Software Design and Analysis for
Engineers

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc251

=@/ Simon Fraser University Slide Set: 1

== Date: September 9, 2015

What we're learning in this Slide Set:

« Quick Overview: how a computer operates
* Quick Overview: Programming Paradigms (Models)

* Creating Custom Data Types:
— Remembering Structures & struct
— Remember Scope
— Unions

— Creating Classes

ENSC 251: Lecture Set 1

Textbook Chapters:

Relevant to this slide set:
« Section4.5
 Sections 10.1-10.2

Relevant to the next slide set:
 Sections 10.3-10.4
* Chapter 11

ENSC 251: Lecture Set 1

How a Computer Operates

A simple view of computer processing:

Crown) (om)

Computer

:
(outpt)

ENSC 251: Lecture Set 1

Simple view of a computing system

Processor (CPU)

Input
device(s)

Output

P Main memory —p device(s)

What are some
M realistic
constraints?

Secondary
memory

ENSC 251: Lecture Set 1

Quick Review: Programming Paradigm

Last semester in CMPT 128, you focused on the
fundamental syntax of C++ and C and used a
imperative programming paradigm (model)

Imperative Programming Paradigm

Key characteristic: expresses a program as a
sequence of commands/actions

Contrast: declarative programming- focuses on what
a program should achieve but not how it is
accomplished

ENSC 251: Lecture Set 1

Imperative Programming Paradigm

Other characteristics/things to keep in mind:

* You do this all the time when you create a “To
Do” list to accomplish a task/set of tasks

 Tends to be the easiest model to learn as
people tend to think this way intuitively

« Easiest way to create an algorithm to solve a
problem

ENSC 251: Lecture Set 1

Object-Oriented Programming Paradigm

This semester we will focus on Object-oriented
programming
* Objects have both

— state

* Implemented/stored as data fields/data members/member
variables

— behaviour

* Implemented as member functions/methods

* Objects are instances of classes (“types+")

— Instances are specific realizations of classes or
“Instantiations”-> this term will come up in ENSC 252

ENSC 251: Lecture Set 1

Object-Oriented Programming Paradigm

Key characteristics of Object-oriented programming:

* Encapsulation:
— Provides information hiding and abstraction

— Results in modular objects (and code) as all related data
and functions should be packed (encapsulated) into
single components (classes)

* In other words each object is responsible for its own data and
behaviour

ENSC 251: Lecture Set 1

Object-Oriented Programming Paradigm

Key characteristics of Object-oriented programming:

* |[nheritance:
— Code should be reusable

— Can create new classes that extend previously existing
classes, inheriting at least some of their behaviours (e.g.
member functions)

* Polymorphism:

— A single name may have multiple meanings (in the context of
inheritance)

— Provides a single interface to objects of different types

ENSC 251: Lecture Set 1

Just because you are using an Object-
oriented programming language does NOT
mean that your code is written using an
Object-Oriented Programming Paradigm

ENSC 251: Lecture Set 1

In fact ...

Many (Most) people who program using object-
oriented programming languages, still write programs
using an imperative programming paradigm.

One of the objectives of this semester is to get you
comfortable with the fundamentals of object-oriented

programming ...
As opposed to just the syntax of C++

ENSC 251: Lecture Set 1

Classes

To create object-oriented programs, you need to
know how to create classes.

Before we learn how to create classes, let me remind
you about what you learned about structures.

ENSC 251: Lecture Set 1

Structures

You have already learned this, but a good review.

A structure is a type that contains multiple fields:

/ Structure tag

struct CDAccount

[Member names
double balance; ‘,,a”””””’

double interest_rate;
int term; //months until maturity

}s

ENSC 251: Lecture Set 1

Structures

You can declare a variable who's type is your new
structure:

struct CDAccount

{

double balance;

double interest_rate;

int term; //months until maturity
};

CDAccount account, my_account;

ENSC 251: Lecture Set 1

Structures

To access members (aka member fields/member variables)
of your structure:

struct CDAccount

{

double balance;

double interest_rate;

int term; //months until maturity
s

CDAccount account, my_account;

account.balance = 1000.00;
account.interest_rate = 4.7;
account.term = 11;

ENSC 251: Lecture Set 1

struct CDAccount

{

3

double balance;
double interest_rate;
int term; //months until maturity

int main()

{

CDAccount account;

