Software Design and Analysis for
Engineers

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc251

=@/ Simon Fraser University Slide Set: 11

=7 Date: November 4, 2015

What we're learning in this Slide Set:

« Standard Template Library

ENSC 251: Lecture Set 11

Textbook Chapters:

Relevant to this slide set:
 Chapter 18

Coming soon:

 Discrete Math:
— Set Theory Intro

— Properties of Integers (Mathematical Induction)

— Relations and Functions

ENSC 251: Lecture Set 11

Standard Template Library (STL))

There is a large collection of standard data structures.

C++ has standard portable implementations for them:

« The Standard Template Library

The library includes implementations of stacks, queues,
linked lists, etc.

ENSC 251: Lecture Set 11

Standard Template Library (STL)

STL data structures are usually called container classes

* (Recall the vector template class we have already
described)

We’'ll review some of the other container classes in the
library (but not all of them).

The STL was originally a research project at Hewlett-
Packard (by Alexander Stepanov, Meng Lee, and David
Musser)

ENSC 251: Lecture Set 11

Standard Template Library (STL)

The STL is not part of the core C++ language.

 ltis part of the C++ standard, so any implementation of
C++ that conforms to the standard include the STL

— S0 you can basically assume that you can use it with any C++
compiler

ENSC 251: Lecture Set 11

STL
Each of the classes in the STL are template classes.

« Atypical container class has a type parameter for the type
of data it stores in the container class.

* They make use of iterators (we talked about those earlier)

The STL also includes generic implementations of many
important algorithms (e.g. searching and sorting) as template
functions

The main difference from other C++ libraries is that the classes
and algorithms are generic and can be used with any type.

ENSC 251: Lecture Set 11 7

lterators

lterators are a generalization of pointers.
* Firstwe'll look at how to use iterators with vectors.
* Next, we'll look at other container template classes.

* They will use iterators in the same way.

ENSC 251: Lecture Set 11

The using directive and iterators

You often see the following:

using std::vector<int>::1terator;

In this case, the identifier iterator names a type. Within the
scope of this using directive

iterator p;

Declares ‘p’ to be of type iterator. The type iterator is
defined in the definition of the class vector<int>

ENSC 251: Lecture Set 11

Recall the using directive

Remember: if my function() is defined in the namespace
my_space

using my_space: :my_function;

This allows you to use the versions of the identifier
my_function defined in namespace.

Within the scope of this using declaration
my function(1,2) isthe same as my_space::my_function(l,2);

It will not see the version of my_function found in any other
namespace.

ENSC 251: Lecture Set 11 10

The using directive and iterators

Why does this matter?

using std::vector<int>::1terator;

As of now the class vector int is defined only in the
namespace std (but you cannot know what will happen in
the future).

Also, remember, with templates, you have to define a type
within a class (as we talked about in the last slide set).

using std::vector<int>::iterator;

So within the scope of this using directive, the identifier
“iterator” means the type named iterator that is defined in
the class vector<int>, defined in the std namespace.

ENSC 251: Lecture Set 11 1

lterator basics

An iterator is
* A generalization pointer
« Typically implemented with a pointer

 However, the abstraction hides the details of the
implementation from you and provides a common
interface across container classes

Each container class has its own iterator types

* Like each data type has its own pointer type

 Itis only used within its own container class

ENSC 251: Lecture Set 11 12

lterator basics

Although an iterator is like a pointer if you use it like a
pointer, you will have problems.

Similar to a pointer variable, an iterator variable “points to”
one data entry in the container.

Not all iterators have the same operators

ENSC 251: Lecture Set 11 13

lterator basics

You typically manipulate iterators using:
* Pre & post-fix increment operators (++) [next item]
* Pre & post-fix decrement operators (--) [previous item]

* Equal & unequal operators (== or =) [do two iterators
point to the same data location]

* Dereferencing operator (*) [if p is the iterator, *p gives
access to the data “pointed to”
by p- can be read-only/write-
only/or read-write]

The vector class has all of these iterator operators and
more.

ENSC 251: Lecture Set 11 14

lterator basics

A container class has member functions that initialize the
iterator variables as a new iterator variable that is not
located at (“pointing to”) any data in the container.

