will make an independent copy.

* Therefore, the assignment operator on a vector is only
as good (or bad) as that of the base type.

HINT: Another reason you need copy constructors.

ENSC 251: Lecture Set 10 46

Other Vector Notes

Remember vectors have both size and capacity:
Size and Capacity

The size of a vector is the number of elements in the vector. The capacity
of a vector is the number of elements for which it currently has memory

allocated. For a vector v, the size and capacity can be recovered with the
member functionsv.size() and v.capacity().

As long as the size remains less than the capacity, than the
efficiency of the vector data structure is similar to an array.

However, once you increase the size beyond that of the
capacity, there is significant overhead.

ENSC 251: Lecture Set 10 47

Other Vector Notes

From a programming perspective, you can basically ignore
the capacity issue as the increase in capacity will happen
automatically if need be.

* It will only impact your efficiency.

You can use the reserve member function to explicitly
Increase a vector's size

v.reserve(32); sets the capacity to at least 32 elements

* You can only use reserve to increase the capacity of a
vector; it does not necessarily decrease the capacity of a
vector if the argument is smaller than the current
capacity

ENSC 251: Lecture Set 10 48

Other Vector Notes

You can resize a vector as well

v.resize(24) ; resizes a vector to 24 elements:

* [f the original vector size was less than 24 elements,
then the new elements are initialized using the default

constructor

— Similar to the vector initialization with the integer argument.

* [If the original vector size is greater than 24, all but the
first 24 elements are lost.

ENSC 251: Lecture Set 10

49

Now that we've reminded of ourselves of using a template
type (vectors), let's get back to how we use template

functions.
Recall our swap values function.

ENSC 251: Lecture Set 10

50

//Program to demonstrate a function template.
#include <iostream>
using namespace std;

//Interchanges the values of variablel and variablel.

template<class T> , _ Here's sample code for the
void swap_values(T& variablel, T& variable2) .
{ template function
T temp; swap_values
temp = variablel; The function lets you swap
variablel = variable2; the values of any two
variable2 = temp; .
} variables of any type

int main(C)
{
int integerl = 1, 1integer2 = 2;
cout << "Original 1integer values are
<< integerl << " " << 1integer2 <<endl;
swap_values(integerl, integer2);
cout << "Swapped integer values are
<< integerl << " " << 1integer2 <<endl;

char symboll = 'A', symbol2 = 'B';

cout << "Original character values are
<< symboll << " " << symbol12 <<endl;

swap_values(symboll, symbol2);

cout << "Swapped character values are
<< symboll << " " << symbol2 <<endl;

"

return 0;
} 51

//Program to demonstrate a function template.
#include <iostream>
using namespace std;

//Interchanges the values of variablel and variablel.
template<class T>
void swap_values(T& variablel, T& variable2)

{
T temp;

temp = variablel;
variablel = variable?2;
variable2 = temp;

}

int main(C)
{
int integerl = 1, 1integer2 = 2;
cout << "Original 1integer values are
<< integerl << " " << 1integer2 <<endl;
swap_values(integerl, integer2);
cout << "Swapped integer values are
<< integerl << " " << 1integer2 <<endl;

char symboll = 'A', symbol2 = 'B';

cout << "Original character values are
<< symboll << " " << symbol2 <<endl;

swap_values(symboll, symbol2);

cout << "Swapped character values are
<< symboll << " " << symbol12 <<endl;

"

return 0;

The definition and function
declaration begin with:

template<class T>

This is called the template
prefix and tells the compiler
that the definition that follows
Is a template and that T is a
type parameter.

In this context the word class
actually means type.

* You can use the keyword
typename instead of
class in the template
prefix, but most people
use class.

52

//Program to demonstrate a function template.
#include <iostream>
using namespace std;

//Interchanges the values of variablel and variablel.
template<class T>
void swap_values(T& variablel, T& variable2)

{
T temp;

temp = variablel;
variablel = variable?2;
variable2 = temp;

}

int main(C)
{
int integerl = 1, 1integer2 = 2;
cout << "Original 1integer values are
<< integerl << " " << 1integer2 <<endl;
swap_values(integerl, integer2);
cout << "Swapped integer values are
<< integerl << " " << 1integer2 <<endl;

char symboll = 'A', symbol2 = 'B';

cout << "Original character values are
<< symboll << " " << symbol2 <<endl;

swap_values(symboll, symbol2);

cout << "Swapped character values are
<< symboll << " " << symbol12 <<endl;

return 0;

The template function can be
used with any type
(predefined, user-defined,
class/not class)

Within the body of the
function definition, the type T
Is used like any other type.