\\\\\Q o ————_’
account.ba1ancq\= 1000.00;
~_
account.interest_rate = 4.7;
T~ —
account.term = 11;
T >

ENSC 251: Lecture Set 1

A structure’s value is the
collection of the individual
member variables values.

balance ?
interest_rate ? » account
term ?)

balance 1000.00 |
interest_rate ? » account
term ?)

balance 1000.00 |
interest_rate 4.7 y account
term ? ‘

balance 1000.00 |

interest _rate 4.7 » account
term 11 |

//Program to demonstrate the CDAccount structure type.
#include <iostream>

using namespace std;

//Structure for a bank certificate of deposit:

struct CDAccount

{

double balance;

double interest_rate;

int term; //months until maturity
1

void get_data(CDAccount& the_account);
//Postcondition: the_account.balance and the_account.interest_rate
//have been given values that the user entered at the keyboard.

int main()

{
CDAccount account;
get_data(account);

double rate_fraction, interest;

rate_fraction = account.interest_rate / 100.0;

interest = account.balance * rate_fraction * (account.term / 12.0);
account.balance = account.balance + interest;

ENSC 251: Lecture Set 1

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

cout << "When your CD matures in
<< account.term << " months,\n"
<< "it will have a balance of $"
<< account.balance << endl;

return 0;

}

//Uses iostream:
void get_data(CDAccount& the_account)
{
cout << "Enter account balance: $";
cin >> the_account.balance;
cout << "Enter account interest rate: ";
cin >> the_account.interest_rate;
cout << "Enter the number of months until maturity\n"
<< "(must be 12 or fewer months): ";
cin >> the_account.term;

ENSC 251: Lecture Set 1

Structures:

Aside: It is ok to have multiple structures with the same
member name:

struct FertilizerStock

double quantity;
double nitrogen_content;

-
and

struct CropYield

{
int quantity; Hint: Don’t forget the semi-
double size: colon at the end of structure
}: definitions after the closing

brace.

ENSC 251: Lecture Set 1

Recall Scope

What would the variable declarations look like for these types?
struct FertilizerStock

{
double quantity;

double nitrogen_content;

and

struct CropYield

{
int quantity;
double size;

}s

ENSC 251: Lecture Set 1

Recall Scope

How would | indicate the quantity member variable for each?

struct FertilizerStock

{
double quantity;

double nitrogen_content;

and

struct CropYield

{
int quantity;
double size;

}s

ENSC 251: Lecture Set 1

coONOYUVTE B WN R

Recall Local, Global, and Block Scope

#include <iostream>
using namespace std;

const double GLOBAL_CONST = 1.0;
int functionl(int param);
int main(Q)
{
int X;

double d = GLOBAL_CONST;

for (int i = 0; 1 < 10; i++)

{
x = functionl(i);
} —
return 0;
}
int functionl(int param)
{
double y = GLOBAL_CONST;
return 0; -
}

Local and Global scope are examples of Block scope.
A variable can be directly accessed only within its scope.

~—

) Local scope to Global scope:
main: Variable The constant
X has scope GLOBAL_CONST
Block scope: From lines has scope from
Variable 1 has 10-18 and — lines 4-25 and
scope froim variable d has the function
lines 13-16 scope from functionl
lines 17-18 has scope from
] lines 6-25

Local scope to functionl:
Variable param

has scope from lines 20-25
and variable y has scope
from lines 22-25

ENSC 2517: Lecture Set 1

Operators used to indicate scope

Along with what we just looked at, the °." ("dot” operator) also
Indicates scope:

« Member variables within a structure
* Member variables within a class

“, "

Similarly, the scope resolution operator “..” is also used to
iIndicate scope:

-Member Functions in a class
-Flags in a Class (recall the iostream flags “ios: : fixed, etc.)

ENSC 251: Lecture Set 1

Final notes for Structures:

You can return a structure from a function:

CDAccount shrink_wrap(double the_balance,
double the_rate, int the_term)

{
CDAccount temp;
temp.balance = the_balance;
temp.interest_rate = the_rate;
temp.term = the_term;
return temp;

}

CDAccount new_account;
new_account = shrink_wrap(10000.00, 5.1, 11);

ENSC 251: Lecture Set 1

Final Notes for Structures:

You can declare structures within structures, creating
Hierarchical Structures:

struct Date

{
int month;
int day;
int year,;

};

struct PersonInfo

{
double height; //in inches
int weight; //in pounds
Date birthday;

}s

cout << personl.birthday.year;

ENSC 251: Lecture Set 1

Unions- The Structure’s First Cousins

Unions look almost exactly the same as structures.

