Software Design and Analysis for
Engineers

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc251

=@/ Simon Fraser University Slide Set: 2

M Date: September 14, 2015

What we're learning in this Slide Set:

» Using Custom Data Types:
— Constructors
— Abstract Data Types

— Inheritance

ENSC 251: Lecture Set 2

Textbook Chapters:

Relevant to this slide set:
« Sections 10.2-10.4

Coming soon:
* Chapter 11
* Reminders from Chapter 5 (Sections 5.3 and 5.4)

ENSC 251: Lecture Set 2 3

Object Initialization

When you instantiate a variable, you often want it to have a
known starting value.

For example:

for (int 1=0; 1<100; i++)

ENSC 251: Lecture Set 2 4

Object Initialization

The same is true for member variables in objects.

By initializing them when you instantiate an object, you have a
“known” starting condition*

-This is very helpful

*There are other initializing actions you can take but we will talk about it later

ENSC 251: Lecture Set 2 5

Constructors

C++ provides a special type of member function for
initialization called a constructor

A constructor is automatically called when an object is
declared (i.e. “instantiated).

Constructors perform the necessary initialization as part of the
creation of the object, such as initializing member variables

Constructors are defined as member functions, but their
definition has some specific constraints

ENSC 251: Lecture Set 2 6

Constructors

class BankAccount

{

public:
BankAccount(int dollars, int cents, double rate);
//Initializes the account balance to $dollars.cents and
//initializes the interest rate to rate percent.

void set(int dollars, int cents, double rate);
void set(int dollars, double rate);
void update();

double get_balance();
double get_rate();

void output(ostream& outs);
private:

double balance;
double interest_rate;
double fraction(double percent);

}s
1. A constructor must have the same name as the class

ENSC 251: Lecture Set 2 7

Constructors

class BankAccount

{

public:
BankAccount(int dollars, int cents, double rate);
//Initializes the account balance to $dollars.cents and
//initializes the interest rate to rate percent.

void set(int dollars, 7nt cents, double rate);
void set(int dollars, double rate);
void update();

double get_balance();

double get_rate();

void output(ostream& outs);
private:

double balance;

double interest_rate;

double fraction(double percent);

}s

2. A constructor cannot return a value; it cannot even
have a return value stated in its declaration

ENSC 251: Lecture Set 2 8

Constructors

class BankAccount

{

public:
BankAccount(int dollars, int cents, double rate);
//Initializes the account balance to $dollars.cents and
//initializes the interest rate to rate percent.

void set(int dollars, 7nt cents, double rate),
void set(int dollars, double rate);
void update();

double get_balance();
double get_rate();

void output(ostream& outs);
private:

double balance;
double interest_rate;
double fraction(double percent);

}s

3. A constructor should be a public member function
Otherwise you won'’t be able to declare objects of this class type
ENSC 251: Lecture Set 2 9

Constructors

Since the constructor member function looks like:

BankAccount(int dollars, int cents, double rate);
//Initializes the account balance to $dollars.cents and
//initializes the interest rate to rate percent.

You can now declare objects of type BankAccount and
initialize them:

BankAccount accountl1(10, 50, 2.0), account2(500, 0, 4.5);

ENSC 251: Lecture Set 2 10

Constructors

Note, this declaration doesn’t break our rule of not accessing
member variables outside of an object, because the
constructor variables and member variables are not the same

BankAccount(int dollars, int cents, double rate);
//Initializes the account balance to $dollars.cents and
//initializes the interest rate to rate percent.

Versus double balance:

double interest_rate;
double fraction(double percent);

Remember SCOPE

ENSC 251: Lecture Set 2 1

Here’s some sample code of our constructor
BankAccount: :BankAccount(7nt dollars, 7nt cents, double rate)

{
1 ((dollars < 0) || (cents < 0) || (rate < 0))

{

cout << "Illegal values for money or interest rate.\n";
exit(1);
}

balance = dollars + 0.01*cents;
interest_rate = rate;

}

The first BankAccount refers to the class, the second refers to
the member function (the constructor).