The function template
definition acts as a definition
for a collection of functions,
where each one is generated
by replacing the type T with
a different type.

This example shows integer
and char examples

53

//Program to demonstrate a function template.
#include <iostream>
using namespace std;

//Interchanges the values of variablel and variablel.
template<class T>
void swap_values(T& variablel, T& variable2)

{
T temp;

temp = variablel;
variablel = variable?2;
variable2 = temp;

}

int main(C)
{
int integerl = 1, 1integer2 = 2;
cout << "Original 1integer values are
<< integerl << " " << 1integer2 <<endl;
swap_values(integerl, integer2);
cout << "Swapped integer values are
<< integerl << " " << 1integer2 <<endl;

char symboll = 'A', symbol2 = 'B';

cout << "Original character values are
<< symboll << " " << symbol2 <<endl;

swap_values(symboll, symbol2);

cout << "Swapped character values are
<< symboll << " " << symbol12 <<endl;

return 0;

The compiler does not
literally produce definitions
for every possible type for
the function name

swap_ values.

Instead it will produce
definitions for each of the
different types that use the
template.

* |n this example, it uses
the template to produce
function definitions for the
types int and char

Note you don’t need to do
anything special when you
call a function that is defined
with a function template.

54

//Program to demonstrate a function template.
#include <iostream>
using namespace std;

//Interchanges the values of variablel and variablel.
template<class T>
void swap_values(T& variablel, T& variable2)

{
T temp;

temp = variablel;
variablel = variable?2;
variable2 = temp;

}

int main(C)
{
int integerl = 1, 1integer2 = 2;
cout << "Original 1integer values are
<< integerl << " " << 1integer2 <<endl;
swap_values(integerl, integer2);
cout << "Swapped integer values are
<< integerl << " " << 1integer2 <<endl;

char symboll = 'A', symbol2 = 'B';

cout << "Original character values are
<< symboll << " " << symbol2 <<endl;

swap_values(symboll, symbol2);

cout << "Swapped character values are
<< symboll << " " << symbol12 <<endl;

return 0;

Note that the function
template definition is located
before the main part of the
program.

« Also, there is no template
function declaration.

This is because of varied
compiler support.

Some compilers do not
support template function
declarations and do not
support separate compilation
of template functions.

* Therefore your safest
strategy is to not use
template function

declarations.
55

//Program to demonstrate a function template.

#include <iostream>
using namespace std;

//Interchanges the values of variablel and variablel.

template<class T>
void swap_values(T& variablel, T& variable2)

{

}

T temp;

temp = variablel;
variablel = variable?2;
variable2 = temp;

int main()

{

int integerl = 1, 1integer2 = 2;

cout << "Original 1integer values are
<< integerl << " " << 1integer2 <<endl;

swap_values(integerl, integer2);

cout << "Swapped integer values are
<< integerl << " " << 1integer2 <<endl;

char symboll = 'A', symbol2 = 'B';

cout << "Original character values are
<< symboll << " " << symbol2 <<endl;

swap_values(symboll, symbol2);

cout << "Swapped character values are
<< symboll << " " << symbol12 <<endl;

return 0;

As such, you need to ensure
the function template
definition appears in the
same file before itis used

« Alternatively, the function
template definition can
appearvia a #include
directive.

— This means you can
give the function
template definitionin
one file and then
#include thatfile in
the file that uses the
template function.

For more details check out
your compiler’s details

56

//Interchanges the values of variablel and variableZ2.
template<class T>

void swap_values(T& variablel, T& variable2)
{ In the example template, we

T temp; use the letter T as the

parameter for the type.
temp = variablel;

varialt::lel = variable2; This traditional, but not
variableZ = temp; required (like using e for the
exception parameter).

template<class VariableType>

void swap_values(VariableType& variablel, J
VariableType& variable2) Here's an example of an

{ alternative that is equivalent
VariableType temp; to the above definition.
temp = variablel;

variablel = variable2;
variable2 = temp;

S7

It is possible for function templates to have more than one type of

parameter as shown here:
template<class T1l, class T2>

Generally, though a function template only uses one type of parameter.

NOTE: You cannot have an unused template parameter- each parameter
must be used in your template function somewhere.