Their descriptions (and variable declarations) are similar as
a union also contains muiltiple fields:

union
5f>ﬁf} CDAccount

{

double balance;
double interest_rate;
int term; //months until maturity

s

CDAccount account, my _account;

ENSC 251: Lecture Set 1

Unions- The Structure’s First Cousins

The key difference between a Union and a structure is:
« a Structure contains all member fields concurrently

* a Union is only able to store one of the fields at a time (and
Is only allocated sufficient memory to store the largest field)

unio
S t CDAccount

{

double balance;
double interest_rate;
int term; //months until maturity

}s
CDAccount account, my account;
account.balance = 1000.00; OR

account.interest _rate = 4.7; OR

account.term = 11;
ENSC 251: Lecture Set 1

union
¢t CDAccount

{
double balance;
double interest_rate; Only one field’'s value is stored at any
, int term; //months until maturity given time; whatever was previously
.’ : there is over written
int main()
{
CDAccount account; balance 1
T, ‘interest_rate ? » account
term J
balance 1000.00 |}

account.balance = 1000.00; _
~__ _, interest_rate » account
term J

— ——_1

account.interest_rate = 4.7; balance 159000 |

5 1nterest_rate 4.7 » account
term J
account.term = 11;
~_ balance 47
T interest_rate X » account
term 11 |

ENSC 251: Lecture Set 1

Structures are quite a common compound data type.

Unions are a bit more specialized, but have common
applications in things like device drivers, which are
commonly written by engineers (and important in ENSC

351)

Structures (and Unions) provide a convenient mechanism
for organizing large amounts of data.

Object-Oriented languages go farther, and generalize the
concept of structures -> Classes

A class is like a structure, but it can contain functions too.

ENSC 251: Lecture Set 1

class DayOfYear

{

public:
void output(); «—— Member function declaration
int month;
int day;

}s

int main()

{
DayOfYear today, birthday;

cout << "Enter today's date:\n";
cout << "Enter month as a number: ";
cin >> today.month;

cout << "Enter the day of the month: ";
cin >> today.day;

cout << "Enter your birthday:\n";

cout << "Enter month as a number: ";
cin >> birthday.month;

cout << "Enter the day of the month: ";
cin >> birthday.day;

cout << "Today's date 1is ";

today.output(); -— — \
cout << "Your birthday is "; \\j> C2W5§0thcanWcr
birthday.output(); = — functionoutput

ENSC 251: Lecture Set 1

Defining the member function:

//Uses iostream:
void DayOfYear::output()

{

cout << "month << month

<< ", day

ENSC 251: Lecture Set 1

<< day << endl;

Defining the member function:

//Uses iostream:
void DayOfYear::output()

{
cout <<

7 << ", day =

Type

qualifier”
+
“scope resolution operator”

onth = " << month
" << day << endl;

Indicates what class this function is part of.
- You might have several classes, each with a member
function called output()
- Remember our discussion of scope

ENSC 251: Lecture Set 1

Important distinction:

DayOfYear is a class.

today and birthday are objects.

Remember objects are specific instances of a class.

When you define DayOfYear::output() you are defining a
function that is associated with the class.

ENSC 251: Lecture Set 1

//Uses iostream:
void DayOfYear::output()
{

cout << "month = " << month
<< ", day /<d‘ay << endl;
} /

Refers to month and day fields inside this object

If you call today.output() then the output function prints the
month and day fields within the today object.

If you call birthday.output() then the output function prints
the month and day fields within the birthday object.

ENSC 251: Lecture Set 1

Encapsulation

Combining a number of items, such as variables and functions, into a
single package, such as an object of some class, is called encapsulation.

ENSC 251: Lecture Set 1

For a given object you can:

1. Call a member function of that object
eg. today.output()

2. Access fields inside the object directly
eg. today.month

#2 is bad. Can you suggest why?

ENSC 251: Lecture Set 1

Accessing an object’s data from outside the object is bad.
- If the implementation of the object changes, all the
code that uses that object might have to change.
-Remember, technically the object is the value of the
variable and not the variable itself

Your object will be much more re-usable if there is a clearly
defined set of access methods for the object.