Note that there is no specified return type (not even void) or
return statement.

Otherwise this is the same as a normal member function

ENSC 251: Lecture Set 2 12

Other Notes on Constructors:

* You cannot call constructors in your main program the
way you call normal member functions:

BankAccount accountl, account2; //PROBLEMS--BUT FIXABLE
accountl.BankAccount (10, 50, 2.0); //VERY ILLEGAL
account2.BankAccount (500, 0, 4.5); //VERY ILLEGAL

Although this is what "automagically” happens when

you declare a BankAccount Object with our defined
constructor, you cannot call them in your executable
code

What is wrong with the first line of the declaration?

How could you fix it?

ENSC 251: Lecture Set 2 13

Other Notes on Constructors:

* You can overload constructors (this is actually very
common as you may only be able to initialize some of
the member variables:

class BankAccount

{

public:
BankAccount(int dollars, int cents, double rate);
//Initializes the account balance to $dollars.cents and
//initializes the interest rate to rate percent.

BankAccount(int dollars, double rate);
//Initializes the account balance to $dollars.00 and
//initializes the interest rate to rate percent.

BankAccount();
//Initializes the account balance to $0.00
//and the interest rate to 0.0%.

ENSC 251: Lecture Set 2 14

tjass BankAccount

{

public:
BankAccount(int dollars, int cents, double rate);
//Initializes the account balance to $dollars.cents and
//initializes the interest rate to rate percent.

BankAccount(int dollars, double rate);
//Initializes the account balance to $dollars.00 and
//initializes the interest rate to rate percent.

BankAccount();
//Initializes the account balance to $0.00
//and the interest rate to 0.0%.

Possible Declarations:
BankAccount accountl1l(100, 2.3);
BankAccount account?2;

But not:
BankAccount account2(); //WRONG! DO NOT DO THIS!

ENSC 251: Lecture Set 2 15

Note: if you are only using your mutator functions to
Initialize your objects, you don’t need them anymore

You can use Constructors

However, if you want to be able to “set” your object’s
after initialization, then you still need your mutator
functions.

Each time you call a constructor you create and
Initialize a new object.

ENSC 251: Lecture Set 2 16

An example from the text:

//Program to demonstrate the class BankAccount.
#include <iostream> Thic dofiit

. This definition of BankAccount
using namespace std,

e n Lo
l L)| f ‘l 7 T"“‘(- ~- e

¢ - LIAOC

BankAccount gi WMEQQQyTOf

K1 [117F
l | Ill

Jl

//Class for a bank account:

class BankAccount

{

public:
BankAccount(int dollars, int cents, double rate);
//Initializes the account balance to $dollars.cents and
//initializes the interest rate to rate percent.

BankAccount(int dollars, double rate);
//Initializes the account balance to $dollars.00 and
//initializes the interest rate to rate percent.

BankAccount();
//Initializes the account balance to $0.00
//and the interest rate to 0.0%.

. (We'll skip the rest of the class definition)

ENSC 251: Lecture Set 2 17

An example from the text (cont'd):

—'-;'-] V‘r .-('.‘\ | 3 317 [’,‘\(1 -7 s L - '-|' “‘ "‘"q
TS AL I U aldoCo a Lali J UG
| . L Al "
A1t / I\(/ T F 7
aeraull onsLructol 1\.'Lj| | 14t
y : .—"'--’—. bl msr s Ao A D Aot L o™ 730
TNt mailn () vnere are no parenirneses.