Also, since you don’t want to use template function declarations (so that

your code is portable and usable with different compilers), generally your
function template definition will “appear” in the main file where you use it
via an #include directive.

* Note you can include both header (.h) and implementation (.cpp) files.

58

Algorithm Abstraction

As we saw in our discussion of the swap_vaTlues function, there is a very
general algorithm for interchanging the value of two variables, and

this more general algorithm applies to variables of any type. Using a
function template, we were able to express this more general algorithm
in C++. This is a very simple example of algorithm abstraction. When we
say we are using algorithm abstraction, we mean that we are expressing
our algorithms in a very general way so that we can ignore incidental
detail and concentrate on the substantive part of the algorithm.

Function templates are one feature of C++ that supports algorithm
abstraction.

59

In CMPT 128 (from Chapter 7), you would have looked at a simple sorting
algorithm to sort an array of values of type int. Here's the original code:

void sort(int a[], 7nt number_used)

{
int index_of_next_smallest;
for (int index = 0; index < number_used - 1; index++)
{//Place the correct value in al[index]:
index_of_next_smallest =
index_of _smallest(a, index, number_used):
swap_values(a[index], a[index_of_next_smallest]);
//al0] <= a[l] <=...<= al[index] are the smallest of
//the original array elements. The rest of the
//elements are in the remaining positions.
}
}

However, the base type of the array (int) isn’t really used in the algorithm
and this could be applied more generically to other types (e.g. doubles,
floats, chars, ...)

60

To make a generic function, what portions of the code would we need to
fix:

void sort(int a[], 7nt number_used)

{
int index_of_next_smallest;
for (int index = 0; index < number_used - 1; index++)
{//Place the correct value in a[index]:
index_of_next_smallest =
index_of_smallest(a, index, number_used);
swap_values(a[index], a[index_of_next_smallest]);
//a[0] <= a[l] <=...<= a[index] are the smallest of
//the original array elements. The rest of the
//elements are in the remaining positions.
}
}

The helper functions (index_of smallest() and swap_values). What
else???

We already looked at swap_values(); let's look at index_of_smallest()61

Can we make this function generic and independent of its base type?

int index_of_smallest(const int a[], int start_index,

{

int number_used)

int min = a[start_index];

int index_of_min = start_index;

for (int index = start_index + 1;
index < number_used; index++)

{
11 (alindex] < min)
{
min = a[index];
index_of_min = index;
//min is the smallest of a[start_index] through
//al[index]
}
}

return index_of_min;

If yes, what do we need to change to make this work for doubles?

62

Since these functions work basically “as is” by simply swapping types from
int to double, can we extend them to user defined types?

Yes, but what do we need to worry about:
-definition (overloading) the less than operator (‘<)

**Also possibly the definition of the assignment operator and a copy
constructor.

The next slides look at the definition of the generic sorting function and an
example of its use.

63

sortfunc.cpp:

template<class T>
void swap_values(T& variablel, T& variable2)
<The rest of the definition of swap_values is given 1in Display 17.1.>

template<class BaseType>
int index_of_smallest(const BaseType a[], int start_index, int number_used)
{

BaseType min = a[start_index];

int index_of_min = start_index;

for (int index = start_index + 1; index < number_used; index++)
11 (a[index] < min)

{

min = al[index];

Index_of_min = index;

//min is the smallest of a[start_index] through a[index]
}

return index_of_min;

}

template<class BaseType>
void sort(BaseType al[], int number_used)

{
int index_of_next_smallest;
for (int index = 0; index < number_used - 1; index++)
{//Place the correct value in al[index]:
index_of_next_smallest =
index_of_smallest(a, index, number_used);
swap_values(a[index], a[index_of_next_smallest]);
//al[0] <= a[l] <=...<= a[index] are the smallest of the original array
//elements. The rest of the elements are in the remaining positions.

Remember some compilers don’t support template function
declarations.

Since you have included the “sortfunc.cpp” file, the declaration is not
needed.

 The comment just makes your code more readable

//Demonstrates a generic sorting function.
#include <iostream>
using namespace std;

//The file sortfunc.cpp defines the following function:
//template<class BaseType>

//void sort(BaseType a[], int number_used); -
//Precondition: number_used <= declared size of the array a.

