Software Design and Analysis for
Engineers

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc251

=@/ Simon Fraser University Slide Set: 3

M Date: September 14, 2015

What we're learning in this Slide Set:

* More on Using Custom Data Types:

— Friend Functions

 Constant Parameters

* Overloading Operators

ENSC 251: Lecture Set 3

Textbook Chapters:

Relevant to this slide set:
« Sections 11.1-11.2

Coming soon:
* End of Chapter 11
* Reminders from Chapter 5 (Sections 5.3 and 5.4)

ENSC 251: Lecture Set 3 3

Friend Functions

We keep talking about encapsulation and including all
functions as members within classes

However, sometimes you might want to support an operation
as an “ordinary” non-member function

Let’s look at how we define operations on objects as
nonmember functions

ENSC 251: Lecture Set 3 4

Recall the day of the year class

class DayOfYear

{
public:

DayOfYear(int the_month, 7nt the_day);
//Precondition: the_month and the_day form a

//possible date. Initializes the date according
//to the arguments.

DayOfYear();
//Initializes the date to January first.

void input();
void output();

int get_month();
//Returns the month, 1 for January, 2 for February, etc.

int get_day();

//Returns the day of the month.
private:

void check_date();

int month;

int day;
}s

Let’s add the following nonmember function:

bool equal(DayOfYear datel, DayOfYear date2);
//Precondition: datel and dateZ have values.
//Returns true if datel and date2 represent the same date;

//otherwise, returns false.

ENSC 251: Lecture Set 3

And update main as follows:
int main(C)

{
DayOfYear today, bach_birthday(3, 21);

cout << "Enter today's date:\n";
today.input();

cout << "Today's date is ";
today.output();

cout << "J. S. Bach's birthday is ":
bach_birthday.output();

1T (equal(today, bach_birthday))

cout << "Happy Birthday Johann Sebastian!\n";
else

cout << "Happy Unbirthday Johann Sebastian!\n";
return 0;

ENSC 251: Lecture Set 3

All of the member functions stay the same, but “equal’is
defined as:

bool equal(DayOfYear datel, DayOfYear date2)
{
return (datel.get_month() == date2.get_month() &&
datel.get_day() == date2.get_day());

And you can use it to compare to objects of class type
DayofYear:

it (equal(today, bach_birthday))

cout << "Happy Birthday Johann Sebastian!\n";
else

cout << "Happy Unbirthday Johann Sebastian!\n";
return 0;

ENSC 251: Lecture Set 3

We could have made equal a member function.

However, then one of the objects would have had to call
the other object as a parameter using its member function.

-this would not treat the two objects the same way.

ENSC 251: Lecture Set 3

Conversely, this implementation of equal is inefficient as we
have to use the accessor functions to do the comparison (Why
does this make it inefficient?):

bool equal(DayOfYear datel, DayOfYear date2)

{
return (datel.get_month() == date2.get_month() &&

datel.get_day() == date2.get_day());

What we really want to do is access or member variables
directly, but this is illegal (Why?) and breaks our rules of
encapsulation:

bool equal(DayOfYear datel, DayOfYear date2)

{
return (datel.month == date2.month &&

datel.day == date2.day);

ENSC 251: Lecture Set 3 10

A friend function of a class is not a member function of the
class, but it is allowed to read and write to private member

variables (similar to a member function) and use private
member functions

Friend functions are listed as part of the class definition, but
use the keyword friend in front of the declaration:

friend bool equal(DayOfYear datel, DayOfYear date2);
//Precondition: datel and dateZ2 have values.

//Returns true i1f datel and date?2 represent the same date;
//otherwise, returns false.

We make them public because we want them to be usable
outside of the class.

ENSC 251: Lecture Set 3 11

Friend functions may look like member functions (because

they are part of the class definition):

class DayOfYear

{

public:
friend bool equal(DayOfYear datel, DayOfYear date2);
//Precondition: datel and date?2 have values.
//Returns true i1f datel and date2 represent the same date;
//otherwise, returns false.

DayOfYear(int the_month, int the_day);
//Precondition: the_month and the_day form a

//possible date. Initializes the date according
//to the arguments.