The vector template class (along with many other container
classes) have the following member functions that return

iterator objects that point to special data elements in the
data structure:

« c.begin() — returns an iterator for container c that points
to the first data itemin c

« c.end() returns a value that can be used to test when an
iterator has passed beyond the last data item in the

container (analogous to NULL, this iterators is located at
no data item at all)
ENSC 251: Lecture Set 11 15

lterator basics

You can use these basics to implement for loops:

/[p is an iterator variable of the type for the container object c.
for (p = c.begin(Q); p !'= c.end(); p++)
process *p //*p is the current data 1item.

But what about complete programs?

Let’s look at an example

ENSC 251: Lecture Set 11

16

An Example with Iterators Used with a Vector

//Program to demonstrate STL iterators.
#include <iostream>

#include <vector>

using std::cout;

using std::endl;

using std::vector;

int main()

{

vector<int> container;

for (int 1 = 1; 1 <= 4; i++)
container.push_back(i);

cout << "Here 1is what is in the container:\n";

vector<int>::iterator p;

for (p = container.begin(); p != container.end(); p++)
cout << *p << " "y

cout <<endl;

cout << "Setting entries to 0:\n";

for (p = container.begin(); p != container.end(); p++)
*p = 0;

cout << "Container now contains:\n";

for (p = container.begin(); p != container.end(); p++)
cout << *p << " "

cout << endl;

return 0;

17

Example output:

Here 1is what is in the container:
1234

Setting entries to O:

Container now contains:

0000

As shown using the cout statements, cout << *p << " ;

the dereferencing operator (*) aIIows you to output what the
iterator points to

* |n other words, the contents of that location in the vector.

* Note in some situations, *p, provides read-only access.

ENSC 251: Lecture Set 11 18

Example output:

Look at the following code snippet:

vector<int>::iterator p;
for (p = v.begin(); p != v.end(); p++)
Action_At_Location p;

If v is a vector, then vector<int>::iterator p = v.beginQ;
p points to v[O].

For the exit condition, p == v.endO will only be true when p
has advanced past the last element in the vector

* Hint: think of /0’ in a string.

Note both of the following statements declare the same
iterator:

vector<int>::1terator p = v.begin(Q);

auto p = v.begin();

ENSC 251: Lecture Set 11 19

Another Example with bidirectional and random access lterators

//Program to demonstrate bidirectional and random access iterators.
#include <iostream>

#include <vector>
using std::cout;
using std::endl;
using std::vector;

int main(Q)

{

vector<char> container;
container.push_back('A");
container.push_back('B');
container.push_back('C");
container.push_back('D'): Three different notations
for the same thing.

for (int 1 =0; 1 < 4; i++)

cout << "container[" << i << "] ="

This notation is specialized
<< container[i] << endl;

to vectors and arrays.
vector<char>::iterator p = container.begin();
cout << "The third entry is " << container[2] << endl;
cout << "The third entry is " << p[2] << endl; <« These two work for
cout << "The third entry is " << *(p + 2) << endl; <«—— anyrandom access
iterator.

ENSC 251: Lecture Set 11 20

Another Example with bidirectional and random access lterators

cout << "Back to container[0].\n";

p = container.begin();

cout << "which has value << *p << endl;
cout << "Two steps forward and one step back:\n";
p++;
cout << *p << endl;
p++;
cout << *p << endl;
p--; =
cout << *p << endl;
return 0;

This is the decrement operator. It
works for any bidirectional iterator.

}

container[0] ==
container[l] ==
container[2] ==
container[3] == D

The third entry is C

The third entry is C

The third entry is C

Back to container[0].

which has value A

Two steps forward and one step back:
B

C

B 21

N W >

Random Access and relative iterators:

Look at the following code snippet:

vector<char>::iterator p = container.begin();

cout << "The third entry is " << container[2] << endl;
cout << "The third entry is " << p[2] << endl;

cout << "The third entry 1is << *(p + 2) << endl;

Random access means you can directly access/go to any
particular element.

All three of these notations will access the same element.

Note that neither p[2] nor (p+2) in the above statements
changes the value of the iterator variable p.

* Also note that these are relative positions.

— p[2] only equals container[2] of p is currently pointing to
container[0]

— What would the output have been if p had pointed to container[1]
before the cout statements occurred (i.e. a p++ was inserted?)

ENSC 251: Lecture Set 11 22

Kinds of iterators:

Categories of iterators:
 Forward iterators: ++ works on the iterator
 Bidirectional iterators: both ++ and -- work on the iterator

« Random access iterators: ++, --, and random access all
work on the iterator.