//The array elements a[0] through a[number_used - 1] have values.
//Postcondition: The values of a[0] through a[number_used - 1] have
//been rearranged so that a[0] <= a[l] <= ... <= a[number_used - 1].

\
\
|

#include "sortfunc.cpp” Many compilers will allow this function
declaration to appear as a function
declaration and not merely as a
comment. However, including the function
declaration is not needed, since the
definition of the function is in the file
sortfunc. cpp, and so the definition
effectively appears beforemain.

65

main

(Part A):

int main()

{

int 1;
int a[10] = {9, 8, 7, 6, 5, 1, 2, 3, 0, 4};
cout << "Unsorted integers:\n";
for (i =0; 1 < 10; i++)
cout << a[i] << " ";
cout << endl;
sort(a, 10);
cout << "In sorted order the integers are:\n";
for (i =0; 1 < 10; i++)

cout << a[i] << ;
cout << endl;

double b[5] = {5.5, 4.4, 1.1, 3.3, 2.2};
cout << "Unsorted doubles:\n";
for (1 =0; 1 < 5; i++)
cout << b[i1] << " ";
cout << endl;
sort(b, 5);
cout << "In sorted order the doubles are:\n";
for (1 =0; 1 < 5; 1++)

cout << b[1] << ;
cout << endl;

Char' C[7] = {lGl’ |El, lNl’ IEI’ lRl, lIl, lcl};
cout << "Unsorted characters:\n";
for (1 =0; 1 < 7; 1++)

cout << c[1] << :
cout << endl;

66

main

(Part A):

Example

Output:

sort(c, 7);
cout << "In sorted order the characters are:\n";
for (i =0; 1 < 7; i++)
cout << c[i1] << " ";
cout << endl;
return 0;

Unsorted 1integers:
9876512304

In sorted order the 1integers are:
01234567389

Unsorted doubles:

5.5 4.4 1.1 3.3 2.2

In sorted order the doubles are:
1.1 2.2 3.3 4.4 5.5

Unsorted characters:
GENERTIC

In sorted order the characters are:
CEEGINR

67

So how do you design a function template?

1. Start by designing the function for a base type (e.g. int) and then
debugging it so that you are sure it works for the base case.

2. Next step, replace the base type with the type parameters and try it for
a couple of different types.

— If it still works then you probably have the generic version properly
defined.

Basically, it is easier to think of the concrete case first to develop the
algorithm and then worry about the template syntax rules later.

68

Warning: you can use a template function with any type for which the code
in the function definition makes sense.

In other words all the code in the template must behave in the appropriate
way when you use it with a specific type.

For example, you cannot use the swap_values template function with a

type parameter for which the assignment operator does not work at
all/correctly,

In other words, the following will not work:

int a[10], b[10];
<some code to fill arrays>
swap_values(a, b);

Why? Because the assignment operator does not work on array types.

69

//Class for a pair of values of type T:
template<class T>
class Pair

{
public:
Pair(Q);
Pair(T first_value, T second_value);
void set_element(int position, T value);
//Precondition: position is 1 or 2.
//Postcondition:
//The position indicated has been set to value.
T get_element(int position) const;
//Precondition: position is 1 or 2.
//Returns the value in the position indicated.
private:
T first;
T second;
};

You can also use templates to
create class definitions that
are more general.

Note the similarities with
function templates (both start
with: tempilate<ciass T>)

For example, if you
Instantiate objects values
where T is set to int, then you
have pairs of integers.

You declare objects of
template classes using:

Pair<int> score;
Pair<char> seats;

70

You use objects based on
template classes as you

would any other object.
//Class for a pair of values of type T: y J

template<class T> For example, given:
class Pair
iub?ic: Pajr<int> score;
Pair(): Pair<char> seats;
Pair(T first_value, T second_value);
. . . You can:
void set_element(int position, T value);
//Precondition: position is 1 or 2. score.set_element(1l, 3);
//Postcondition: score.set_element(2, 0);
//The position indicated has been set to value.
T get_element(int position) const;
//Precondition: position is 1 or 2. What about member function
//Returns the value in the position indicated. definitions?
private:
T first;
T second;
s

71

//Uses iostream and cstdlib:
template<class T>
void Pair<T>::set_element(int position, T value)

{

}

_I'

f (position == 1)
first = value;

else 1 (position == 2)

second = value;

else

{

cout << "Error: Illegal pair position.\n";
exit(l);

template<class T>
Pair<T>::Pair(T first_value, T second_value)

{
}

: first(first_value), second(second_value)

//Body intentionally empty.