DayOfYear();
//Initializes the date to January first.

void input();
void output();

int get_month();
//Returns the month, 1 for January, 2 for February, etc.

int get_day();
//Returns the day of the month.
private:
void check_date();
int month;
int day;
}s 12

However, they are really normal functions

* They are defined the same way normal functions are
(the DayOfYear: : qualifieris not included in the

function heading); they just have special access to the
class member variables.

lote that the private
bool equal(DayOfYear datel, DayOfYear date2) |

r‘eturn (dat91-m0nth 1] datez'month && A’*”"::/
datel.day == date2.day);

month andday can

}

* And they are called the same way (just as we had
previously shown in main):

main()

{

17 (equal(today, bach_birthday))

cout << "Happy Birthday Johann Sebastian!\n";
else

cout << "Happy Unbirthday Johann Sebastian!\n";
return 0; 13

You could make all of your public functions friend functions

(giving you access to private variables), but this is not very
clean.

You still want to use accessor and mutator functions:

DayOfYear today;

cout << "enter today's date: \n";

today.input();

cout << "There are " << (12 - today.get_month())
<< " months left in this year.\n";

They provide the cleaner interface to “get” and “set”
variables.

Instead, you want to use friend functions to make your
code more efficient and easier to read

ENSC 251: Lecture Set 3 14

Notes: you can have more than one friend function:
SYNTAX (of a class definition with friend functions)

class Class _Name

{
public:
friend Declaration_for_Friend_Function_1
friend Declaration_for_Friend_Function_ 2 <«

Memben_Funct}on_Dec7arations
private:
Private_Member_Declarations
}s
And remember it is not a member function; so you
don’t use the dot operator to call it and you don’t use

the type qualifier to define it.

17 (equal(today, bach_birthday))

cout << "Happy Birthday Johann Sebastian!\n";
else

cout << "Happy Unbirthday Johann Sebastian!\n";

return 0; 15

How to decide if your function should be a member/non-
member function:

« Make it a member function: if the function performs a task
involving only one object

« Make it a non-member function: if the function performs a
task involving more than one object

— Additional qualifier: and the objects are used
symmetrically

When you make a non-member function, you can use your
accessor/mutator functions or you can make it a friend.

« Just remember ifitis a friend, you may have to change its
implementation if you change the class implementation

ENSC 251: Lecture Set 3 16

An example from the text:

//Class for amounts of money in U.S. currency.
class Money

{

public:

friend Money add(Money amountl, Money amount2);
//Precondition: amountl and amount2 have been given values.
//Returns the sum of the values of amountl and amountZ2.

friend bool equal(Money amountl, Money amount2);
//Precondition: amountl and amount2 have been given values.
//Returns true if the amountl and amount2 have the same value;
//otherwise, returns false.

Money(/ong dollars, int cents);

//Initializes the object so its value represents an amount with the
//dollars and cents given by the arguments. If the amount is negative,
//then both dollars and cents must be negative.

Money(/ong dollars);
//Initializes the object so its value represents $dollars.00.

Money();
//Initializes the object so its value represents $0.00.

double get_value();
//Precondition: The calling object has been given a value.
//Returns the amount of money recorded in the data of the calling object.

ENSC 251: Lecture Set 3 17

An example from the text (cont'd):

void input(istream& ins);

//Precondition: If ins is a file input stream, then ins has already been
//connected to a file. An amount of money, including a dollar sign, has been
//entered in the input stream ins. Notation for negative amounts is -$100.00.
//Postcondition: The value of the calling object has been set to

//the amount of money read from the input stream ins.

void output(ostream& outs);

//Precondition: If outs i1s a file output stream, then outs has already been

//connected to a file.

//Postcondition: A dollar sign and the amount of money recorded

//in the calling object have been sent to the output stream outs.
private:

long all_cents;

}s

int digit_to_int(char c);

//Function declaration for function used in the definition of Money::input:
//Precondition: ¢ 1s one of the digits 'O' through '9°'.

//Returns the integer for the digit; for example, digit_to_int ('3') returns 3.