This provides a defined interface for an object (like an API).

This will also lead to code that is less bugqy.

ENSC 251: Lecture Set 1

In an object-oriented language, the ideal is:

Q)

~

Given an object, you should never access the internal
data directly. Only interact with the data inside an object
through the member functions.

This is an ideal, and there are important exceptions.

ENSC 251: Lecture Set 1

Private vs. Public

Data and member functions in a class can be defined as
either public or private:

Public: anyone can access this from outside the object
(normally only member functions)
Private: no one outside can access this field

(normally data fields and some functions)

Think of the public members as the API for your object

ENSC 251: Lecture Set 1

Private vs. Public

Ideally, you should separate:

-the rules for using the class (Public) from

-how the class computation is implemented/performed
(Private)

Realistically, the rules and interface for using a class should
not change. However, if the implementation of the class
computation changes, this should not impact the rest of your

software.

ENSC 251: Lecture Set 1

class DayOer ar we gave in Visplay 10.9.

{
public:
void input();
void output();
void set(int new_month, 7nt new_day);
//Precondition: new_month and new_day form a possible date.
//Postcondition: The date i1s reset according to the arguments.
int get_month();
//Returns the month, 1 for January, 2 for February, etc.
int get_day();
//Returns the day of the month.
private:
void check_date(); = Frivate member function
int month; <\\\\\\\\\\\\‘
int day; - Private member variables
s

ENSC 251: Lecture Set 1

Any function/variable declared after the publiclabel is
public.

Any function/variable declared after the privatelabel is
private.

By default, if you don’t put a label before the first members
everything is private until otherwise specified:

- But that isn’'t good style and if everything is private,
it isn’t very useful (Why is that?)

ENSC 251: Lecture Set 1

class SampleClass

{
public:

void do_something();
int stuff;
private:
void do_something_else();
char more_stuff;
public:
double do_yet_another_thing();
double even_more_stuff;

}s

You can interleave public and private function and variable
declarations by adding a new label as appropriate, but this
Is confusing and not very readable — not good style.

ENSC 251: Lecture Set 1

From outside the object:

DayOfYear today; //This line is OK.
today.month = 12; //ILLEGAL
today.day = 25; //ILLEGAL

because month and day are declared as private.

So what if you *do* want to set the month or day???

ENSC 251: Lecture Set 1

Luckily, this object provides a public member function to set
the month and day.

‘\\“wL[.v'F" |

void DayOfYear::set(int new_month, int new_day)
{ The member function check _date does
month = new_month; heck for allillegal dates, but it
day = new_day; would be easy to make the check complet
check_date(); by making it longer. See Self-Tes

If you always set the day and month using this function,
your code will not depend on the internal representation of
month and day.

How would you do this?
ENSC 251: Lecture Set 1

Don’t be confused: a member function that is part of an
object can always access data within that object, whether it

Is private or public.

The private and public distinction only matters from outside
the object.

ENSC 251: Lecture Set 1

Since your member variables are now private, this would also
be illegal from outside the object:

cout << today.month; //ILLEGAL

cout << today.day; //ILLEGAL

1f (today.month == 1) //ILLEGAL
cout << "January";

ENSC 251: Lecture Set 1

Since your member variables are now private, this would also
be illegal from outside the object:

cout << today.month; //ILLEGAL

cout << today.day; //ILLEGAL

1f (today.month == 1) //ILLEGAL
cout << "January";

But you can get the data through public functions:

int DayOfYear::get_month()

{
return month;
}
int DayOfYear::get_day()
{
return day;
}

ENSC 251: Lecture Set 1

Recall:

class DayOfYear

{

public:
void input();
void output();

we gave in Display 10.0.

void set(int new_month, 7nt new_day);
//Precondition: new_month and new_day form a possible date.