Member functions for a class
template are defined in the same
way as member functions for
ordinary classes.

 The only difference is that the
member functions are
themselves templates.

Note that the class name before
the scope resolution operator is
Pair<T>, notsimply Pair.

72

You can also use a class template as the type for a function parameter as
shown here:

int add_up(const Pair<int>& the_pair);
//Returns the sum of the two integers in the_pair.

However, the function declaration and definition should use this template
type.

You can even use a class template within a function template.

« For example, instead of using the specialized version of add up above,
you can create the generic version shown here and apply it to all kinds
of numbers:

template<class T>

T add_up(const Pair<T>& the_pair);

//Precondition: The operator + is defined for values of type T.
//Returns the sum of the two values in the_pair.

73

Type Definitions

You can specialize a class template by giving a type argument to the class
name, as in the following example:

Pair<int>

The specialized class name, like Pair<int>, can then be used just like any
class name. It can be used to declare objects or to specify the type of a
formal parameter.

You can define a new class type name that has the same meaning as a
specialized class template name, such as Pair<int>. The syntax for such a
defined class type name is as follows:

typedef Class_Name<Type_Argument> New_Type_Name;
For example:
typedef Pair<int> PairOfInt;

The type name Pair0OfInt can then be used to declare objects of type
Pair<int>, as in the following example:

PairOfInt pairl, pair2;

The type name Pair0OfInt can also be used to specify the type of a
formal parameter.

74

The following slides contain the interface for a class template whose
objects are lists and then the implementation of the class template.

Notes:

« Since the definition is a class template, the lists can be lists of items of
any type.

— You can create objects that are lists of ints, doubles, chars, user-
defined types etc.

 We have overloaded the insertion operator (“<<%) so that it can be used
to output an object of the class template GenericList.

— In order to have a parameter that is of the same type as the class,
the parameter type is GenericList<ltemType> (i.e. the class type).

— It is a friend function and has been defined in the header file
(common when using friend functions or operators within a
template). This makes it easy for the compiler to find the definition
and usable by any objects declared outside of the class

75

Header file: Interface

//This 1is the header file genericlist.h. This is the interface for the
//class GenericlList. Objects of type GenericList can be a list of items
//of any type for which the operators << and = are defined.

//A11 the items on any one Tist must be of the same type. A Tist that
//can hold up to max items all of type Type_Name is declared as follows:
//GenericList<Type_Name> the_object(max);

#ifndef GENERICLIST_H

#define GENERICLIST_H

#include <iostream>

using namespace std;

namespace listsavitch
{
template<class ItemType>
class GenericlList
{
public:
GenericList(int max);
//Initializes the object to an empty list that can hold up to
//max items of type ItemType.
~GenericList();

//Returns all the dynamic memory used by the object to the freestore.

int length() const;
//Returns the number of items on the Tlist.

void add(ItemType new_item);
//Precondition: The Tist is not full.
//Postcondition: The new_item has been added to the list.

76

Header file: Interface Continued (NOTICE ALL THE COMMENTS)

bool full() const;
//Returns true if the Tist is full.

void erase();
//Removes all items from the Tist so that the Tlist is empty.

friend ostream& operator <<(ostream& outs,
const GenericList<ItemType>& the_list)

{
for (int i = 0; 1 < the_list.current_length; i++)
outs << the_list.item[i] << endl;
return outs;
}

//0Overloads the << operator so it can be used to output the
//contents of the 1list. The items are output one per Tine.
//Precondition: If outs is a file output stream, then outs has
//already been connected to a file.
//
//Note the implementation of the overloaded << in the header
//file! This is commonly done with overloaded friend templates.
//Since << is a friend it is NOT a member of the class but
//rather in the namespace, this is the simplest implementation
//and may make more sense than putting it in genericlist.cpp.
private:
ItemType *item; //pointer to the dynamic array that holds the Tist.
int max_length; //max number of items allowed on the Tist.
int current_length; //number of items currently on the Tist.
};
}//1istsavitch
#endif //GENERICLIST_H

Implementation file: GenericList

//This is the implementation file: genericlist.cpp

//This is the implementation of the class template named GenericlList.

//The 1interface for the class template GenericList is in the

//header file genericlist.h.