ENSC 251: Lecture Set 3 18

int main()

{

Money your_amount, my_amount(10, 9), our_amount;
cout << "Enter an amount of money: ";
your_amount.input(cin);

cout << "Your amount is ";
your_amount.output(cout);
cout << endl;

cout << "My amount 1is ";
my_amount.output(cout);

cout << endl;

1t (equal(your_amount, my_amount))

cout << "We have the same amounts.\n";
else

cout << "One of us is richer.\n";
our_amount = add(your_amount, my_amount);
your_amount.output(cout);
cout << " + "
my_amount.output(cout);
cout << " equals ";
our_amount.output(cout);
cout << endl;
return 0;

ENSC 251: Lecture Set 3

Money add(Money amountl, Money amount2)

{
Money temp;
temp.all_cents = amountl.all_cents + amount2.all_cents;
return temp;
}
bool equal(Money amountl, Money amount2)
{
return (amountl.all_cents == amount2.all_cents);
}
Money: :Money(/ong dollars, int cents)
{
it (dollars * cents < 0) //If one is neaative and one is positive
{
cout << "IlTlegal values for dollars and cents.\n";
exit(l);
}
all_cents = dollars * 100 + cents;
¥

ENSC 251: Lecture Set 3 20

Constructors with initializers:

Money: :Money(/ong dollars) : all_cents(dollars * 100)

{
//Body intentionally blank.

}

Money: :Money() : all_cents(0)
{ //Body intentionally blank.
}

double Money::get_value()

{ return (all_cents * 0.01);
}

ENSC 251: Lecture Set 3

21

//Uses iostream, cctype, cstdlib:
void Money::input(istream& ins)

{

char one_char, decimal_point, digitl, digit2;
//digits for the amount of cents

long dollars;

int cents;

bool negative;//set to true if input is negative.

ins >> one_char;
if (one_char == " ")
{
negative = true;
ins >> one_char; //read '$'

}
else
negative = false;
//if input is legal, then one_char == '§'

ins >> dollars >> decimal_point >> digitl >> digit2;

|l T

if (one_char !='§'
|| !'isdigit(digitl) ||

|| decimal_point !=
lisdigit(digit2))
{
cout << "Error illegal form for money input\n";
exit(1l);

}
cents = digit_to_int(digitl) * 10 + digit_to_int(digit2);

all_cents = dollars * 100 + cents;
1 (neaative)

Note: we made
digit1 and digit2
chars to read the
two digits after the
decimal.

What would happen
if we made them
numbers and digit1
was a zero?

(i.e. what happens
to leading zeroes)?

22

vo1d Money::1nput(istream& 1ns)

{

char one_char, decimal_point, digitl, digit2;
//digits for the amount of cents

long dollars;

int cents;

bool negative;//set to true if input is negative.

ins >> one_char;

if (one_char == " ")
{

negative = true;
ins >> one_char; //read '$'

}
else
negative = false;
//if input is legal, then one_char == '§'

ins >> dollars >> decimal_point >> digitl >> digit2;

|l T

if (one_char !='§'
|| !'isdigit(digitl) ||

|| decimal_point !=
lisdigit(digit2))
{
cout << "Error illegal form for money input\n";
exit(1l);

}
cents = digit_to_int(digitl) * 10 + digit_to_int(digit2);

all_cents = dollars * 100 + cents;
it (negative)
all_cents = -all_cents;

Note: we made
digit1 and digit2
chars to read the
two digits after the
decimal.

What would happen
if we made them
numbers and digit1
was a zero?

(i.e. what happens
to leading zeroes)?

23

The remaining functions...

//Uses cstdlib and iostream:
void Money: :output(ostream& outs)

{
long positive_cents, dollars, cents;
positive_cents = labs(all_cents);
dollars = positive_cents / 100;
cents = positive_cents % 100;

i (all_cents < 0)
outs << "-$" << dollars << '."';
else

outs << "$" << dollars << '.';
1t (cents < 10)

outs << '0';
outs << cents;

int digit_to_int(char c)

return (static_cast<int>(c) - static_cast<int>('0"));

This code could be more robust (needs more error checking)
ENSC 251: Lecture Set 3 24

A quick note...

Recall:

Money your_amount, my_amount(10, 9), our_amount;

Replacing ‘9’ with “09” shouldn’t be a problem, but it could be
iIf your compiler doesn’t follow the ANSI standard

-In that case a leading zero might be interpreted as an
octal number and “09” is not a valid octal number.

ENSC 251: Lecture Set 3 25

The const Parameter modifier

A call-by-reference (using a pointer) is more efficient
than a call-by-value

Why? (Remember scope)

However, remember that if you call-by-reference be

careful, any changes you make to the object will be
permanent.

... Unless ...

ENSC 251: Lecture Set 3 26

The const Parameter modifier

Using const in conjunction with a call-by-reference tells the
compiler that you want a constant parameter and that it should
not be changed by the function call.