{ “
BankAccount accountl1(100, 2.3), account2;

cout << "accountl initialized as follows:\n";

accountl.output(cout);

cout << "account2 initialized as follows:\n";

account2.output(cout); An explicit call to the constructor

accountl = BankAccount(999, 99, 5.5); “ BankAccount : : BankAccount
cout << "accountl reset to the following:\n";

accountl.output(cout);

return 0;

ENSC 251: Lecture Set 2 18

BankAccount: :BankAccount(int dollars, int cents, double rate)

{

}

17 ((dollars < 0) || (cents < 0) || (rate < 0))

{
cout << "ITlegal values for money or interest rate.\n";
exit(1l);

}

balance = dollars + 0.01 * cents;

interest_rate = rate;

BankAccount: :BankAccount(int dollars, double rate)

{

}

1 ((dollars < 0) || (rate < 0))

{
cout << "Illegal values for money or interest rate.\n";
exit(1);

}

balance = dollars;

interest_rate = rate;

BankAccount: :BankAccount() : balance(0), interest_rate(0.0)

{
}

//Body intentionally empty
19

Let’'s talk more about Constructors with initialization
sections:

BankAccount: :BankAccount() : balance(0), interest_rate(0.0)
{

//Body intentionally empty
}

The new part starts with a colon

It is called the initialization section
-Starts after the closing brace of the parameter list

-Ends before the opening brace of the function body

-The colon is followed by a list of some subset (or all)
of the member variables with their initialization values

In parentheses and the individual variables separated
by commas.

ENSC 251: Lecture Set 2 20

In fact this:

BankAccount: :BankAccount() : balance(0), interest _rate(0.0)

{
//Body intentionally empty

}

Is equal to this:

BankAccount: :BankAccount()

{

balance = 0;
interest_rate = 0.0;

ENSC 251: Lecture Set 2

21

Constructors with parameters can have initialization
sections, and the initialization values need not be
constant (the constructor’'s parameters can be used).

Also, having an initialization section does not
preclude code in the function body:

BankAccount: :BankAccount(int dollars, double rate)
: balance(dollars), interest_rate(rate)

{
17 ((dollars < 0) || (rate < 0))
{
cout << "Illegal values for money or interest rate.\n";
exit(l);
}

ENSC 251: Lecture Set 2 292

Here's another example:

BankAccount: :BankAccount(int dollars, 7int cents,
double rate)
: balance(dollars + 0.01*cents), interest _rate(rate)

{
1 ((dollars < 0) || (cents < 0) || (rate < 0))
{
cout <<
"I1legal values for money or interest rate.\n";
ex1t(1l);
}
}

Your initialization section can have simple equations in terms
of function parameters and constants

ENSC 251: Lecture Set 2 23

So the two ways to call a constructor are:

SYNTAX (for an object declaration when you have
constructors)

Class_Name Object_Name(Arguments_for_Constructor) ;

EXAMPLE

BankAccount accountl(100, 2.3);

SYNTAX (for an explicit constructor call)

Object = Constructor_Name(Arguments_For_Constructor) ;

EXAMPLE

accountl = BankAccount(200, 3.5);

ENSC 251: Lecture Set 2 24

When you make an explicit call to a constructor, you create an
anonymous object

An anonymous object is not named by any variable

As such when you make the following assignment, you assign
the anonymous object to the named class variable:

accountl = BankAccount(999, 99, 5.5);

ENSC 251: Lecture Set 2 25

Note: this is not an efficient way to change member variables
as the constructor creates a whole new object and then

assigns it

That's why you want to use a mutator function to change the
values of member variables after initialization

accountl = BankAccount(999, 99, 5.5);

So why is it important to be able to explicitly call a constructor?

ENSC 251: Lecture Set 2 26

Hint: Remember dynamic memory allocation

BankAccount *myAcct; myAcct = new BankAccount (300, 4.2);

When you create linked lists and dynamically generate objects,
you need to be able to initialize them.

Remember this because it will be important later.

ENSC 251: Lecture Set 2 27

Some important things to remember

If you don’t explicitly create a constructor, the compiler will
create a default constructor (one with no arguments) that does
nothing.

However, once you have defined at least one constructor, then
no default constructors will be provided.

As such, you need to be sure that every instantiation of an
object has a parameter list matching one of your constructors,
or create a default constructor.

ENSC 251: Lecture Set 2 28

For example:

class SampleClass
{ Constructor that requires two arguments
public: —
SampleClass(int parameterl, double parameter2);
void do_stuff();
private:
1nt datal;
double data?2;

}s

This will work:
SampleClass my_object(7, 7.77);

But this is illegal:
SampleClass your_object; WHY?