//Postcondition: The date is reset according to the arguments.

int get_month();
//Returns the month, 1 for January, 2 for February, etc.

int get_day();
//Returns the day of the month.

private:
void check_date(); =

int month; <\\\\\\\\\\\
— Private member variables

int day; -

Frivate member function

b

ENSC 251: Lecture Set 1

int main(C)

{
DayOfYear today, bach_birthday;
cout << "Enter today's date:\n";
today.input();
cout << "Today's date is ";
today.output();

bach_birthday.set(3, 21);
cout << "J. S. Bach's birthday is ";
bach_birthday.output();

1t (today.get_month() == bach_birthday.get_month() &&
today.get_day() == bach_birthday.get_day())
cout << "Happy Birthday Johann Sebastian!\n";

else

cout << "Happy Unbirthday Johann Sebastian!\n";
return 0;

Here's the main function

ENSC 251: Lecture Set 1

Here's the DayOfYear member functions

//Uses iostream:
void DayOfYear::input()

{
cout << "Enter the month as a number: ":
cin >> month; < Private members may be
cout << "Enter the day of the month: "; used in member function
cin >> day; <« definitions (but not
, check_date(); -« elsewhere).
A better definition of
void DayOfYear: :output() the member function
<The rest of the definition of DayOfYear::output is input wouldaskthe
given in Display 10.3.> user to reenter the

date if the user enters

void DayOfYear::set(int new_month, int new_day) anincorrect date.

{ The member function check _date does
month = new_month; not check for all illegal dates, but it
day = new_day; would be easy to make the check complete
check_date(); by making it longer. See Self-Test

} Exercise 14.

ENSC 251: Lecture Set 1

Here's the DayOfYear member functions

void DayOfYear::check_date()

{
it ((month < 1) || (month > 12) || (day < 1) || (day > 31))
{
cout << "Illegal date. Aborting program.\n";
ex1t(1); —_ Thefunctionexit is discussed in Chapter ©.
¥ It ends the program.
}
int DayOfYear::get_month()
{
return month;
}
int DayOfYear::get_day()
{
return day;
¥

ENSC 251: Lecture Set 1

With the check date Function, this code is a bit more
robust.

However, something is missing.

What do we need to fix to make it more robust?

ENSC 251: Lecture Set 1

Again Recall:

class DayOfYear we gave in Display 10.0.

{

public:
void input();
void output();

void set(int new_month, 7nt new_day);
//Precondition: new_month and new_day form a possible date.

//Postcondition: The date is reset according to the arguments.

int get_month();
//Returns the month, 1 for January, 2 for February, etc.

int get_day();
//Returns the day of the month.

private:
void check_date(); =

int month; <\\\\\\\\\\\
— Private member variables

int day; -

Frivate member function

b

ENSC 251: Lecture Set 1

What if we change the private data members:

class DayOfYear

{

public:
void input();
void output();

void set(int new_month, 7nt new_day);

//Precondition: new_month and new_day form a possible date.
//Postcondition: The date is reset according to the
//arguments.

int get_month();
//Returns the month, 1 for January, 2 for February, etc.

int get_day(Q);

//Returns the day of the month.
private:
void DayOfYear: :check_date();
char first_letter; //of month
char second_letter; //of month
char third_letter; //of month
Tnt day;

}s
ENSC 251: Lecture Set 1

Is our programming interface (the public functions) still
usable?

If yes, why?

If not, can we do anything about it?

ENSC 251: Lecture Set 1

Comparing objects of the same type

|deally, you want to be able to compare to objects of the same
type to see if they are equal.

For user defined classes, this is not inherently possible.

You will need to create a public member function to support
this:
-Soon we will look at how you can overload the “=="
operator to do this

ENSC 251: Lecture Set 1

The assignment operator

The assignment operator, ‘=" is legal so you can simply assign
one object to another:

DayOfYear due_date, tomorrow;
due_ date = tomorrow;

This will assign all data field in one object (both public and
private) to the other.

- There are some situations where we will want to
redefine the assignment operator (overload it).

*We’'ll talk about this later, but the following is an
example for now

ENSC 251: Lecture Set 1

//Class for a bank account:
class BankAccount

{

public:

};

//Postcondition: The account
//The interest rate has been

void set(int dollars, double
//Postcondition: The account
//The interest rate has been

void update();

The member function

/ set is overloaded.
void set(int dollars, int cents, double rate);

balance has been set to $dollars.cents;
set to rate percent.

rate) ; = —
balance has been set to $dollars.00.
set to rate percent.