You need to use const in both the function declaration:

class Money

{

public:
friend Money add(const Money& amountl, const Money& amount2);

//Precondition: amountl and amount2 have been given values.
//Returns the sum of the values of amountl and amountZ.

And in the heading of the function definition:
Money add(const Money& amountl, const Money& amount2)

{

ENSC 251: Lecture Set 3 27

If you try to change a constant parameterin a
function, then the compiler will issue an error
message.

You can use the modifier const with any kind of

parameter, but normally used with call-by-reference
parameters

ENSC 251: Lecture Set 3 28

What about declaring objects?
Money m;
m.input(cin);

Although not explicit, by default a member function behaves

like a call-by-reference as you can change the value of the
calling object.

If you have a member function that should not change the
value of a calling object, it can also be marked as a const
class Money

{
public:

void output(ostream& outs) const;

The compiler will issue an error message if your function’s

code changes the value of the calling object.
ENSC 251: Lecture Set 3 29

Again, the const modifier should be used in both the function
declaration:

class Money
{
public:

void output(ostream& outs) const;

and the function definition:

void Money: :output(ostream& outs) const

{

ENSC 251: Lecture Set 3 30

Be warned:

Because of embedded function calls:

void gquarantee(const Money& price)

{
cout << "If not satisfied, we will pay you\n"
<< "double your money back.\n"
<< "That's a refund of $"
<< (2 * price.get_value()) << endl,;
}

This will give an error on most compilers.

The compiler will note that get valueis a member function
of class Money, and because it does not have a constin its
definition, it may change the value of Money.

To make this work, you need to use the const modifier to the
get wvalue member function.

ENSC 251: Lecture Set 3 31

Summary:

If you use the const parameter for one parameter of a
particular type, you should use it for every other parameter of
that type that is not changed by the function call.

If you use the const parameter with a class type, all member
functions that do not modify the calling object should be used
with every member function

In short, you have to use const everywhere or nowhere to

ensure that your code will compile as you may end up
embedding functions in functions.

ENSC 251: Lecture Set 3 32

So the two ways to use const are:

class Sample

{
public:
Sample();
friend int compare(const Sample& sl, const Sample& s2);
void input();
void output() const;
private:
int stuff;
double more_stuff;
};

ENSC 251: Lecture Set 3 33

Our updated version of the class Money would look like:

//Class for amounts of money in U.S. currency.

class Money

{

public:
friend Money add(const Money& amountl, const Money& amount2);
//Precondition: amountl and amount2 have been given values.
//Returns the sum of the values of amountl and amountZ2.

friend bool equal(const Money& amountl, const Money& amount2);
//Precondition: amountl and amount2 have been given values.
//Returns true if amountl and amount?2 have the same value;
//otherwise, returns false.

Monev(T1ong dollars. int cents):
//Initializes the object so its value represents an amount with the

//dollars and cents given by the arguments. If the amount is negative,
//then both dollars and cents must be negative.

Money(/ong dollars);
//Initializes the object so its value represents $dollars.00.

Money();
//Initializes the object so its value represents $0.00.

ENSC 251: Lecture Set 3 34

Our updated version of the class Money (cont'd):

double get_value() const;
//Precondition: The calling object has been given a value.
//Returns the amount of money recorded in the data of the calling object.

void input(istream& ins);

//Precondition: If ins is a file input stream, then ins has already been
//connected to a file. An amount of money, including a dollar sign, has been
//entered in the input stream ins. Notation for negative amounts is -$100.00.
//Postcondition: The value of the calling object has been set to

//the amount of money read from the input stream ins.

void output(ostream& outs) const;

//Precondition: If outs is a file output stream, then outs has already been

//connected to a file.

//Postcondition: A dollar sign and the amount of money recorded

//in the calling object have been sent to the output stream outs.
private:

long all_cents;

}s

ENSC 251: Lecture Set 3 35

Overloading Operators

Although we can create functions called “add” and “subtract,” it

would be nice to be able to declare objects and use the normal
operators ‘+ and ‘-

Money total, cost, tax;

cout << "Enter cost and tax: ";
cost.input(cin);
tax.input(cin);

total = cost + tax;

(Instead of: total = add(cost, tax);)

ENSC 251: Lecture Set 3 36

But operators are actually functions - with a slightly different
syntax of use.