Note that these are the kinds of iterators nottypes. The
actual type would be something like:

std::vector<int>::1terator

These three categories of iterators can each be subdivided
iInto constant and mutable iterators (depending on how the
dereferencing operator behaves with the iterator)

ENSC 251: Lecture Set 11 23

Constant/Mutable iterators:

Constant iterator:

« The dereferencing operator produces a read-only
version of the element.

* You can use *p to assign it to a variable or output to the
screen, but you cannot change the element in the
container by assigning a new value to *p.

Mutable iterator:

* *p can be assigned a value and it will change the
corresponding element in the container

* Vector iterators are mutable as seen in our previous
examples

ENSC 251: Lecture Set 11 24

Constant iterators:

If a container only has constant iterators, you cannot obtain
a mutable iterator.

If a container has mutable iterators, you can obtain a
constant iterator using the following:

std: :vector<char>::const_iterator p = container.begin();

or
using std::vector<char>::const_iterator;

const_iterator p = container.begin();

If you declared p this way, *p = ‘z'; would produce an
error message

Note const_iterator is a type name while constant iterator is
the name of a kind of iterator.

What would happen to our previous examples if p were a
constant iterator? ENSC 251: Lecture Set 11 25

Would this work with a constant iterator?

//Program to demonstrate STL iterators.
#include <iostream>

#include <vector>

using std::cout;

using std::endl;

using std::vector;

int main(Q)

{

vector<int> container;

for (int 1 = 1; 1 <= 4; 1++)
container.push_back(i);

cout << "Here is what is in the container:\n";

vector<int>::iterator p;

for (p = container.begin(); p != container.end(); p++)

cout << *p << ;
cout <<endl;
cout << "Setting entries to 0:\n";

for (p = container.begin(); p != container.end(); p++)
*p = 0;

cout << "Container now contains:\n";
for (p = container.begin(); p != container.end(); p++)

cout << *p << ;
cout << endl;
return 0;

26

Would this work with a constant iterator?

//Program to demonstrate bidirectional and random access iterators.
#include <iostream>

#include <vector>
using std::cout;
using std::endl;
using std::vector;

int main(Q)

{

vector<char> container;

container.push_back('A")

container.push_back('B');

container.push_back('C");

container.push_back('D"): Three different notations
for the same thing.

for (Cint i = 0; 1 < 4; i++)
cout << "container[" << 1 << "] == "
<< container[i] << endl;
vector<char>::iterator p = container.begin();
cout << "The third entry is " << container[2] << endl;

This notation is specialized
to vectors and arrays.

cout << "The third entry is " << p[2] << endl; <« These two work for
cout << "The third entry is " << *(p + 2) << endl; < anyrandom access
iterator.

ENSC 251: Lecture Set 11 27

Would this work with a constant iterator?

cout << "Back to container[0].\n";

p = container.begin();

cout << "which has value << *p << endl;
cout << "Two steps forward and one step back:\n";
p++;
cout << *p << endl;
p++;
cout << *p << endl;
p--; =
cout << *p << endl;
return 0;

This is the decrement operator. It
works for any bidirectional iterator.

ENSC 251: Lecture Set 11

28

Reverse iterators:

If you want to cycle backwards through a containers data,
what is the problem with this code?

vector<int>::iterator p;
for (p = container.end(); p != container.begin(); p--)
cout << *p << " ";

It will compile, but...

Instead, if the container has bidirectional iterators, you
want to use a reverse iterator as shown here:

vector<int>::reverse_iterator rp;
for (rp = container.rbegin(); rp != container.rend(); rp++)
cout << *rp << " ",

Rbegin() returns an iterator located at the last element.

Rend() returns a sentinel that marks the “end” of the elements in
reverse order
ENSC 251: Lecture Set 11 29

Reverse iterators:

For a reverse Iiterator:
« ++ moves the iterator backward through the elements
« --moves the iterator forward through the elements

* In other words, their meanings are interchanged.

Look at the following example.