#ifndef GENERICLIST_CPP

#define GENERICLIST_CPP

#include <iostream>

#include <cstdlib>

#include "genericlist.h" //This is not needed when used as we are using this file,
//but the #ifndef in genericlist.h makes it safe.

using namespace std,

namespace listsavitch

{
//Uses cstdlib:
template<class ItemType>
GenericList<ItemType>::GenericList(int max) : max_length(max),
current_length(0)
{

item = new ItemType[max];

}

template<class ItemType>
GenericList<ItemType>::~GenericList()

{
}

delete [] item;

78

Implementation file: GenericList Continued

template<class ItemType>
int GenericlList<ItemType>::length() const
{

return (current_length);

}

//Uses iostream and cstdlib:
template<class ItemType>
void GenericList<ItemType>::add(ItemType new_1item)

{
if C fullC))

{
cout << "Error: adding to a full Tist.\n";
exit(1l);

}

else

{
item[current_length] = new_item;
current_length = current_length + 1;

}

}

template<class ItemType>
bool GenericList<ItemType>::full() const

{

return (current_length == max_length);

}

79

Implementation file: GenericList Continued

template<class ItemType>
void GenericList<ItemType>::erase()
{
current_length = 0;
}
}//1istsavitch
#endif // GENERICLIST_CPP Notice that we have enclosed all the template
// definitions in #ifndef. . . #endif.

80

The following is a demonstration program that uses the
GenericList class template in an example application program.

It is a simple example used only to illustrate the syntax details.

Since we included genericlist.cpp, only the main program needs to
be compiled.

//Program to demonstrate use of the class template GenericlList.
#include <iostream>
#include "genericlist.h"
#include "genericlist.cpp"
using namespace std;

using namespace listsavitch;

Since genericlist.cpp isincluded,
you need compile only this one file (the
one with themain).

int main()

{
GenericList<int> first_list(2);
first_list.add(1);
first_list.add(2);

cout << "first_list = \n"

<< first_T1ist;
GenericlList<char> second_11ist(10);
second_Tlist.add('A");
second_list.add('B");
second_Tlist.add('C");
cout << "second_list = \n"

<< second_1l1ist;
return 0Q;

81

The following is the program’s output:

first_list =
1

2

second_list =
A

B

C

82

Review Questions for Slide Set 10

What do templates allow you to do?

How should you go about designing a template function?
Recall the vector class: what is the difference between “size”
and capacity?

How does a vector differ from an array?

How do you initialize a vector?

When can you use square brackets to manipulate a vector
Can you create vectors of User defined class types?

What is the starting index of a vector?

Can you initialize a vector using Vv[i] = 42;

When are base type constructors called in vector
initializations?

ENSC 251: Lecture Set 9 83

Review Questions for Slide Set 10

If you try to access VJi], for values of i >= v.size, will you get
an error message? Will your program work properly?

How does the assignment operator work for a vector?

Could using a vector for a user defined class mean you will
need copy constructors? If yes, why?

What happens if you want to set the size larger than the
capacity of the vector?

How efficient are vectors at runtime”? What are the costs?
What is the purpose/impact of using the reserve function?

What is the purpose/potential impact of using the resize
function?

What is the template prefix?

ENSC 251: Lecture Set 9

84

Review Questions for Slide Set 10

Can template functions be used with any type?

What is the purpose of the function template definition?
How does a compiler treat a template function definition?
Why not use a template function declaration”?

Can you include .cpp files? Why is this useful?

If a function template definition needs to appear in the same
file before it is used, can it still be defined in a separate file? If
yes, how do you work around this?

Can function templates have more than one type of
parameter? If yes, are there any restrictions?

What is algorithm abstraction? Why is it useful?

ENSC 251: Lecture Set 9 85

Review Questions for Slide Set 10

When making generic template functions from pre-existing
could, what do you need to be aware of (what might you need
to fix)?

When can you not use a function template with a specific type
parameter? Give an example using the swap_values function
template we talked about.

Can you use templates with class definitions? What is
required?

If you have a class template, what happens to the member
functions?

If you want to use a class template as a type for a function
parameter, what do you need to do?

ENSC 251: Lecture Set 9 86

Review Questions for Slide Set 10

Can you use a class template with a function template?

Can class templates and function templates use dynamic
memory? If a class template has dynamic memory, what do

you need to worry about?

If you include a .cpp file in your main executable, does it need
to be compiled separately? Why/why not?

ENSC 251: Lecture Set 9 87