ENSC 251: Lecture Set 2

29

Since you may not always want/know an object’s initialization
parameters, always include a default constructor:

class SampleClass

{
public:
SampleClass(7nt parameterl, double parameter2);
SampleClass(); Default constructor
void do_stuff();
private: -«
int datal;
double data?2;
¥

ENSC 251: Lecture Set 2 30

Giving your default constructor an empty body will have the
same behaviour as the C++ compiler’s default constructor.

It will do nothing:

SampleClass: :SampleClass()

{
//Do nothing.

}

If an object of a class type is created as a dynamic variable
using the new operator, then the default constructor is invoked
unless you include initializers.

BankAccount *myAcct; myAcct = new BankAccount (300, 4.2);

ENSC 251: Lecture Set 2 31

Remember we said this was bad:
BankAccount account2(); //THIS WILL CAUSE PROBLEMS.

and that you could use:
BankAccount account?2;

or.
accountl = BankAccount();

Why do you think the first statement is bad?

-Hint: it may not produce an error message since it is
not an illegal statement; but the action will likely be

unintended.
ENSC 251: Lecture Set 2 32

Final Notes on Constructors

Constructors give you control over how an object is
initialized.

Be sure to make them public

Also, create a default constructor (even if it does
nothing) to keep your code reuse clean

Don’t use constructors to reinitialize your member
variables, use mutator functions

ENSC 251: Lecture Set 2 33

Special notes for C++11

class Coordinate

{
public: _
Coordinate(); You can perform .
Coordinate(int X); member initialization
Coordinate(int x, int y); .
int getX(); - ThI.S is useful for
int getY(); critical systems,
private: . ensuring that fields
int x=1;)
int y=2; always start with
oo _ known values.
Coordinate: :Coordinate()
{1}
Coordinate: :Coordinate(int xval) : x(xval)
{1}
Coordinate::Coordinate(int xval, int yval) : x(xval), y(yval)
{1}
int Coordinate::getX()
{
return X;
}
int Coordinate::getY()
{
return y;

} 34

Special notes for C++11

class Coordinate

{
public:
Coordinate();
Coordinate(int x);
Coordinate(int x, int y);
int getX(Q);
int getY(Q);
private:
int x=1;
int y=2;
s
ﬂ&nﬁmﬁnqggLﬁéEuﬁﬁﬂatﬁtr—
e -
Coordinate: :Coordinate(int xval) : x(xval)
{1}

Coordinate: :Coordinate(int xval, int yval) : x(xval), y(yval)

{1}

Using this to replace the original default constructor:
Coordinate: :Coordinate() : Coordinate(99,99)
{}

ENSC 251: Lecture Set 2

It also supports
constructor
delegation

This allows
one
constructorto
call another
constructor
(e.g. the
default calling
the fully
specified
constructor as
shown here)

35

Special notes for C++11

WARNING:

-These features are new and are not supported in older compilers aimed at
older versions of C++

-This creates backwards compatibility issues of which you need to be
aware

-So then the question becomes: should you use them?

ENSC 251: Lecture Set 2 36

Now let's look at Abstract Data Types and take a
sneak peek at Inheritance...

ENSC 251: Lecture Set 2

37

Data Types:

Consists of a collection of values combined with the basic set of
operations defined on those values

Abstract Data Types:

Data types are only considered abstract if the programmers using the
type cannot access the details of how values are stored and the
operations are implemented

Predefined types such as int are abstract:
-you don’t know exactly how its operators (+, *, etc.) are implemented

-you cannot use this information in your own programs

ENSC 251: Lecture Set 2 38

Abstract Data Types (ADTSs):

Programmer defined data types are not automatically abstract:

Remember | originally showed you code for custom data types
where the data fields had been made public?

If you let a programmer directly access the class’ data fields and
manipulate how its operators behave, you cannot maintain
encapsulation and guarantee the way objects of this type will behave.