ENSC 251: Lecture Set 11

30

Reverse lterator

//Program to demonstrate a reverse iterator.
#include <iostream>

#include <vector>

using std::cout;

using std::endl;

using std::vector;

int main(Q)

{

vector<char> container;

container.push_back('A");
container.push_back('B');
container.push_back('C")
cout << "Forward:\n";

vector<char>::iterator p;

for (p = container.begin(); p != container.end(); p++)

cout << *p << ;
cout << endl;

cout << "Reverse:\n";
vector<char>::reverse_iterator rp;

for (rp = container.rbegin(); rp != container.rend(); rp++)

cout << *rp << ;
cout << endl;

return 0;

ENSC 251: Lecture Set 11 31

Reverse Iterator (Output)

Forward:
A B C
Reverse:
CBA

There is also a constant version of the reverse iterator
type called const reverse iterator

ENSC 251: Lecture Set 11 32

Final Notes on lterators

There are other kinds of iterators that you will learn about as
you gain experience.

The only other two | will mention are:

« There is an input iterator that is basically a forward
iterator that can be used with input streams.

* There is an outputiterator that is basically a forward
iterator that can be used with output streams.

ENSC 251: Lecture Set 11 33

Containers

Container classes are different data structures for holding
data:

* e.g. lists, queues, stacks

Each is a template class with a parameter for the particular
type of data to be stored.

* e.g. you can create a list of ints or strings, or structs, or
user defined types.

Each container template class may have its own specialized
accessor and mutator functions for adding/removing data

* They may also have different kinds of iterators

— However, the iterator operator and member functions begin()/end()
have the same meaning for all STL container classes.

ENSC 251: Lecture Set 11 34

Sequential Containers (Recall Linked Lists)

slist: asingly linked list. 11st: adoubly linked list.
++ defined —- not defined Both ++and -- defined
. .
begin() begin()

NG 1 T 1

: |

2 2

' T

3 3
end() end()

Sequential containers arrange their data items into a list with a first,
second, etc. element up to a last element.
ENSC 251: Lecture Set 11 35

Sequential Containers (Recall Linked Lists)

slist: asingly linked list. 11st: adoubly linked list.
++ defined -- not defined Both ++and -- defined
. .
begin() begin()

NG 1 T 1

Y np i T

2 2

' T

3 3
end() end()

Previously, we discussed singly linked lists (as shown on the left) and
doubly linked lists (as shown on the right).
ENSC 251: Lecture Set 11 36

Sequential Containers (Recall Linked Lists)

s1ist: asingly linked list. 11 st: adoubly linked list.
++ defined —=- not defined Both ++ and -- defined
. .
begin() begin()

NG 1 T 1

y
2 2
A
' |
3 3
end() end()

The STL has no container corresponding to singly linked lists**, but they
do have the doubly linked list (template class list)

**Some implementations have slist. 37

Sequential Containers (Recall Linked Lists)

- "] I]] ' - I] I]] |
A ~trralks il o A li~+ . Aiibhs linboA lict
S-l 1St : asingly linked list. 1 1Sst: a aouply IInKea list.
Aofirno A —— 1t Ao %11 oA L‘\ ~+ | A A - Aofirno A
++ Aaertirea rnov aectiriead DOTIN ++ alli aertirea
begin() begin()

NG 1 T 1

Y
2 2
A
Y
3 3
end() end()

These figures show how the list template class (and “slist”) might be
implemented, however, as STL template classes you don’t know for sure.

ENSC 251: Lecture Set 11 38

Sequential Containers (Recall Linked Lists)

slist: asingly linked list. 11 st: adoubly linked list.
++ defined —- not defined Both ++and -- defined
begin() begin()
l A
Y |
2 2
A
|
3 3
end() end()

Our next example uses the list class. Note push_back adds an element to
the end of the list and dereferencing lets you read and write the data.
ENSC 251: Lecture Set 11 39

Using the list Template Class

//Program to demonstrate the STL template class list.
#include <iostream>

#include <list>

using std::cout;

using std::endl;

using std::1ist;

int main(Q)
{

Tist<int> Tist_object;

for (int i = 1; i <= 3; i++)
Tist_object.push_back(i);

cout << "List contains:\n";

Tist<int>::iterator 1iter;

for (iter = Tist_object.begin(); iter != list_object.end(); iter++)
cout << *iter << " ";

cout << endl;

cout << "Setting all entries to 0:\n";

for (iter = list_object.begin(); iter != list_object.end(); iter++)
*iter = 0;

cout << "List now contains:\n";

for (iter = list_object.begin(); iter != Tlist_object.end(); iter++)
cout << *iter << " ";
cout << endl;

return 0;

Using the list Template Class (Output)

List contains:
123
Setting all entries to O:

List now contains:
000

ENSC 251: Lecture Set 11

41

Comparing the list and vector template classes

Note that this example compiles and runs exactly the same
as if we had used vectors instead of a linked list.