//Postcondition: One year of simple interest has been
//added to the account balance.

double get_balance();

//Returns the current account balance.

double get_rate();

//Returns the current account interest rate as a percentage.

void output(ostream& outs);
//Precondition: If outs is a

file output stream, then

//outs has already been connected to a file.
//Postcondition: Account balance and interest rate have
//been written to the stream outs.

private:

double balance;
double interest_rate;

double fraction(double percent);

//Converts a percentage to a
//returns 0.503.

fraction. For example, fraction(50.3)

int main()

{
BankAccount accountl, account?2;
cout << "Start of Test:\n";
accountl.set(123, ?9) 3 -0); Calls to the overloaded
cout << "accountl initial statement:\n"; .
member function set
accountl.output(cout);
accountl.set(100, 5.0); =—
cout << "accountl with new setup:\n";
accountl.output(cout);
accountl.update();
cout << "accountl after update:\n";
accountl.output(cout);
account2 = accountl;
cout << "account2:\n";
account2.output(cout);
return 0;
}

ENSC 251: Lecture Set 1

void BankAccount::set(int dollars, int cents, double rate)

17 ((dollars < 0) ||
{

ents < 0) || (rate < 0))

cout << "Illegal values for money or interest rate.\n";
exit(1l);

}

balance = dollars + 0.0l1l*cents;
interest_rate = rate;

Definitions of overloaded
member function set

void BankAccount::set(int dollars, double rate)

{

17 ((dollars < 0) || (rate < 0))
{

cout << "Illegal values for money or interest rate.\n";
exit(l);
}

balance = dollars;
interest_rate = rate;

ENSC 251: Lecture Set 1

void BankAccount::update()

{
balance = balance + fraction(interest_rate)*balance;

} \
In the definition of a member

double BankAccount::fraction(double percent_value) function, you call another

{ ’ ' '
ber function like this.
return (percent_value / 100.0); membper tunction like this
}
double BankAccount::get_balance()
{
return balance;
}

double BankAccount::get_rate()

{ _ Stream parameter that can
return interest_rate; be replaced either with cout
} or with a file output stream

//Uses iostream: ,////

void BankAccount::output(ostream& outs)

{
outs.setf(ios::fixed);
outs.setf(ios::showpoint);
outs.precision(2);
outs << "Account balance $" << balance << endl;
outs << "Interest rate "%

<< interest_rate << "%" << endl;

Based on the previous code:

accountl.update();

Becomes:
{

accountl.balance = accountl.balance +
accountl.fraction(accountl.interest _rate) * accountl.balance;

So the call to the private function “fraction”is handled the
same as an access to a member variable. From the object’s
perspective they are both (basically) the same.

ENSC 251: Lecture Set 1

Other notes about the previous code:
output accesses a stream-> not the std output (cout)

//Uses 1ostream: K
void BankAccount::output(ostream& outs)
{

outs.setf(ios::fixed):

outs.setf(ios::showpoint);

outs.precision(2);

outs << "Account balance §" << balance << endl;

outs << "Interest rate " << interest rate << "%" << endl;

}

Doing this makes your code much more reusable and easier to
debug in batch mode

**This will be important very soon and you should look at
using this style of coding

ENSC 251: Lecture Set 1

Other notes about previous code: the overloaded set function

When you overload a member function, it lets the user call it
based on the available parameters

-Sometimes users may not have all of the parameters
(e.g. cents in this case).
-1t makes your code more reusable and more portable

-For example, can be extremely valuable for Mutator
functions

ENSC 251: Lecture Set 1

void BankAccount::set(7nt dollars, int cents, double rate)

17 ((dollars < 0)
{

ents < 0) || (rate < 0))

cout << "ITlegal valuesfor money or interest rate.\n";
exit(l);

}

balance = dollars + 0.0l1*cents;
interest_rate = rate;

Definitions of overloaded
member function set

void BankAccount::set(int dollars, double rate)

{

17 ((dollars < 0) || (rate < 0))
{

cout << "ITlegal values for money or interest rate.\n";
exit(l);
}

balance = dollars;
interest_rate = rate;

ENSC 251: Lecture Set 1

Other notes on Classes:

For now, you can use Accessor Functions, public methods
that enable you to determine the values of private data fields.

-They provide an equivalent value instead of the
actual value

-Commonly named “get” functions

Mutator Functions are public member functions allow you to
alter the value of private data members.

-Commonly named “set” functions

These functions are important for every class definition so that
you can assign values to an object.