Next will be a series of notes on how to make sure the classes you
create can be considered abstract data types.

ENSC 251: Lecture Set 2 39

class BankAccount

{
Recall: pupiic:
BankAccount(int dollars, int cents, double rate);
BankAccount(int dollars, double rate);
BankAccount();
void set(int dollars, 7nt cents, double rate);
void set(int dollars, double rate);
void update();
double get_balance();
double get_rate();

void output(ostream& outs);
private:

double balance;
double interest_rate;
double fraction(double percent);

};
What does the user need to know?

ENSC 251: Lecture Set 2 40

class BankAccount

{
Reca” public:
BankAccount(int dollars, int cents, double rate);
BankAccount(int dollars, double rate);
BankAccount();
void set(int dollars, int cents, double rate);
void set(int dollars, double rate);
void update();
double get_balance();
double get_rate();

void output(ostream& outs);
private:

double balance;
double interest_rate;
double fraction(double percent);

};
You could store the balance in terms of dollars and cents

(both ints).

ENSC 251: Lecture Set 2 41

Then: class BankAccount

{
public:

<This part is exactly the same as before>
private:

int dollars_part;

int cents_part;

double 1nterest_rate;

double fraction(double percent);
s

And the function get balance () becomes:

double BankAccount::get_balance()
{

return (dollars_part + 0.01 * cents_part);

}

ENSC 251: Lecture Set 2 42

You could also get rid of the function fraction, and change
update from:

vo1d BankAccount: :update()

{
balance = balance + fraction(interest_rate) * balance;
}
to:
vo1d BankAccount: :update()
{
balance = balance + (interest_rate / 100.0) * balance;
}

ENSC 251: Lecture Set 2

43

The key to creating ADTs (and maintaining
encapsulation and reusability):
separating the specification of how the type is used
by a programmer from how it is implemented.”

*In fact, you should be able to completely change a class’ implementation
without having to change the programs that use that class

ENSC 251: Lecture Set 2 44

How to maintain separation/abstraction

General Rules:

1) Make all member variables private members of the class

2) Make the basic operations that the programmer needs
public member functions and fully specify how to use each
member function (i.e. defined interface).

3) Make all helping functions private member functions.

ENSC 251: Lecture Set 2 45

The interface

When you define an ADT, the interface comprises the public
member functions of the class and the comments that tell a
programmer how to use these public functions

The interface should be all a programmer needs to know to
use your class

This means someone can use the interface while someone
else works on the implementation...

This also means that once you define the interface, you cannot
change it (i.e. the public functions)

ENSC 251: Lecture Set 2 46

The implementation:

How the class is realized in C++

Comprises private member functions and the member
variables.

Users should not need to know anything about your
Implementation to be able to use your ADT

You can “harden” this separation of interface and
implementation by placing the interface and implementation in
separate files from each other and main (we’ll see this later).

ENSC 251: Lecture Set 2 47

Maintaining your ADTSs:

-You can’t change your public function declarations (but you
can change their definitions).

-You can’t change the resulting operation(s) of calling your
public functions (and you shouldn’t change the comments), but
you can change how the results are achieved.

-You can change your private member functions and private
member variable types.

In short, as long as any code using your ADT requires NO
CHANGES when you change it internally, you have
maintained the separation for ADTs

ENSC 251: Lecture Set 2 48

Inheritance & Derived Classes

C++ supports inheritance through derived classes

A derived class is obtained from another class by adding
features.

Inheritance allows you to define a general class and then add
more specialized features to create a new class.

This means that you need only add the new features to the
derived class

For example, the general class could be mammals, and a
derived class could be dogs.

*This is only an introduction to the ideas, we’ll talk more about it later.