It also has many of the same member functions.
This uniformity of usage is a key part of the STL syntax.

One of the main differences between the vector and list
container classes:

 vector supports random access iterators while the
(linked) list has only bidirectional iterators

* This would break our second example as we would get a
compiler error for all of our random access statements

— For example recall references suchas p[2]

ENSC 251: Lecture Set 11 42

Summary of the basic sequential container template

classes in STL

Template
Class Name

Iterator Type Names

Kind of Iterators

Library Header
File

slist

Warning:
slist is not
part of the
STL.

list

vector

deque

slist<T>::iterator

slist<T>::const_iterator

list<T>::iterator
list<T>::const_iterator
list<T>::reverse_iterator
list<T>::const_reverse_iterator

vector<T>::
vector<T>:
vector<T>::
vector<T>:

deque<T>::
deque<T>:
deque<T>::

deque<T>:

iterator

:const_iterator

reverse_iterator

:const_reverse_iterator

iterator

:const_iterator

reverse_iterator

:const_reverse_iterator

mutable forward

constant forward

mutable bidirectional
constant bidirectional
mutable bidirectional
constant bidirectional

mutable random access
constant random access
mutable random access
constant random access

mutable random access
constant random access
mutable random access

constant random access

<slist>

Depends on

implementation
and may not be
available.

<list>

<vector>

<deque>

STL Container classes

Other containers (e.g. stacks and queues) can be obtained
from these classes)

All of these sequence template classes have a destructor
that returns storage for recycling.

Deque (pronounced “D-queue” or “deck™) stands for doubly
ended queue”

 |tis kind of a super queue.

* A queue adds data at one end of the sequence and
remove from the other. (FIFO)

* Dequeue lets you add data at either end and remove
data at either end.

ENSC 251: Lecture Set 11 44

STL Container classes

When you add/remove an element from a container, this
can impact iterators for that container.

In general, there is no guarantee that the iterators will be
located at the same element after an addition/deletion.

« **Some containers do guarantee that the iterators will
not be moved by additions/deletions, except if the
iterator is located at an element that is removed.

— list (and s1list) make this guarantee

— vector and deque do not.

ENSC 251: Lecture Set 11 45

Some Sequential Container Member Functions

Member Function
(c is a Container Object)

c.size()
c.begin()
c.end()

c.rbegin()

c.rend()

c.push_back(Element)

Returns the number of elements in the container.
Returns an iterator located at the first element in the container.

Returns an iterator located one beyond the last element in the
container.

Returns an iterator located at the last element in the container.
Used with reverse_iterator. Not a member of slist.

Returns an iterator located one beyond the first element in the
container. Used with reverse_iterator. Not a member of slist.

Insert the Element at the end of the sequence. Not a member of
slist.

ENSC 251: Lecture Set 11 46

Some Sequential Container Member Functions (Continued)

Member Function
(c is a Container Object)

c.push_front(Element)

c.insert(lterator, Element)

c.erase(/terator)

c.clear()

c.front()

cl =c2

cll=c2

Insert the Element at the front of the sequence. Not a member of
vector.

Insert a copy of Element before the location of /terator.

Removes the element at location Iterator. Returns an iterator at
the location immediately following. Returns c.end() if the last
element is removed.

A void function that removes all the elements in the container.

Returns a reference to the element in the front of the sequence.
Equivalent to *(c.begin()).

True if c1.size() == c2.size() and each element of c1 is equal to
the corresponding element of c2.

I(c1 == c2)

<All the sequential containers discussed in this section also have a default constructor, a copy
constructor, and various other constructors for initializing the container to default or specified
elements. Each also has a destructor that returns all storage for recycling and a well-behaved

assignment operator.>

STL Container classes

STL container classes contain type names (e.g. iterator,
const_iterator, reverse _iterator, ...)

They generally include type names:
The examples we have looked at also contain:

« size type (how many elements there are- recall the last
slide set) and

 value type (which is the type of the elements stored in
the container)

— For example 1ist<int>::value_typeis another name for int.

ENSC 251: Lecture Set 11 48

STL Container Adapter classes

Container adapters are template classes that are
implemented on top of other classes.