(e.g. cost + tax instead of add(cost, tax))

Since we can overload functions, we can also overload operators.

Note: ‘+' is a binary operator, with the arguments before and after it
(as opposed to having its function parameters listed in parentheses
after the function name).

ENSC 251: Lecture Set 3 37

Overloaded operators look like this:

class Money

{

public:
friend Money operator +(const Money& amountl, const Money& amount2);
//Precondition: amountl and amount2 have been given values.
//Returns the sum of the values of amountl and amount?2.
friend bool operator ==(const Money& amountl, const Money& amount2);
//Precondition: amountl and amount2 have been given values.
//Returns true if amountl and amount?2 have the same value;
//otherwise, returns false.
Money(/ong dollars, int cents);
Money(/ong dollars);
Money(); Some comments from Display 11.4

have been omitted to save space

double get_value() const; in this book, but they should be
void input(istream& ins); included in a real program.
void output(ostream& outs) const;

private:
long all_cents;

}s

You don’t have to make them friend functions, but note the operator

keyword.
ENSC 251: Lecture Set 3 38

When you use an overloaded operator, it looks like normal:

int main()

{

Money cost(l, 50), tax(0, 15), total;
total = cost + tax;

cout << "cost = ";
cost.output(cout);
cout << endl;
cout << "tax = ";
tax.output(cout);
cout << endl;
cout << "total bill = ";
total.output(cout);
cout << endl;
1 (cost == tax)

cout << "Move to another state.\n";
else

cout << "Things seem normal.\n";
return 0;

ENSC 251: Lecture Set 3

39

When you define an overloaded operator, it looks like:

Money operator +(const Money& amountl, const Money& amount2)

{
Money temp;

temp.all_cents = amountl.all_cents + amount2.all_cents;
return temp;

}

bool operator ==(const Money& amountl, const Money& amount2)

{

return (amountl.all_cents == amount2.all_cents);

}

Again note the keyword operator is used here.

ENSC 251: Lecture Set 3

40

/ Rules for Overloading Operators

. At least one argument of the overloaded operator must be
of a class type.

. Overloaded operators can be friend functions, member
functions, or ordinary (non-friend functions).

. You cannot create a new operator.

. You cannot change the number of arguments that an
operator uses (e.g. you can’t change ™ to a unary operator
and you can’t change “++” to a binary operator).

ENSC 251: Lecture Set 3 41

/ Rules for Overloading Operators

5. You cannot change the precedence of an operator (e.g.
a*b-c always means (a*b)-c even if a, b, and ¢ are objects).

6. You cannot overload the following operators: the dot
operator (.), the scope resolution operator (::), or the
operators “.*" and “?:”

/. If you want to overload the overloaded assignment
operator, this is done differently (we’ll talk about it later).
Some other operators (e.g. [] and ->) are also overloaded
differently. We might talk about these later, but they are in
your text book.

ENSC 251: Lecture Set 3 42

int integer
float floating pt:

floating pt = integer;

Similar to when an int is automatically cast to a float, if you
have the right constructors, the compiler will perform certain
types of conversion for your classes automatically.

ENSC 251: Lecture Set 3 43

The output of:

Money base_amount (100, 60), full_amount;
full_amount = base_amount + 25;
full_amount.output(cout);

IS: $125.60

How?

ENSC 251: Lecture Set 3

44

When the compiler goes to evaluate: base amount + 25,
it first checks to see that '+’ is overloaded for an object of type
Money and an integer.

If there isn't, it looks for a constructor with a single parameter
of type integer (which there is) and converts it to type Money.

After the conversion, the overloaded ‘+’ can be used to add the
two parameters of class type Money together.

As such, this assignment won’t work (\Why?):
full_amount = base_amount + 25.67;

ENSC 251: Lecture Set 3 45

To fix it:

class Money

{
public:

Money(double amount);
//Initializes the object so its value represents $amount.

You can write the function definition yourself for practice.

ENSC 251: Lecture Set 3 46

Remember you can also overload unary operators so:

Money amountl(10), amount2(6), amount3;
amount3 = -amountl;

So amount 3 would equal -$10.

If you overload ++ and --, by default you are overloading the
prefix version (with that order of precedence). The postfix
version is done differently.

If you are feeling comfortable with programming, you should
look it up.