ENSC 251: Lecture Set 1

Final Notes on Structures and Classes

Structures are set with all member variables as public

-Unless you explicitly state otherwise (private)

Structures in C++ can have member functions
-Don’t do it; it will just be confusing-> use classes

Structures in C cannot have member functions:

-They can have pointers to functions (void *), but you
really shouldn’t do it

*ESPECIALLY not until you know what you are doing.

ENSC 251: Lecture Set 1

Final Notes on Structures and Classes

In C++, Structures can do anything that Classes can
do, but the notation is different.

So why confuse yourself with 2 sets of syntax? Use
Structures to declare compound types and Classes to
encapsulate variables and member functions.

This is how most people do it and will make your use
of structures portable to C programming.

People don’t use unions in C++ (as far as | know)

ENSC 251: Lecture Set 1

Final Notes on Structures and Classes

Classes have member variables and methods
(member functions)

Both data and methods can be public or private
-Don’t forget they are private by default
-Normally, all member variables are private

Private methods and variables can only be accessed
within the class definition (in the definitions of its own
member functions)

ENSC 251: Lecture Set 1

Final Notes on Structures and Classes

Member functions can be overloaded just like normal
functions

A class may use another class for the type of a
member variable

-This creates a hierarchy of classes similar to
hierarchical structures

ENSC 251: Lecture Set 1

Final Notes on Structures and Classes

A function may have formal parameters whose types are

classes:
double difference(BankAccount accountl, BankAccount account2);

//Precondition: accountl and account2 have been given values
//(that 1s, their member variables have been given values).
//Returns the balance 1n accountl minus the balance in
accountZ.

A function may return an object (i.e. the return type of a
function may be a class):

BankAccount new_account(BankAccount old _account);
//Precondition: old_account has previously been given a value
//(that i1s, i1ts member variables have been given values).
//Returns the value for a new account that has a balance of zero
//and the same interest rate as the old_account.

ENSC 251: Lecture Set 1

Final Notes on Structures and Classes

In short, Classes can be viewed as compound types
with additional member functions that let you
access/manipulate their member variables through
public methods

ENSC 251: Lecture Set 1

Review Questions for Slide Set 1

What are the constraints on the performance of a
computing system?

What is the key characteristic of the imperative
programming paradigm?

What is the key characteristic of the declarative
programming paradigm?

Objects have two aspects- what are they?

What is the difference between objects and classes?
What are the three characteristics of object-oriented
programming?

Is it possible to write imperative styled programs with
an object oriented programming language”

ENSC 251: Lecture Set 1

Review Questions for Slide Set 1

What is a structure?

What operator do you use to dereference a member
field in a structure?

Can multiple different structure types have the same
member variable names?

What is the difference between Block, Local and
Global Scope?

Name the two scope operators we looked at in this
slide? What are they and what are they called? (slide
24)

Can you declare a structure within a structure?

ENSC 251: Lecture Set 1

Review Questions for Slide Set 1

True or False: Unions and Structures have exactly the
same structure, excluding the change of keywords. (If
not, how are they different?)

True or False: Unions and Structures have exactly the

same memory requirements. (If not, how are they
different?)

Are classes more like structures or unions?

Can different classes have the same member
functions?

Classes are an example of which of the characteristics
of object-oriented programming? Why?

Why is it bad to access an object’s data members
outside of its object?

ENSC 251: Lecture Set 1

Review Questions for Slide Set 1

How should you access the values stored in an
object’s member fields outside of the object?

What is the difference between private and public
class member fields?

By default, are class members private or public?

If all of a class’ members are private, what is the
problem?

Can public members of a class access that class’
private member fields?

Can you inherently compare two objects of a user
defined class?

ENSC 251: Lecture Set 1

Review Questions for Slide Set 1

Can you inherently assign one object of a user defined
class to another?

Why might you want to overload a class member
function?

What are Mutator and Accessor Functions?

Are Structures set with all member variables as private
or public by default?

Can Structures have member functions in both C and
C++7?

What is the difference between Structures and Unions
in C++7?

Can classes be hierarchical (i.e. can a class have
another class as the type for a member variable)?

ENSC 251: Lecture Set 1

Review Questions for Slide Set 1

Can class functions have formal parameters of that
class type?

Can functions return values of class type?

True or False: Member functions can be overloaded
just like normal functions?

What happens if you declare a struct inside a function
as opposed to outside of all of the function definitions?

ENSC 251: Lecture Set 1