The stack template class is implemented on top of the
deque template class.

Other container adapter classes include the queue and
priority _queue template classes

« A priority queue is like a queue with the additional
property that each entry is given a priority when it is
added to the queue.

« If all entries have the same priority, it behaves like a
normal queue.

* If items have varying priority, the higher-priority items are
removed before the lower priority items.

ENSC 251: Lecture Set 11 49

STL Container Adapter classes

Note although the adapter template class has a default
container class on top of which it is built, you may choose
to specify a different underlying container (e.g. for
efficiency).

For example, any sequential container may act as the
underlying container for a stack and any sequential
container (other than a vector may serve as the underlying
container for a queue).

* You shouldn’t be looking to change these until you get
more experience, but you should be aware in case other
people are changing them.

ENSC 251: Lecture Set 11 50

Stack Template Class and sample member functions

Stack Adapter Template Class Details

Type name stack<T> or stack<T, Underlying_Container> for a stack of elements of
type T.

Library header: <stack>, which places the definition in the std namespace.

Defined types: value_type, size_type.

There are no iterators.

Member Function Meaning
(s is a Stack Object)

s.size() Returns the number of elements in the stack.

s.empty() Returns true if the stack is empty; otherwise returns false.
s.top() Returns a mutable reference to the top member of the stack.
s.push(Element) Inserts a copy of Element at the top of the stack.

s.pop() Removes the top element of the stack. Note that pop is a void

function. It does not return the element removed.

sl ==s2 True if s1.size() == s2.size() and each element of s1 is equal to
the corresponding element of s2; otherwise returns false.

The stack template class also has a default constructor, a copy constructor, as well as a
constructor that takes an object of any sequential container class and initializes the stack to the
elements in the sequence. It also has a destructor that returns all storage for recycling and a
well-behaved assignment operator.

ENSC 251: Lecture Set 11 51

Queue Template Class and sample member functions

Queue Adapter Template Class Details

Type name queue<T> or queue<T, Underlying_Container> for a queue of elements
of type T.

For efficiency reasons, the Underlying_Container cannot be a vector type.

Library header: <queue> which places the definition in the std namespace.

Defined types: value_type, size_type.

There are no iterators.

Member Function Meaning
(q is a Queue Object)

g.size() Returns the number of elements in the queue.

g.empty() Returns true if the queue is empty; otherwise returns false.
g.front() Returns a mutable reference to the front member of the queue.
g.back() Returns a mutable reference to the last member of the queue.
g.push(Element) Adds Element to the back of the queue.

g.pop() Removes the front element of the queue. Note that pop is a

void function. It does not return the element removed.

gl ==q2 True if ql.size() == q2.size() and each element of g1 is equal to
the corresponding element of q2; otherwise returns false.

The queue template class also has a default constructor, a copy constructor, as well as a
constructor that takes an object of any sequential container class and initializes the stack to the
elements in the sequence. It also has a destructor that returns all storage for recycling and a
well-behaved assignment operator.

52

Program using the stack template class and sample output

//|Program to demonstrate the use of the stack template class from the STL.

#include <iostream>
#include stack>

using std::cin;

using std::cout; straw

using std::endl;
using std::stack;

warts

int main()

{

stack<char> s;

cout << "Enter a line of text:\n";
char next;
cin.get(next);
while (next != '"\n')
{
s.push(next);
cin.get(next);

}

cout << "Written backward that is:\n";
while (!'s.empty())
{

cout << s.topQ);
s.popQ); -— The member function pop removes one elemem.:,
} but does not return that element. pop isavoid
cout << endl; function. So, we needed to use top to read the
element we remove.

return 0;

Enter a line of text:

Written backward that is:

53

STL Associate Containers set and map

Associative containers are basically very simple databases

* They store data (such as structs)

« Each data item has an associated value (known as its key)
» ltems are retrieved based on the key

* The key type and the the type of data stored need not be
related.

In a set, every element is its own key.
|t stores elements without repetition.

A map is essentially a function given as a set of ordered pairs.
For each value first that appears in a pair, there is at most
one value second such that the pair (first, second) isin
the map.

* What does this remind you of?
ENSC 251: Lecture Set 11 54

STL Associate Containers set and map

You can obtain more information on set and map from the
textbook (as well as some examples).

Note: the text also discusses Efficiency of execution and big-
Oh notation.