ENSC 251: Lecture Set 3 47

This is an improved version of our Money class:

//Class for amounts of money in U.S. currency. This is an improved version
class Money of the class Money given
{ in Display 11.5.
public:

friend Money operator +(const Money& amountl, const Money& amount2);

friend Money operator -(const Money& amountl, const Money& amount2);
//Precondition: amountl and amount2 have been given values.
//Returns amountl minus amountZ.

friend Money operator -(const Money& amount);
//Precondition: amount has been given a value.
//Returns the negative of the value of amount.

friendbool operator ==(const Money& amountl, const Money& amount2);

We have omitted the include
directives and some of the
Money(/ong dollars); comments, but you should include
them in your programs.

Money(/ong dollars, int cents);

Money();
double get_value() const;

void input(istream& 1ins);

void output(ostream& outs) const;
private:

long all_cents;

¥

This is an improved version of our Money class (cont'd):

Money operator -(const Money& amountl, const Money& amount2)
{
Money temp;
temp.all_cents = amountl.all_cents - amount2.all_cents;
return temp;

}

Money operator -(const Money& amount)

{
Money temp;
temp.all_cents = -amount.all_cents;
return temp,

}

REMEMBER: comments in the class definition are part of your
interface, so be sure to clearly define all member and friend
functions.

ENSC 251: Lecture Set 3 49

You can also overload the insertion operators, but there are a
few more details to consider.

Because it is cleaner, ideally, what we want is:

Money amount(100);
cout << "I have "

<< amount << in my purse.\n";

instead of:
Money amount(100);

cout << "I have ";
amount.output(cout);

cout << " in my purse.\n";

But what is the return type of “<<*?

ENSC 251: Lecture Set 3 50

Remember the following assignment in C++:

cout << "I have << amount << in my purse.\n";

IS equivalent to:
((cout << "I have ") << amount) <<

in my purse.\n";

So the return type of “<<" is the stream (cout)

class Money

{
public:

friend ostream& operator <<(ostream& outs, const

Money& amount) ;
//Precondition: If outs is a file output stream, then outs
//has already been connected to a file.
//Postcondition: A dollar sign and the amount of money
//recorded in the calling object have been sent to the output
//stream outs.

ENSC 251: Lecture Set 3 51

We no longer need the output member function as part of the
class Money and the replacement function looks very similar

ostream& operator <<(ostream& outs, const Money& amount)

{

<This part is the same as the body of Money: :output

that is given in Display 11.3 (except that al1_cents
is replaced with amount.al1_cents).>

return outs,;

Think: Why do we need to replace the references to
all centswith amount.all cents.

Also, why is the return value ostreamé&?

ENSC 251: Lecture Set 3 52

Why is the return value ostreams&?
ostream& operator <<(ostream& outs, const Money& amount)

{

<This part is the same as the body of Money: :output
that is given in Display 11.3 (except that al1_cents
is replaced with amount.all_cents).>

return outs,;

¥

If you returned ostream, you would be returning, the entire
file/keyboard/screen (that doesn’t make sense)

The ‘&’ means you are returning a reference (a pointer) as
opposed to the value.

This means you are returning the actual object and not
simply its value

ENSC 251: Lecture Set 3 53

The extraction operator is similar to the insertion operator

istream& operator >>(istream& ins, Money& amount)

{
<This part is the same as the body of
Money: :input given in Display 11.3 (except that
all_cents is replaced with amount.al1_cents).>
returnins;

}

It returns a pointer to the input stream (incremented through
the file/keyboard input to just after the last extracted value)

This might make it a little easier to understand why we
need to use pointers instead of values.

ENSC 251: Lecture Set 3 54

Summary of Insertion and Extraction operator function

declarations and definitions:
FUNCTION DECLARATIONS

Farameter for
the object to

class Class_Name , ,
receive the input

{ Farameter for

public: the stream l

N\

friend istream& operator >>(istream& Parameter_1,
Class_Name& Parameter_2);

friend ostream& operator <<(ostream& Parameter_3,
const Class_Name&
Parameter_4) ;

DEFINITIONS

istream& operator >>(istream& Parameter_1,
Class Name& Parameter 2)

{
}

ostream& operator <<(ostream& Parameter_3,
const Class_Name& Parameter_4)

{
55

Here's an example:

//Program to demonstrate the class Money
#include <iostream>
#include <fstream>
#include <cstdlib>

This is an improved version
of the class Money that
we gave in Display 11.0.