ENSC 251: Lecture Set 2 49

Class Hierarchy

Note: The arrows

| Bank Account ‘ go from specific to
general (and not

T T vice versa)

Checking Account Savings Account

| |

Money Market D Account
Account

Checking Account is a derived class of Bank Account; it has all
of the features of the Bank Account class as well as some
added features (e.g. you can write cheques, make deposits,

etc.)
ENSC 251: Lecture Set 2 50

Class Hierarchy

| Bank Account l

[

Checking Account Savings Account

| |

Money Market
Account

CD Account

Derived Classes can be derived from other derived classes

For example, Money Market Accounts are a special
case of Checking Accounts which are a special case of Bank

Accounts
ENSC 251: Lecture Set 2 51

Class Hierarchy

| Bank Account ‘

[

Checking Account Savings Account

| |

Money Market D Account
Account

Since Checking Account is a derived class of Bank Account:

-Checking Account is the child of Bank Account,
-Bank Account is the parent or base class of Checking Account, and
-Checking Account inherits the member functions of Banking Account

ENSC 251: Lecture Set 2 52

Defining a Derived Class

1e of the parent or base class: The colon separates the

class SavingsAccount : public BankAccount derivedclass, 5avings
{ «— Account, from the parent
class,BankAccount

——

public:
SavingsAccount(int dollars, 7nt cents, double rate);
<0ther constructors would normally go here>
void deposit(int dollars, 1nt cents);
void withdraw(7nt dollars, int cents);

private:

}s

Any object of class type SavingsAccount, will now have all of
the member functions and fields of BankAccount class type
plus the additional member functions deposit & withdraw.

Note that the SavingsAccount class has its own constructor(s)

ENSC 251: Lecture Set 2 53

Defining a Derived Class

1€ Ot the pal'ent or baSC ClaSSI Thg CO/OH 58Par’at€5 the
class SavingsAccount : public BankAccount derivedclass, Savings

{ -« Account, from the parent
public: class,BankAccount
SavingsAccount(int dollars, int cents, double rate);

<0ther constructors would normally go here>
void deposit(int dollars, 7int cents);
void withdraw(7int dollars, int cents);

private:

}s

With this definition all of these calls are legal:

Invoking a function in

SavingsAccount account(100, 50, 5.5); the aerived class,
Invoking a function in the

account.deposit(10,25);
account.output(cout);«—— parentclass BankAccount

ENSC 251: Lecture Set 2 54

Defining a Derived Class

1e of the parent or base class: The colon separates the
class SavingsAccount : public BankAccount ﬁ@W@ﬁCﬁ5§5aV1ngS

{ «— Account, from the parent
public: ~ class,BankAccount

SavingsAccount(int dollars, 7nt cents, double rate);
<0ther constructors would normally go here>
void deposit(int dollars, 1nt cents);
void withdraw(7nt dollars, int cents);
private:

}s

Why Is this approach better than simply copying BankAccount
class and adding the new functionality?

-saves memory (SavingsAccount definition is smaller)

-facilitates code reuse (only have to modify BankAccount
functionality in one place)

ENSC 251: Lecture Set 2 55

Make sure you use the
public label for

Using this class definition BankAccount. I'll explain
why when we revisit
Inheritance.
class SavingsAccount : public BankAccount The colon indicates that the class
{ ‘<~\\\\\\\\\\\\\\\\\~ SavingsAccount is derived from
public: the class BankAccount
SavingsAccount(int dollars, int cents, double rate);
//Other constructors would go here Onl ber functi
void deposit(int dollars, 7int cents); « nynewnmm7ertﬁm @nsor
//Adds $dollars.cents to the account balance A R G R i
void withdraw(int dollars, 7nt cents);
//Subtracts $dollars.cents from the account balance
private:
};

ENSC 251: Lecture Set 2 56

The main function becomes:

int main()

{

SavingsAccount account(100, 50, 5.5);

account.

cout <<
cout <<

account.
.output(cout);

account
cout <<
cout <<
account

account.

cout <<

output(cout);

endl;

"Depositing $10.25." << endl;
deposit(10,25);

endl;
"Withdrawing $11.80." << endl;

.withdraw(11,80);

output(cout);
endl;

return 0;

ENSC 251: Lecture Set 2

S7

The ClaSS member funCtiOnS The SavingsAccount constructor

invokes the BankAccount constructor.

are. / Note the preceding colon.