ENSC 251: Lecture Set 11 55

STL Generic Algorithms

Template functions are sometimes called generic algorithms.

To be included in the STL, function template implementations
must meet minimum requirements (e.g. provide a guaranteed
running time- O(?))

* The interface tells the programmer, what the function does,
how to use it, and how rapidly the task will be done
(sometimes the algorithm is also specified).

There are numerous function templates in the STL.

The following is a sample of some of the ones that are
available.

ENSC 251: Lecture Set 11 56

Nonmodifying Sequence Algorithms- (find)

Some template functions operate on containers but do not
modify their contents.

f ind searches the the container to locate a particular element
and returns the second argument if it isn’t found.

//Program to demonstrate use of the generic find function.
#include <iostream>

#include <vector>

#include <algorithm>

using std::cin;

using std::cout;

using std::endl;

using std::vector;

using std::find;

int main()

{

vector<char> line;

cout << "Enter a Tine of text:\n";
char next;
cin.get(next);
while (next != "\n'")
{
Tine.push_back(next);
cin.get(next);

Nonmodifying Sequence Algorithms- (find)

vector<char>::const_iterator where;
where = find(line.begin(), lTine.end(), 'e');
//Where is located at the first occurrence of 'e' in line.

vector<char>::const_iterator p;
cout << "You entered the following before you entered your first e:\n";
for (p = 1ine.begin(); p != where; p++)

cout << *p; If f1ind does not find what
cout << endl; it is looking for, it returns
cout << "You entered the following after that:\n"; its second argument.

for (p = where; p != Tine.end(); p++)
cout << *p;
cout << endl;

cout << "End of demonstration.\n";
return 0;

Note this function would behave exactly the same if our
example used list<char> instead of vector<char>.

This illustrates why the functions are generic- they work
over numerous containers.

However, it won't work for all containers- note that find takes
iterators as arguments and not all containers have iteratgrs.

Some non-modifying generic functions:

These all work for forward iterators, which means they also work for bidirectional and random
access iterators. (In some cases they even work for other kinds of iterators, which we have not

covered in any detail)

template<class ForwardIterator, class T>
ForwardIterator find(ForwardIterator first,
ForwardIterator last, const T& target);

//Traverses the range [first, last) and returns an iterator located at
//the first occurrence of target. Returns second if target is not found.
//Time complexity: 1linear in the size of the range [first, last).

template<class ForwardIterator, class T>
int® count(ForwardIterator first, ForwardIterator last, const T& target);

//Traverses the range [first, last) and returns the number

//of elements equal to target.
//Time complexity: 1linear in the size of the range [first, last).

template<class ForwardIteratorl, cl/ass ForwardIterator2>
bool equal(ForwardIteratorl firstl, ForwardIteratorl Tlastl,

ForwardIterator2 first2);
//Returns true if [firstl, lastl) contains the same elements in the same order as

//the first lastl-firstl elements starting at first2. Otherwise, returns false.
//Time complexity: linear in the size of the range [first, last).

3This isn’t actually an integer, but the returned value is assignable to a
variable of integer type (don’t worry about it)
59

Some non-modifying generic functions (continued):

template<class ForwardIteratorl, cl/ass ForwardIterator2>

ForwardIteratorl search(ForwardIteratorl firstl, ForwardIteratorl Tlastl,
ForwardIterator2 first2, ForwardIterator2 last2);

//Checks to see if [first2, Tlast2) is a subrange of [firstl, Tastl).

//If so, it returns an iterator located in [firstl, lastl) at the start of

//the first match. Returns lastl if a match is not found.

//Time complexity: quadratic in the size of the range [firstl, lastl).

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator Tlast,

const T& target);
//Precondition: The range [first, last) is sorted into ascending order using <.
//Uses the binary search algorithm to determine if target is in the range
//[first, last).
//Time complexity: For random access iterators 0(log N). For non-random-access
//iterators
//1inear is N, where N is the size of the range [first, last).

60

Some modifying generic functions:

template<class T>
void swap(T& variablel, T& variable2);
//Interchanges the values of variablel and variable2

The name of the iterator type parameter tells the kind of iterator for which the function works.
Remember that these are minimum iterator requirements. For example, Forwa rdIterator
works for forward iterators, bidirectional iterators, and random access iterators.

template<class ForwardIteratorl, cl/ass ForwardIterator2>

ForwardIterator2 copy(ForwardIteratorl firstl, ForwardIteratorl lastl,
ForwardIterator2 first2, ForwardIterator2 last2);

//Precondition: The ranges [firstl, lastl) and [first2, last2) are the same size

//Action: Copies the elements at locations [firstl, lastl) to Tocations

//[first2, Tlast2).