#include <cctype> Although we have omitted

using namespace std; some of the comments from
) Displays 11.5 and 11.6,

//Class for amounts of money in U.S. currency. you should include them.

class Money

{

public:

friend Money operator +(const Money& amountl, const Money& amount2);

friend Money operator -(const Money& amountl, const Money& amount2);

friend Money operator -(const Money& amount);

friend bool operator ==(const Money& amountl, const Money& amount2);
Money(/ong dollars, int cents);

Money(/ong dollars);

Money ();

double get_value() const,

ENSC 251: Lecture Set 3

56

Here's an example (rest of the class def'n and non-member
function):

friend istream& operator >>(istream& ins, Money& amount);

//0verloads the >> operator so it can be used to input values of type Money.
//Notation for inputting negative amounts is as in -$100.00.
//Precondition: If ins is a file input stream, then ins has already been
//connected to a file.

friend ostream& operator <<(ostream& outs, const Money& amount);
//0verloads the << operator so it can be used to output values of type Money.
//Precedes each output value of type Money with a dollar sign.
//Precondition: If outs is a file output stream,
//then outs has already been connected to a file.

private:
long all_cents;

s

int digit_to_int(char c);

//Used in the definition of the overloaded input operator >>.

//Precondition: ¢ is one of the digits '0O' through '9'.

//Returns the integer for the digit; for example, digit_to_int('3') returns 3.

ENSC 251: Lecture Set 3 57

int main()

{
Money amount;
ifstream in_stream;
ofstream out_stream;

in_stream.open("infile.dat");

1 (Ain_stream.fail())

{
cout << "Input file opening failed.\n";
exit(l);

}

out_stream.open("outfile.dat");

it (out_stream.fail())

{
cout << "Output file opening failed.\n";
exit(l);

}

in_stream >> amount;
out_stream << amount

<< " copied from the file infile.dat.\n";
cout << amount

<< " copied from the file infile.dat.\n";

in_stream.close();
out_stream.close();

return 0;

58

//Uses iostream, cctype, cstdlib:
istream& operator >>(istream& ins, Money& amount)
{
char one_char, decimal_point,
digitl, digit2; //digits for the amount of cents
long dollars;
int cents;
bool negative;//set to true if input 1s negative.

ins >> one_char;
1 (one_char == '-")
{
negative = true;
ins >> one_char; //read '$'

}
else
negative = false;
//1f input is legal, then one_char == '§'

ins >> dollars >> decimal_point >> digitl >> digit2;
if (one_char != "$"' || decimal_point != ".'
|| !isdigit(digitl) || !isdigit(digit2))
{
cout << "Error illegal form for money input\n";
exit(l);

}
cents = digit_to_int(digitl) * 10 + digit_to_int(digit2);

amount.all_cents = dollars * 100 + cents;
it (negative)

amount.all_cents = -amount.all_cents;
return 1ins;

Remaining code describing the insertion operator:

int digit_to_int(char c)
{
return (static_cast<int>(c) - static_cast<int>('0"));

}

//Uses cstdlib and iostream:
ostream& operator <<(ostream& outs, const Money& amount)
{

long positive_cents, dollars, cents;

positive_cents = labs(amount.all_cents);

dollars = positive_cents/100;

cents = positive_cents%100;

1t (amount.all_cents < 0)

outs << "- $" << dollars << '.';
else

outs << "$" << dollars << '".';

1 (cents < 10)
outs << '0"';

outs << cents;

return outs;

ENSC 251: Lecture Set 3

Review Questions for Slide Set 3

What are friend functions? Why are they valuable/needed?
Should friend functions be public or private?

Are friend functions member functions?

Do friend functions break our rules of encapsulation?
When should you use friend functions?

If you change your class implementation, would you have to
change the friend functions?

When and why is a call by reference more efficient than a call
by value?

What does the const parameter do”? When should you use the
const parameter?

ENSC 251: Lecture Set 3 61

Review Questions for Slide Set 3

Do you use the const parameter in the function declaration,
function definition, or both?

Will a compiler allow you to change a parameter marked with
the const label?

Why is the const paramter important in the context of member
functions?

What is operator overloading? What keyword do you need?
Are they friend, member or non-member functions?

Why do you return ostream& when overloading the insertion
operator (<<) as opposed to just ostream?

What is the extraction operator?

ENSC 251: Lecture Set 3 62