SavingsAccount: :SavingsAccount(int dollars, int cents, double rate):
BankAccount(dollars, cents, rate)

{

//deliberately empty

}

void SavingsAccount: :deposit(int dollars, int cents)

{ The deposit function adds the new
double balance = get_balance(); amount to the balance and changes the
balance += dollars: member variables via the set function
balance += (static_cast<double>(cents) / 100);
int new_dollars = static_cast<int>(balance);
int new_cents = static_cast<int>((balance - new_dollars) * 100);
set(new_dollars, new_cents, get_rate());

}

Thewithdraw
void SavingsAccount::withdraw(int dollars, int cents) function subtracts
{ the amount from the

double balance = get_balance(); balance and changes
balance -= dollars; the member variables

balance -= (static_cast<double>(cents) / 100);
int new_dollars = static_cast<int>(balance);
int new_cents = static_cast<int>((balance - new_dollars) * 100);
set(new_dollars, new_cents, get_rate());

ENSC 251: Lecture Set 2

via the set function

Deriving from a Derived Class

class CDAccount : public SavingsAccount

{
public:
CDAccount(int dollars, 1nt cents, double rate,
int days_to_maturity);
<0ther constructors would normally go here>

int get_days_to_maturity();
//Returns the number of days until the CD matures

void decrement_days_to_maturity();
//Subtracts one from the days_to_maturity variable

private:
int days_to_maturity; //Days until the CD matures

}s

Objects of CDAccount class type support all the member
variables and functions in SavingsAccount and
BankingAccount.

ENSC 251: Lecture Set 2 59

Deriving from a Derived Class

//Create a new CD with $1000, 6% interest, 180 days to maturity

CDAccount newCD(1000, 0, 6.0, 180);
Invoking a function in

newCD.deposit(100,50); SavingsAccount

days_to_maturity = newCD.get_days_to_maturity();

//Returns 180
balance = newCD.get_balance(); Invoking a function in
//Returns 1100.50 //ﬁ CDAccount

Invoking a function in
BankAccount

Objects of CDAccount class type support all the member
variables and functions in SavingsAccount and
BankingAccount as shown by this example.

ENSC 251: Lecture Set 2 60

Review Questions for Slide Set 2

What is the name of the member function used to

NI

tialize an object when it is created?

Are Constructors class member functions?

W
ot

W

hat are the constraints for Constructors relative to
ner member functions?

Ny do you make Constructors public member

functions?

W

hy would you want to overload your Constructor

functions?

W

ith the option of Constructors, why might you still

want/need Mutator Functions?

ENSC 251: Lecture Set 2 61

Review Questions for Slide Set 2

What is a default Constructor? When do you need to
create one”?

How do you explicitly call a Constructorinside of a
function?

Do Constructors with Initialization sections need to
have empty function bodies?

Do initialization section values need to be constants or
can they be function parameters (e.g. constructor
function parameters).

Why is it important to be able to explicitly call a
Constructor?

ENSC 251: Lecture Set 2 62

Review Questions for Slide Set 2

* What type of constructoris called by default with the

new function when you instantiate a new object? What
are the exceptions?

« Assuming you have a class BankAccount and want to
Instantiate an object account2, what is the problem
with the following:

BankAccount account2(); //THIS WILL CAUSE PROBLEMS.

* What is Constructor Delegation and what are its
limitations?

ENSC 251: Lecture Set 2 63

Review Questions for Slide Set 2

What is the difference between data types and
abstract data types

Are all programmer defined data types abstract data
types?
Are int and float abstract data types?

What are the general rules for making class definitions
ADTs?

What is the interface of an ADT (i.e. what defines it)?
What defines the implementation of an ADT?

How do you “harden” the separation of interface and
implementation for ADTs?

ENSC 251: Lecture Set 2 64

Review Questions for Slide Set 2

What is a derived class?
Is the derived class the child or parent class?

Is the base class the child or parent class?
What is inheritance?

ENSC 251: Lecture Set 2

65