//Returns last2.

//Time complexity: linear in the size of the range [firstl, Tastl).

template<class ForwardIterator, class T>

ForwardIterator remove(ForwardIterator first, ForwardIterator last,
const T& target);

//Removes those elements equal to target from the range [first, Tast).

//The size of

//the container is not changed. The removed values equal to target are

//moved to the

//end of the range [first, last). There is then an iterator i in this

//range such that

//all the values not equal to target are in [first, i). This i1 is returned.

//Time complexity: linear in the size of the range [first, last).

61

Some modifying generic functions (Continued):

template<class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last);

//Reverses the order of the elements in the range [first, last).
//Time complexity: linear in the size of the range [first, last).

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first, RandomAccessIterator last);
//Uses a pseudorandom number generator to randomly reorder the elements

//in the range [first, last).
//Time complexity: linear in the size of the range [first, last).

62

Some generic sorting algorithms:

template<class RandomAccessIterator>

void sort(RandomAccessIterator first, RandomAccessIterator last);

//Sorts the elements in the range [first, last) into ascending order.

//Time complexity: O(N Tog N), where N is the size of the range [first, Tlast).

template<class ForwardIteratorl,c/ass ForwardIterator?2,
class ForwardIterator3>

void merge(ForwardIteratorl firstl, ForwardIteratorl lastl,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator3 result);

//Precondition: The ranges [firstl, Tlastl) and [first2, last2) are sorted.

//Action: Merges the two ranges into a sorted range [result, last3), where

//1ast3 = result + (lastl - firstl) + (last2 - first2).

//Time complexity: linear in the size of the range [firstl, lastl)

//plus the size of [first2, Tlast2).

Sorting uses the < operator, and so the < operator must be defined. There are other versions, not
given here, that allow you to provide the ordering relation. Sorted means sorted into ascending order.

63

In Closing

Throughout your entire programming career you will need:
« Structures, Classes, ADTs (may be user-defined)
* Pointers, Linked Lists and Arrays

* Friend functions, Overloaded operators, etc.

* |nheritance
e The STL

« Templates
* Recursion
« Separate Compilation (probably)

You may not see Namespaces and you are less likely to see
Exception Handling

ENSC 251: Lecture Set 11 64

In Closing

So what do you need to know to be an effective object-
oriented programmer after completing this class.

» Basically everything.

The remainder of the course is going to focus on the discrete
math content.

ENSC 251: Lecture Set 11 65

Review Questions for Slide Set 11

What is the Standard Template Library?
What does the library include?
What is a container class?

Is STL part of the core C++ language? Is it part of the C++
standard?

What is the difference between the STL and most other C++
libraries?

What are iterators and when can you use them?
Are iterators pointers?
What types of operators can you use to manipulate iterators?

Do all container classes support all of the same operators for
their iterators?

ENSC 251: Lecture Set 9 66

Review Questions for Slide Set 11

What other member functions can you use with iterators?

Doe the end() member function for a vector iterator point to
the last item in the vector or the element after the last element
of the vector.

What are the methods of dereferencing iterators?

What are the different categories for iterators and how do they
work?

What are random access iterators? What does it mean?

What are constant and mutable iterators and what's the
difference?

Can you use mutable iterators in place of constant iterators?
Can you use constant iterators in place of mutable iterators?

ENSC 251: Lecture Set 9 67

Review Questions for Slide Set 11

What are reverse iterators?

What does the member function rbegin() return?
What are input and output iterators?

What are sequential containers?

What is the difference between the list and vector container
classes?

What are some of the sequential container template classes
in the STL

What are some of the typical member functions for sequential
container classes?

What are STL Container Adapter classes?

ENSC 251: Lecture Set 9 68

Review Questions for Slide Set 11

There are Stack and Queue Template Classes. How do
these compare to the structures we talked about previously?
What functions do they provide?

What are generic algorithms?

What are non-modifying generic functions? How do they differ
from modifying generic functions?

ENSC 251: Lecture Set 9 69

